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Previous results have indicated that the OLS estimator of the vector of regression coefficients can be nearly as efficient as the best linear unbiased estimator when the regression errors follow a spatial process with root in the vicinity of unity. Such results were derived under the assumption of a symmetric weights matrix, which simplifies the analysis considerably, but is very often not satisfied in applications. This paper provides nontrivial generalizations to the important case of nonsymmetric weights matrices.

Introduction

The efficiency of the OLS estimator of regression coefficients, relative to the best linear unbiased estimator, has been studied both for the case of a positive definite error variance matrix (e.g., [START_REF] Bloomfield | The inefficiency of least squares[END_REF], and references therein) and for the case of a singular error variance matrix (e.g., Liu, 2000, and references therein).

Nonetheless, the specific case when the error variance matrix, or its inverse, approaches singularity has not been fully investigated. This limiting case is of interest in several statistical models, for instance time series ARMA processes with a near AR or MA unit root, fractionally integrated models with differencing parameter close to 0.5, and some spatial models. When the error variance matrix is singular, generalized matrix inversion is required to define the generalized least-squares (GLS) estimator. The main difficulty in assessing the relative efficiency of the OLS estimator as the error variance matrix approaches singularity is that the matrix generalized inverse is not continuous for a sequence of nonsingular matrices approaching a singular one (see e.g., Stewart and Sun, 1990, p. 136).

The present paper is concerned with a regression model whose errors follow a firstorder Simultaneous Autoregressive (SAR(1)) process; see, e.g., [START_REF] Cliff | Spatial Autocorrelation[END_REF].

More specifically, we focus on the case when the spatial autocorrelation parameter is close to the smallest positive value such that the inverse error variance matrix (or, equivalently, a scaled version of the error variance matrix) is singular. Due to some analogies with time series models, such a value has often been named a spatial unit root; see, e.g., [START_REF] Fingleton | Spurious spatial regression: Some Monte Carlo results with a spatial unit root and spatial cointegration[END_REF], Lee and[START_REF] Lee | Near unit root in the spatial autoregressive model[END_REF][START_REF] Lee | Spatial nonstationarity and spurious regression: the case with row-normalized spatial weights matrix[END_REF], and [START_REF] Baltagi | Spurious spatial regression with equal weights[END_REF].

In the context of a SAR(1) model, it is well known that the power of tests of residual autocorrelation may be very low in some circumstances (e.g., when the weights matrix is very dense), so that one may end up using the OLS estimator in the presence of strong error autocorrelation. As the autocorrelation parameter approaches the spatial unit root, the power of tests for spatial autocorrelation can even vanish [START_REF] Krämer | Finite sample power of Cliff-Ord-type tests for spatial disturbance correlation in linear regression[END_REF], so it is clearly important to understand how inefficient the OLS estimator can be. Several examples of empirical applications of SAR(1) models with autocorrelation parameter close to a spatial unit root are mentioned in [START_REF] Lee | Near unit root in the spatial autoregressive model[END_REF] and [START_REF] Martellosio | Power properties of invariant tests for spatial autocorrelation in linear regression[END_REF]. Spatial unit roots have also been analyzed in the case of SAR processes on regular
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lattices; see, e.g., [START_REF] Bhattacharyya | Asymptotic inference for near unit roots in spatial autoregression[END_REF], [START_REF] Baran | Asymptotic inference for a nearly unstable sequence of stationary spatial AR models[END_REF][START_REF] Paulauskas | On unit roots for spatial autoregressive models[END_REF].

The behavior of the relative efficiency of the OLS estimator in a regression model with SAR(1) errors has been previously studied by [START_REF] Krämer | Spatial autocorrelation among errors and relative efficiency of OLS in the linear regression model[END_REF] and [START_REF] Tilke | The relative efficiency of OLS in the linear regression model with spatially autocorrelated errors[END_REF]. The results in those papers require the assumption that the spatial weights matrix is symmetric. This is unfortunate because such an assumption is very often not satisfied in applications-for example, it is not satisfied when W is the adjacency matrix of an undirected graph, and is usually not satisfied when W is a row-standardized matrix. The main objective of this paper is to extend those early contributions to the practically important case of nonsymmetric weights matrices.

In Section 2 we introduce the model and the measure of efficiency. In Section 3 we summarize the results available in the literature. Our extensions of those results are presented in Section 4. Section 5 concludes. Proofs are collected in the appendix.

