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Abstract

Previous results have indicated that the OLS estimator of the vector of regression

coefficients can be nearly as efficient as the best linear unbiased estimator when the

regression errors follow a spatial process with root in the vicinity of unity. Such results

were derived under the assumption of a symmetric weights matrix, which simplifies the

analysis considerably, but is very often not satisfied in applications. This paper provides

nontrivial generalizations to the important case of nonsymmetric weights matrices.
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1 Introduction

The efficiency of the OLS estimator of regression coefficients, relative to the best linear

unbiased estimator, has been studied both for the case of a positive definite error

variance matrix (e.g., Bloomfield and Watson, 1975, and references therein) and for

the case of a singular error variance matrix (e.g., Liu, 2000, and references therein).

Nonetheless, the specific case when the error variance matrix, or its inverse, approaches

singularity has not been fully investigated. This limiting case is of interest in several

statistical models, for instance time series ARMA processes with a near AR or MA

unit root, fractionally integrated models with differencing parameter close to 0.5, and

some spatial models. When the error variance matrix is singular, generalized matrix

inversion is required to define the generalized least-squares (GLS) estimator. The main

difficulty in assessing the relative efficiency of the OLS estimator as the error variance

matrix approaches singularity is that the matrix generalized inverse is not continuous

for a sequence of nonsingular matrices approaching a singular one (see e.g., Stewart

and Sun, 1990, p. 136).

The present paper is concerned with a regression model whose errors follow a first-

order Simultaneous Autoregressive (SAR(1)) process; see, e.g., Cliff and Ord (1973).

More specifically, we focus on the case when the spatial autocorrelation parameter is

close to the smallest positive value such that the inverse error variance matrix (or,

equivalently, a scaled version of the error variance matrix) is singular. Due to some

analogies with time series models, such a value has often been named a spatial unit

root; see, e.g., Fingleton (1999), Lee and Yu (2008 and 2009), and Baltagi and Liu

(2010).

In the context of a SAR(1) model, it is well known that the power of tests of residual

autocorrelation may be very low in some circumstances (e.g., when the weights matrix

is very dense), so that one may end up using the OLS estimator in the presence of strong

error autocorrelation. As the autocorrelation parameter approaches the spatial unit

root, the power of tests for spatial autocorrelation can even vanish (Krämer, 2005), so

it is clearly important to understand how inefficient the OLS estimator can be. Several

examples of empirical applications of SAR(1) models with autocorrelation parameter

close to a spatial unit root are mentioned in Lee and Yu (2008) and Martellosio (2010).

Spatial unit roots have also been analyzed in the case of SAR processes on regular
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lattices; see, e.g., Bhattacharyya et al. (1997), Baran et al. (2004) and Paulauskas

(2007).

The behavior of the relative efficiency of the OLS estimator in a regression model

with SAR(1) errors has been previously studied by Krämer and Donninger (1987) and

Tilke (1993). The results in those papers require the assumption that the spatial

weights matrix is symmetric. This is unfortunate because such an assumption is very

often not satisfied in applications—for example, it is not satisfied when W is the

adjacency matrix of an undirected graph, and is usually not satisfied when W is a

row-standardized matrix. The main objective of this paper is to extend those early

contributions to the practically important case of nonsymmetric weights matrices.

In Section 2 we introduce the model and the measure of efficiency. In Section 3 we

summarize the results available in the literature. Our extensions of those results are

presented in Section 4. Section 5 concludes. Proofs are collected in the appendix.

2 The Model and the Measure of Efficiency

Consider the linear regression model

y = Xβ + u, (1)

where X is an n × k fixed regressor matrix of rank k < n, and u is a n × 1 error

term with E(u) = 0 and var(u) = σ2V , for a positive parameter σ2 and some positive

definite matrix V . A SAR(1) process for u is specified by

u = ρWu + ε, (2)

where ρ is a scalar unknown parameter, W is a fixed n×n spatial weights matrix, and

ε is an n× 1 random vector satisfying E(ε) = 0 and var(ε) = In. In order for ρ to be

identified we assume that W is different from In. Next, recall that a square matrix A

is said to be nilpotent if Aq is equal to a zero matrix for some positive integer q; e.g.,

Horn and Johnson (1985). We assume that W satisfies the following condition.

Assumption 1 W is a nonnegative and non-nilpotent matrix.