The Model and the Measure of Efficiency

Consider the linear regression model

y = Xβ + u, ( 1 
)
where X is an n × k fixed regressor matrix of rank k < n, and u is a n × 1 error term with E(u) = 0 and var(u) = σ 2 V , for a positive parameter σ 2 and some positive definite matrix V . A SAR(1) process for u is specified by

u = ρW u + ε, (2) 
where ρ is a scalar unknown parameter, W is a fixed n × n spatial weights matrix, and ε is an n × 1 random vector satisfying E(ε) = 0 and var(ε) = I n . In order for ρ to be identified we assume that W is different from I n . Next, recall that a square matrix A is said to be nilpotent if A q is equal to a zero matrix for some positive integer q; e.g., [START_REF] Horn | Matrix Analysis[END_REF]. We assume that W satisfies the following condition.

Assumption 1 W is a nonnegative and non-nilpotent matrix.

Assumption 1 rules out weights matrices that are, possibly after a re-ordering of the index set, strictly triangular. Indeed, if a square matrix is nonnegative and nilpotent,
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then it must be permutationally similar to a strictly triangular matrix; e.g., [START_REF] Dietzenbacher | An algorithm for finding block-triangular forms[END_REF]. Hence, Assumption 1 rules out the case of models admitting a unilateral representation, such as time-series autoregressive models.

Let λ max denote the spectral radius of W . By the Perron-Frobenius theory (e.g., Horn and Johnson, 1985, Ch. 8) plus the fact that λ max = 0 if and only if W is nilpotent, Assumption 1 implies that λ max is positive and is an eigenvalue of W . Since λ max is real and nonzero, we can reparametrize model ( 2) by transforming from (ρ, W )

to (λ max ρ, λ -1 max W ). Hence, we take λ max = 1, without loss of generality and unless otherwise specified. The set of values of ρ that is empirically most relevant is [0, 1). In

this set V = [(I n -ρW ′ )(I n -ρW )] -1 =: Σ(ρ). (3) 
Note that, since I n -W is singular, Σ(ρ) does not exist at the spatial unit root ρ = 1.

We denote by γ 1 (ρ), ..., γ s (ρ) the s distinct eigenvalues of Σ -1 (ρ), in increasing order of magnitude. Note that s does not depend on ρ except for a finite number of values of ρ (see, e.g., Kato, 1995, p. 64). Also, observe that, by continuity of the eigenvalues of Σ -1 (ρ) in ρ, lim ρ→1 γ 1 (ρ) = γ 1 (1) = 0. Throughout our analysis and unless otherwise stated, we maintain the following technical assumption.

Assumption 2 lim ρ→1 γ 2 (ρ) > 0.

Assumption 2 is virtually always satisfied in applications of SAR(1) models. It requires that the eigenvalue γ 1 (1) = 0 does not split into different eigenvalues of Σ -1 (ρ) in a neighborhood of ρ = 1. Without Assumption 2, the results to follow would become analytically more complicated.

A possible measure of the relative efficiency of the OLS estimator βOLS := (X ′ X) -1 X ′ y,

compared to the GLS estimator βGLS := (X ′ Σ -1 (ρ)X) -1 X ′ Σ -1 (ρ)y, is the ratio of total variances η := tr[var(X βGLS )] tr[var(X βOLS )] .
This paper studies the limiting behavior of η as ρ → 1 (from the left), in the context of the particular structure (3). Note that, as ρ → 1, η has the same limit as η * := tr[var( βGLS )]/tr[var( βOLS )]. 1 Examples of papers that have adopted η or η * to analyze

1 Also, observe that, in order to analyze η, one may assume X ′ X = I n , because η depends on X only through the column space of X. Under that assumption, η = η * for any positive definite Σ(ρ).

the efficiency of βOLS for various specifications of V are [START_REF] Krämer | Finite sample efficiency of Ordinary Least Squares in the linear regression model with autocorrelated errors[END_REF][START_REF] Krämer | High correlation among errors and the efficiency of ordinary least squares in linear models[END_REF], [START_REF] Stemann | Some further results on the efficiency of the Cochrane-Orcutt-estimator[END_REF], [START_REF] Kleiber | Finite sample efficiency of OLS in linear regression models with longmemory disturbances[END_REF], [START_REF] Song | On the efficiency of the Cochrane-Orcutt estimator in the serially correlated error components regression model for panel data[END_REF], [START_REF] Jeske | Relative efficiency of OLSE and COTE for seasonal autoregressive disturbances[END_REF].

A word on notation: eig λ (Q) denotes the eigenspace of a square matrix Q associated to the eigenvalue λ; col(Q) denotes the column space of a matrix Q.

Previous Results

The behavior of the efficiency η as ρ → 1 in a regression model with SAR(1) errors has been studied by [START_REF] Krämer | Spatial autocorrelation among errors and relative efficiency of OLS in the linear regression model[END_REF], and subsequently by [START_REF] Tilke | The relative efficiency of OLS in the linear regression model with spatially autocorrelated errors[END_REF], who pointed out that Krämer and Donninger's main results require symmetry of W .

The following theorem summarizes the available results.2 

Theorem 3.1 [START_REF] Krämer | Spatial autocorrelation among errors and relative efficiency of OLS in the linear regression model[END_REF][START_REF] Tilke | The relative efficiency of OLS in the linear regression model with spatially autocorrelated errors[END_REF] In a regression model with SAR(1) errors, lim ρ→1 η is: (iii) in (0, 1] if W is symmetric and eig 1 (W ) ⊥ col(X).

(i) 1 if W is symmetric and eig 1 (W ) ⊆ col(X); (ii) 0 if eig 1 (W ) ⊥ col(X), eig 1 (W ) ∩ col(X) = {0},
A substantial generalization of Theorem 3.1 was attempted by [START_REF] Krämer | A general condition for an optimal limiting efficiency of OLS in the general linear regression model[END_REF], henceforth KB, by considering a general V belonging to some subset S of the cone of symmetric positive definite matrices. More precisely, KB consider, in the context of model ( 1), the following condition. (Recall that convergence of matrices does not depend on the choice of norm, and that convergence with respect to any norm is equivalent to componentwise convergence.)

Condition 3.2 There are a scalar function g(V ) and a matrix V belonging to the closure of S such that g(V )V → V and col( V ) ⊆ col(X).

In their Corollary 1, KB state that, under Condition 3.2, lim g(V )V → V η = 1 (see also their Theorem 1, which corresponds to the case g(V ) = 1). Unfortunately, while correct
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in some interesting cases, KB's claim does not hold true in general. Counterexamples can be found precisely in the class of SAR(1) processes, as we show next. [START_REF] Tilke | The relative efficiency of OLS in the linear regression model with spatially autocorrelated errors[END_REF] observed that there are SAR(1) processes with nonsymmetric W such that lim ρ→1 η = 1. We now show that such processes constitute counterexamples to KB's claim. This can be done using the following result, where P U denotes the orthogonal projector onto a subspace U of R n .

Lemma 3.3 As ρ → 1, γ 1 (ρ)Σ(ρ) → P eig 1 (W ) .
Lemma 3.3 implies that any SAR(1) process satisfies Condition 3.2 as long as

eig 1 (W ) ⊆ col(X) (with V = Σ(ρ), g(V ) = γ 1 (ρ), V = P eig 1 (W ) , col( V ) = eig 1 (W )).
This contradicts KB's claim because, as noted above, lim ρ→1 η is not necessarily 1 if W is nonsymmetric. As a simple example, consider the case when W is the row-standardized version of the adjacency matrix of a star graph, and the regression contains only an intercept. By straightforward computation, η

= (n -1)(ρ + 1) 2 / [(n 2 -3(n -1)) ρ 2 + 2(n -1)ρ + n -1],
and lim ρ→1 η = 4(n -1)/n 2 , which approaches 0 as n → ∞; see Figure 1. Counterexamples to KB's claim can also be found when the regressors follow a first-order spatial moving average models u = ε + ρW ε with nonsymmetric W (for ρ approaching a value such that V tends to a singular matrix).
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Main Results

Our first step towards strengthening Theorem 3.1 is the following result, where the symmetry condition in Theorem 3.1(i) is replaced by the weaker condition that eig 1 (W ) = eig 1 (W ′ ).