Assumption 1 rules out weights matrices that are, possibly after a re-ordering of the

index set, strictly triangular. Indeed, if a square matrix is nonnegative and nilpotent,
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then it must be permutationally similar to a strictly triangular matrix; e.g., Dietzen-

bacher (1996). Hence, Assumption 1 rules out the case of models admitting a unilateral

representation, such as time-series autoregressive models.

Let λmax denote the spectral radius of W . By the Perron-Frobenius theory (e.g.,

Horn and Johnson, 1985, Ch. 8) plus the fact that λmax = 0 if and only if W is

nilpotent, Assumption 1 implies that λmax is positive and is an eigenvalue of W . Since

λmax is real and nonzero, we can reparametrize model (2) by transforming from (ρ, W )

to (λmaxρ, λ−1
maxW ). Hence, we take λmax = 1, without loss of generality and unless

otherwise specified. The set of values of ρ that is empirically most relevant is [0, 1). In

this set

V = [(In − ρW ′)(In − ρW )]
−1

=: Σ(ρ). (3)

Note that, since In−W is singular, Σ(ρ) does not exist at the spatial unit root ρ = 1.

We denote by γ1(ρ), ..., γs(ρ) the s distinct eigenvalues of Σ−1(ρ), in increasing

order of magnitude. Note that s does not depend on ρ except for a finite number of

values of ρ (see, e.g., Kato, 1995, p. 64). Also, observe that, by continuity of the

eigenvalues of Σ−1(ρ) in ρ, limρ→1 γ1(ρ) = γ1(1) = 0. Throughout our analysis and

unless otherwise stated, we maintain the following technical assumption.

Assumption 2 limρ→1 γ2(ρ) > 0.

Assumption 2 is virtually always satisfied in applications of SAR(1) models. It

requires that the eigenvalue γ1(1) = 0 does not split into different eigenvalues of Σ−1(ρ)

in a neighborhood of ρ = 1. Without Assumption 2, the results to follow would become

analytically more complicated.

A possible measure of the relative efficiency of the OLS estimator β̂OLS := (X ′X)−1X ′y,

compared to the GLS estimator β̂GLS := (X ′Σ−1(ρ)X)−1X ′Σ−1(ρ)y, is the ratio of

total variances

η :=
tr[var(Xβ̂GLS)]

tr[var(Xβ̂OLS)]
.

This paper studies the limiting behavior of η as ρ → 1 (from the left), in the context

of the particular structure (3). Note that, as ρ → 1, η has the same limit as η∗ :=

tr[var(β̂GLS)]/tr[var(β̂OLS)].1 Examples of papers that have adopted η or η∗ to analyze

1Also, observe that, in order to analyze η, one may assume X ′X = In, because η depends on X

only through the column space of X. Under that assumption, η = η∗ for any positive definite Σ(ρ).
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the efficiency of β̂OLS for various specifications of V are Krämer (1980 and 1984),

Stemann and Trenkler (2000), Kleiber (2001), Song and Trenkler (2001), Jeske and

Song (2003).

A word on notation: eigλ(Q) denotes the eigenspace of a square matrix Q associated

to the eigenvalue λ; col(Q) denotes the column space of a matrix Q.

3 Previous Results

The behavior of the efficiency η as ρ → 1 in a regression model with SAR(1) errors

has been studied by Krämer and Donninger (1987), and subsequently by Tilke (1993),

who pointed out that Krämer and Donninger’s main results require symmetry of W .

The following theorem summarizes the available results.2

Theorem 3.1 (Krämer and Donninger, 1987; Tilke, 1993) In a regression model

with SAR(1) errors, limρ→1 η is:

(i) 1 if W is symmetric and eig1(W ) ⊆ col(X);

(ii) 0 if eig1(W ) 6⊥ col(X), eig1(W ) ∩ col(X) = {0}, and a) W is symmetric or b)

dim(eig1(W )) = 1;

(iii) in (0, 1] if W is symmetric and eig1(W ) ⊥ col(X).

A substantial generalization of Theorem 3.1 was attempted by Krämer and Baltagi

(1996), henceforth KB, by considering a general V belonging to some subset S of

the cone of symmetric positive definite matrices. More precisely, KB consider, in the

context of model (1), the following condition. (Recall that convergence of matrices

does not depend on the choice of norm, and that convergence with respect to any norm

is equivalent to componentwise convergence.)

Condition 3.2 There are a scalar function g(V ) and a matrix Ṽ belonging to the

closure of S such that g(V )V → Ṽ and col(Ṽ ) ⊆ col(X).

In their Corollary 1, KB state that, under Condition 3.2, limg(V )V→Ṽ
η = 1 (see also

their Theorem 1, which corresponds to the case g(V ) = 1). Unfortunately, while correct

2Observe that Assumption 2 is satisfied when W is symmetric or dim(eig1(W )) = 1, and hence is

satisfied in all cases in Theorem 2.
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in some interesting cases, KB’s claim does not hold true in general. Counterexamples

can be found precisely in the class of SAR(1) processes, as we show next.

Tilke (1993) observed that there are SAR(1) processes with nonsymmetric W such

that limρ→1 η 6= 1. We now show that such processes constitute counterexamples

to KB’s claim. This can be done using the following result, where P U denotes the

orthogonal projector onto a subspace U of Rn.

Lemma 3.3 As ρ → 1, γ1(ρ)Σ(ρ) → P eig1(W ).

Lemma 3.3 implies that any SAR(1) process satisfies Condition 3.2 as long as

eig1(W ) ⊆ col(X) (with V = Σ(ρ), g(V ) = γ1(ρ), Ṽ = P eig1(W ), col(Ṽ ) = eig1(W )).

This contradicts KB’s claim because, as noted above, limρ→1 η is not necessarily 1

if W is nonsymmetric. As a simple example, consider the case when W is the

row-standardized version of the adjacency matrix of a star graph, and the regres-

sion contains only an intercept. By straightforward computation, η = (n − 1)(ρ +

1)2/ [(n2 − 3(n− 1)) ρ2 + 2(n− 1)ρ + n− 1], and limρ→1 η = 4(n − 1)/n2, which ap-

proaches 0 as n →∞; see Figure 1.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

ρ

η

Figure 1: The relative efficiency of the OLS estimator of the constant mean for a SAR(1)

process, when W is the row-standardized version of the adjacency matrix of a star graph on

n = 10 (solid line), 20 (dashed line), 30 (dotted line) vertices.

Counterexamples to KB’s claim can also be found when the regressors follow a

first-order spatial moving average models u = ε + ρWε with nonsymmetric W (for ρ

approaching a value such that V tends to a singular matrix).
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4 Main Results

Our first step towards strengthening Theorem 3.1 is the following result, where the sym-

metry condition in Theorem 3.1(i) is replaced by the weaker condition that eig1(W ) =

eig1(W
′).

Theorem 4.1 In a regression model with SAR(1) errors, limρ→1 η = 1 if eig1(W ) =

eig1(W
′) ⊆ col(X).

Two simple corollaries of Theorem 4.1 are given next. Recall that a matrix A is

irreducible if the graph with adjacency matrix A (that is, the graph with n vertices

and an edge from vertex i to vertex j if and only if (A)ij 6= 0) has a path from any

vertex i to any vertex j; see, e.g., Horn and Johnson (1985).

Corollary 4.2 In a regression model with an intercept and SAR(1) errors, limρ→1 η =

1 if W is irreducible and doubly stochastic.

Another class of matrices to which Theorem 4.1 applies is that of (nonnegative)

normal matrices. Recall that a real matrix is said to be normal if it commutes with

its transpose.

Corollary 4.3 In a regression model with SAR(1) errors, limρ→1 η = 1 if W is normal

and eig1(W ) ⊆ col(X).

As an illustration of Corollaries 4.2 and 4.3, consider a (circulant) weights matrix

with ones in the first lower diagonal and in position (1, n), and zeroes everywhere

else. Since such a weights matrix is irreducible, doubly stochastic, normal, and has

eig1(W ) = span{ιn}, where ιn denotes the n × 1 vector of all ones, either of the two

corollaries implies that limρ→1 η = 1 as long as an intercept is included in the regression.

Theorem 4.1 represents a significant generalization of Theorem 3.1(i), but is not

entirely satisfactory because the condition eig1(W ) = eig1(W
′) is still far from being

necessary. Considerable progress can be made by restricting attention to diagonaliz-

able W ’s. Diagonalizability is certainly satisfied, for example, in the case of the most

common way of specifying weights matrices, which consists of row-standardizing a sym-

metric matrix. Indeed, a weights matrix D−1A, where A is an n×n symmetric matrix

with positive row-sums and D is the diagonal matrix with main diagonal equal to Aιn,

is similar to the symmetric matrix D−1/2AD−1/2, and is therefore diagonalizable.