Theorem 4.1 In a regression model with SAR(1) errors,

lim ρ→1 η = 1 if eig 1 (W ) = eig 1 (W ′ ) ⊆ col(X).
Two simple corollaries of Theorem 4.1 are given next. Recall that a matrix A is irreducible if the graph with adjacency matrix A (that is, the graph with n vertices and an edge from vertex i to vertex j if and only if (A) ij = 0) has a path from any vertex i to any vertex j; see, e.g., [START_REF] Horn | Matrix Analysis[END_REF]. Another class of matrices to which Theorem 4.1 applies is that of (nonnegative) normal matrices. Recall that a real matrix is said to be normal if it commutes with its transpose. As an illustration of Corollaries 4.2 and 4.3, consider a (circulant) weights matrix with ones in the first lower diagonal and in position (1, n), and zeroes everywhere else. Since such a weights matrix is irreducible, doubly stochastic, normal, and has eig 1 (W ) = span{ι n }, where ι n denotes the n × 1 vector of all ones, either of the two corollaries implies that lim ρ→1 η = 1 as long as an intercept is included in the regression. Theorem 4.1 represents a significant generalization of Theorem 3.1(i), but is not entirely satisfactory because the condition eig 1 (W ) = eig 1 (W ′ ) is still far from being necessary. Considerable progress can be made by restricting attention to diagonalizable W 's. Diagonalizability is certainly satisfied, for example, in the case of the most common way of specifying weights matrices, which consists of row-standardizing a symmetric matrix. Indeed, a weights matrix D -1 A, where A is an n × n symmetric matrix with positive row-sums and D is the diagonal matrix with main diagonal equal to Aι n , is similar to the symmetric matrix D -1/2 AD -1/2 , and is therefore diagonalizable.
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Theorem 4.4 In a regression model with SAR(1) errors, lim ρ→1 η = 1 if W is diagonalizable and, for each eigenvalue λ of W , eig λ (W ′ )⊥ eig 1 (W ′ ) or eig λ (W ) ⊆ col(X).

The condition in Theorem 4.4 requires eig 1 (W ) ⊆ col(X), because obviously eig 1 (W ′ ) cannot be orthogonal to itself. Note that eig 1 (W ) ⊆ col(X) is sufficient for lim ρ→1 η = 1 if W is diagonalizable with eig λ (W ′ )⊥ eig 1 (W ′ ) for all eigenvalues λ = 1 of W . This is particularly relevant when eig 1 (W ) = span{ι n } and the regression contains an intercept. On the other hand, if W is diagonalizable but eig λ (W ′ ) is not orthogonal to eig 1 (W ′ ) for at least one eigenvalue λ = 1, then lim ρ→1 η = 1 is unlikely to occur in practice.

Our next task is to generalize Theorem 3.1(ii). 

eig 1 (W ) ⊥ col(X) and eig 1 (W ) ∩ col(X) = {0}.
Compared to Theorem 3.1(ii), Theorem 4.5 does not require the assumption that W is symmetric or dim(eig 1 (W )) = 1. By the Perron-Frobenius Theorem (e.g., [START_REF] Horn | Matrix Analysis[END_REF], dim(eig 1 (W )) = 1 if W is irreducible, whereas dim(eig 1 (W )) may be larger than 1 otherwise. For example, block diagonal weights matrices (often used in econometrics, see, e.g., [START_REF] Kelejian | Estimation problems in models with spatial weighting matrices which have blocks of equal elements[END_REF][START_REF] Liu | Efficiency comparisons between the OLSE and the BLUE in a singular linear model[END_REF][START_REF] Liu | GMM estimation of social interaction models with centrality[END_REF] are reducible. Theorem 4.5 delivers important information for the very common case when W is a (symmetric or nonsymmetric) row-stochastic matrix and an intercept is included in the regression. In that case, ι n ∈ eig 1 (W ) ∩ col(X), and hence η cannot vanish as ρ → 1.

Finally, it is worth pointing out that when the conditions in Theorems 4.1, 4.4, or 4.5 are not satisfied, the limiting efficiency can be anywhere in (0, 1], depending on W and X. Remark 4.6 Corollary 4.2 can be easily extended to weights matrices that are doubly stochastic but not necessarily irreducible. Since any doubly stochastic matrix is permutationally similar to a direct sum of doubly stochastic and irreducible matrices (e.g., [START_REF] Sinkhorn | Two results concerning doubly stochastic matrices[END_REF], it follows that there is an ordering of the observational units such that eig 1 (W ) = eig 1 (W ′ ) = span{e 1 , ..., e p }, where e i is a vector with ones in correspondence of the i-th diagonal block of W and zeros elsewhere. Corollary 4.2 continues to hold without the assumption of irreducibility, provided that the condition

  and a) W is symmetric or b) dim(eig 1 (W )) = 1;

Figure 1 :

 1 Figure 1: The relative efficiency of the OLS estimator of the constant mean for a SAR(1) process, when W is the row-standardized version of the adjacency matrix of a star graph on n = 10 (solid line), 20 (dashed line), 30 (dotted line) vertices.