6
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Theorem 4.4 In a regression model with SAR(1) errors, limρ→1 η = 1 if W is diago-

nalizable and, for each eigenvalue λ of W , eigλ(W
′)⊥ eig1(W

′) or eigλ(W ) ⊆ col(X).

The condition in Theorem 4.4 requires eig1(W ) ⊆ col(X), because obviously

eig1(W
′) cannot be orthogonal to itself. Note that eig1(W ) ⊆ col(X) is sufficient

for limρ→1 η = 1 if W is diagonalizable with eigλ(W
′)⊥ eig1(W

′) for all eigenvalues

λ 6= 1 of W . This is particularly relevant when eig1(W ) = span{ιn} and the regression

contains an intercept. On the other hand, if W is diagonalizable but eigλ(W
′) is not

orthogonal to eig1(W
′) for at least one eigenvalue λ 6= 1, then limρ→1 η = 1 is unlikely

to occur in practice.

Our next task is to generalize Theorem 3.1(ii).

Theorem 4.5 In a regression model with SAR(1) errors, limρ→1 η = 0 if and only if

eig1(W ) 6⊥ col(X) and eig1(W ) ∩ col(X) = {0}.

Compared to Theorem 3.1(ii), Theorem 4.5 does not require the assumption that

W is symmetric or dim(eig1(W )) = 1. By the Perron-Frobenius Theorem (e.g., Horn

and Johnson, 1985), dim(eig1(W )) = 1 if W is irreducible, whereas dim(eig1(W )) may

be larger than 1 otherwise. For example, block diagonal weights matrices (often used

in econometrics, see, e.g., Kelejian et al., 2006, and Liu and Lee, 2010) are reducible.

Theorem 4.5 delivers important information for the very common case when W is

a (symmetric or nonsymmetric) row-stochastic matrix and an intercept is included in

the regression. In that case, ιn ∈ eig1(W ) ∩ col(X), and hence η cannot vanish as

ρ → 1.

Finally, it is worth pointing out that when the conditions in Theorems 4.1, 4.4, or

4.5 are not satisfied, the limiting efficiency can be anywhere in (0, 1], depending on W

and X.

Remark 4.6 Corollary 4.2 can be easily extended to weights matrices that are dou-

bly stochastic but not necessarily irreducible. Since any doubly stochastic matrix is

permutationally similar to a direct sum of doubly stochastic and irreducible matrices

(e.g., Sinkhorn, 1968), it follows that there is an ordering of the observational units

such that eig1(W ) = eig1(W
′) = span{e1, ..., ep}, where ei is a vector with ones in

correspondence of the i-th diagonal block of W and zeros elsewhere. Corollary 4.2

continues to hold without the assumption of irreducibility, provided that the condition

7



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

that an intercept is included in the regression is replaced by the condition that e1, ..., ep

are in col(X) (as in a fixed effects model). Corollary 4.2 corresponds to the particular

case p = 1.

5 Final Remarks

We have analyzed the efficiency of the OLS estimator of all regression coefficients, when

the errors follow a spatial autoregressive process with autocorrelation parameter ap-

proaching unity. When the number of regressors is larger than one, there is necessarily

some arbitrariness in the choice of the measure of efficiency, as no single measure exists.

In this paper, we have considered a measure that has often been used in the literature—

the ratio of total variances. It should be pointed out that the results obtained using

that measure do not apply when one is interested in only a subset of the regression

coefficients (see, e.g., Krämer, 1980, p. 1006, and Dielman and Pfaffenberger, 1989).

Finally note that we have confined ourselves to the efficiency of the regression coeffi-

cients; for a discussion of standard error estimation in a spatial regression context see

Cordy and Griffith (1993).

Appendix A Proofs

We first give two auxiliary lemmata, and then the proof of all results in the paper. We

note that, as it is clear from its proof, the first lemma does not require Assumption 2.

Lemma A.1 eig0(Σ
−1(1)) = eig1(W ).

Proof. First observe that eig1(W ) ⊆ eig0(Σ
−1(1)), because, for any f ∈ eig1(W ),

Wf = f and hence (In −W ′)(In −W )f = 0. To prove the lemma, we only need

to show that dim(eig0(Σ
−1(1))) = dim(eig1(W )). For any matrix B, rank(B′B) =

rank(B) and rank(B) + dim(null(B)) = n, where null(B) denotes the null space of B

(e.g., Horn and Johnson, 1985). It follows that dim(eig0(Σ
−1(1))) = n − rank((In −

W ′)(In −W )) = dim(null(W − In)) = dim(eig1(W )).

Lemma A.2 Consider the matrix Σ(ρ) in (3). If eig1(W ) = eig1(W
′) then there

exists a left neighborhood of ρ = 1 where eigγ1
(Σ−1(ρ)) = eig1(W ).

8
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Proof. If eig1(W ) = eig1(W
′), then, for any f ∈ eig1(W ), (In−ρW ′)(In−ρW )f =

(1− ρ)2 f , which implies

eig1(W ) ⊆ eig(1−ρ)2(Σ
−1(ρ)), (A.1)

for any ρ. Observe that limρ→1 (1− ρ)2 = γ1(1) = 0 and recall that the eigenvalues of

Σ(ρ) are continuous functions of ρ. By Assumption 2 it follows that there must be a

left neighborhood of ρ = 1 where (1− ρ)2 is the smallest eigenvalue of Σ−1(ρ) with a

constant (i.e., not depending on ρ) multiplicity. For ρ in such a neighborhood of ρ = 1,

eigγ1
(Σ−1(ρ)) = eig1(W ) by Lemma A.1 and expression (A.1).

Proof of Lemma 3.3. Consider the spectral decomposition

Σ(ρ) =

s∑
i=1

ϕi(ρ)P eigϕi
(Σ(ρ)), (A.2)

where ϕi(ρ), i, ..., s, are the distinct eigenvalues of Σ(ρ), ordered in increasing order of

magnitude. Since ϕ1(ρ) = 1/γs(ρ), we have

γ1(ρ)Σ(ρ) =
s−1∑
i=1

γ1(ρ)ϕi(ρ)P eigϕi
(Σ(ρ)) + P eigϕs

(Σ(ρ)).

Recall that as ρ → 1 Σ−1(ρ) tends to a singular matrix. Thus γ1(ρ) → 0, and, by

Assumption 2, each ϕi(ρ), i = 1, ..., s− 1, has a finite limit. By Kato (1995), Chapter

2, Assumption 2 also implies that, as ρ → 1, P eigγ1
(Σ−1(ρ)) → P eig0(Σ

−1(1)). The proof

is now completed, because P eigγ1
(Σ−1(ρ)) = P eigϕs

(Σ(ρ)), and P eig0(Σ−1(1)) = P eig1(W ) by

Lemma A.1.

Proof of Theorem 4.1. On assuming without loss of generality that X ′X = In (see

footnote 1), one has η = tr((X ′Σ−1(ρ)X)−1)/tr(X ′Σ(ρ)X). For any n × n positive

definite matrix Ω, and for Z a full rank n × (n − k) matrix such that Z ′X = O,

(X ′Ω−1X)−1 = X ′ΩX −X ′ΩZ (Z ′ΩZ)
−1

Z ′ΩX (see Rao, 1967). Hence,

η = 1− tr(X ′Σ(ρ)Z (Z ′Σ(ρ)Z)
−1

Z ′Σ(ρ)X)

tr (X ′Σ(ρ)X)
, (A.3)

which we rewrite as

η = 1− tr(AB−1A′)
tr(C)

, (A.4)

9
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where A := γ
1/2
1 (ρ)X ′Σ(ρ)Z, B := Z ′Σ(ρ)Z, and C := γ1(ρ)X ′Σ(ρ)X . By Lemma

3.3, C → X ′P eig1(W )X = (P eig1(W )X)′P eig1(W )X. Thus, limρ→1 tr[C] 6= 0 as long as

eig1(W ) ⊆ col(X). Using decomposition (A.2),

A =

s−1∑
i=1

γ
1/2
1 (ρ)ϕi(ρ)X ′P eigϕi

(Σ(ρ))Z + γ
−1/2
1 (ρ)X ′P eigϕs

(Σ(ρ))Z.

If eig1(W ) ⊆ col(X) then P eig1(W )Z = O. If, in addition, eig1(W ) = eig1(W
′) then,

by Lemma A.2, there is a left neighborhood of ρ = 1 where P eigϕs
(Σ(ρ))Z = O. As

ρ → 1, γ1(ρ) → 0, and, by Assumption 2, each ϕi(ρ), i = 1, ..., s− 1, has a finite limit.

It follows that A → O if eig1(W ) = eig1(W
′) ⊆ col(X). Similarly, write

B =
s−1∑
i=1

ϕi(ρ)Z ′P eigϕi
(Σ(ρ))Z + ϕs(ρ)Z ′P eigϕs

(Σ(ρ))Z.

Using again the fact that, when eig1(W ) = eig1(W
′) ⊆ col(X), there is a left neigh-

borhood of ρ = 1 where P eigϕs
(Σ(ρ))Z = O, we can see that B tends to a finite matrix

as ρ → 1. The theorem now follows from expression (A.4).

Proof of Corollary 4.2. If W is irreducible and doubly stochastic, then eig1(W
′) =

eig1(W ) = span{ιn}, because the vector ιn of all ones is an eigenvector of both W

and W
′
, and because both eig1(W ) and eig1(W

′) have dimension 1 by the Perron-

Frobenius Theorem. The result follows from Theorem 4.1.

Proof of Corollary 4.3. Any normal W can be diagonalized by a unitary matrix U ,

say W = UΛU
′
, where Λ is a diagonal matrix containing the eigenvalues of W , and

U denotes the conjugate matrix of U . Since UU
′
= U

′
U = In, it follows that the i-th

column of U and the i-th column of U are, respectively, an eigenvector of W and an

eigenvector of W ′ associated to the eigenvalue Λi,i. This implies eig1(W ) = eig1(W
′),

because all eigenvectors associated to the eigenvalue 1 can be taken to be real. The

result follows from Theorem 4.1.

Proof of Theorem 4.4. Assume without loss of generality that X ′X = In, and

consider expression (A.4). As in the proof of Theorem 4.1, limρ→1 tr[C] 6= 0. Let

λ1, ..., λq denote the q distinct eigenvalues of W in non-decreasing order of modulus

(so that λq = 1). If W is diagonalizable,

(In − ρW )−1 =

q∑
i=1

1

1− ρλi
Gi, (A.5)
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where Gi is the (oblique) projector onto eigλi
(W ) along col(W − λiIn), i = 1, ..., q.

Under the condition eig1(W ) ⊆ col(X), Z ′Gq = O, and hence

D := Z ′(In − ρW )−1 =

q−1∑
i=1

1

1− ρλi
Z ′Gi (A.6)

tends to a finite matrix as ρ → 1. Also, note that D has full rank as ρ → 1, because

Z ′ has full rank and the rank of a matrix is unchanged upon multiplication by a

nonsingular matrix. It follows that B = DD′ tends to a finite and nonsingular matrix.

Looking at expression (A.4), in order to complete the proof of part (i) it remains to

be shown that A → O under the conditions stated in the theorem. Write A =

γ
1/2
1 (ρ)X ′(In − ρW )−1(In − ρW ′)−1Z. If W is diagonalizable, using (A.5) we have

A =

(
γ

1/2
1 (ρ)

1− ρ
X ′Gq +

q−1∑
i=1

γ
1/2
1 (ρ)

1− ρλi

X ′Gi

)(
1

1− ρ
G′

qZ +

q−1∑
i=1

1

1− ρλi

G′
iZ

)
.

This expression shows that A → O if G′
qZ = O (i.e., eig1(W ) ⊆ col(X)), and

X ′GqG
′
iZ = O, (A.7)

for all i = 1, ..., q − 1. Note that the product X ′Gq in (A.7) is nonzero if Z ′Gq = O.

Thus, condition (A.7) is satisfied if Z ′Gi = O or GiG
′
q = O, that is, if eigλi

(W ) ⊆
col(X) or eigλi

(W ′)⊥ eig1(W
′). This completes the proof.

Proof of Theorem 4.5. Write

η =
γ1(ρ)tr((X ′Σ−1(ρ)X)−1)

γ1(ρ)tr(X ′Σ(ρ)X)
. (A.8)

By Lemma 3.3, as ρ → 1 the denominator of (A.8) approaches tr(X ′P eig1(W )X) =

tr((XP eig1(W ))
′P eig1(W )X), which is zero if and only if eig1(W ) ⊥ col(X). Let us now

look at the numerator of (A.8). The matrix limρ→1 X ′Σ−1(ρ)X = X ′(In−W ′)(In−
W )X is singular if and only if X ′(In −W ′)(In −W )Xv = 0 for some vector v 6= 0,

that is, if and only if there exists a nonzero linear combination of the columns of X

that belongs to null(W − In) = eig1(W ). Thus, if eig1(W ) ∩ col(X) = {0}, then

limρ→1 X ′Σ−1(ρ)X is nonsingular, which in turn implies that the numerator of (A.8)

vanishes as ρ → 1.
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