Corollary 4. 2

 2 In a regression model with an intercept and SAR(1) errors, lim ρ→1 η = 1 if W is irreducible and doubly stochastic.

Corollary 4. 3

 3 In a regression model with SAR(1) errors, lim ρ→1 η = 1 if W is normal and eig 1 (W ) ⊆ col(X).

  Theorem 4.5 In a regression model with SAR(1) errors, lim ρ→1 η = 0 if and only if

Observe that Assumption 2 is satisfied when W is symmetric or dim(eig 1 (W )) = 1, and hence is satisfied in all cases in Theorem 2.
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that an intercept is included in the regression is replaced by the condition that e 1 , ..., e p are in col(X) (as in a fixed effects model). Corollary 4.2 corresponds to the particular case p = 1.

Final Remarks

We have analyzed the efficiency of the OLS estimator of all regression coefficients, when the errors follow a spatial autoregressive process with autocorrelation parameter approaching unity. When the number of regressors is larger than one, there is necessarily some arbitrariness in the choice of the measure of efficiency, as no single measure exists.

In this paper, we have considered a measure that has often been used in the literaturethe ratio of total variances. It should be pointed out that the results obtained using that measure do not apply when one is interested in only a subset of the regression coefficients (see, e.g., [START_REF] Krämer | Finite sample efficiency of Ordinary Least Squares in the linear regression model with autocorrelated errors[END_REF], p. 1006[START_REF] Dielman | Efficiency of ordinary least squares for linear models with autocorrelation[END_REF].

Finally note that we have confined ourselves to the efficiency of the regression coefficients; for a discussion of standard error estimation in a spatial regression context see [START_REF] Cordy | Efficiency of least squares estimators in the presence of spatial autocorrelation[END_REF].

Appendix A Proofs

We first give two auxiliary lemmata, and then the proof of all results in the paper. We note that, as it is clear from its proof, the first lemma does not require Assumption 2.

Lemma A.1 eig 0 (Σ -1 (1)) = eig 1 (W ).

Proof. First observe that eig 1 (W ) ⊆ eig 0 (Σ -1 (1)), because, for any f ∈ eig 1 (W ),

To prove the lemma, we only need to show that dim(eig 0 (Σ -1 (1))) = dim(eig 1 (W )). For any matrix B, rank(B ′ B) = rank(B) and rank(B) + dim(null(B)) = n, where null(B) denotes the null space of B (e.g., [START_REF] Horn | Matrix Analysis[END_REF]. It follows that dim(eig

Lemma A.2 Consider the matrix Σ(ρ) in (3). If eig 1 (W ) = eig 1 (W ′ ) then there exists a left neighborhood of ρ = 1 where eig γ 1 (Σ -1 (ρ)) = eig 1 (W ).
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for any ρ. Observe that lim ρ→1 (1 -ρ) 2 = γ 1 (1) = 0 and recall that the eigenvalues of Σ(ρ) are continuous functions of ρ. By Assumption 2 it follows that there must be a left neighborhood of ρ = 1 where (1 -ρ) 2 is the smallest eigenvalue of Σ -1 (ρ) with a constant (i.e., not depending on ρ) multiplicity. For ρ in such a neighborhood of ρ = 1,

and expression (A.1).

Proof of Lemma 3.3. Consider the spectral decomposition

where ϕ i (ρ), i, ..., s, are the distinct eigenvalues of Σ(ρ), ordered in increasing order of magnitude. Since ϕ 1 (ρ) = 1/γ s (ρ), we have

Recall that as ρ → 1 Σ -1 (ρ) tends to a singular matrix. Thus γ 1 (ρ) → 0, and, by Assumption 2, each ϕ i (ρ), i = 1, ..., s -1, has a finite limit. By [START_REF] Kato | Perturbation Theory for Linear Operators[END_REF], Chapter 2, Assumption 2 also implies that, as ρ → 1, P eig γ 1 (Σ -1 (ρ)) → P eig 0 (Σ -1 (1)) . The proof is now completed, because P eig γ 1 (Σ -1 (ρ)) = P eig ϕs (Σ(ρ)) , and

Proof of Theorem 4.1. On assuming without loss of generality that X ′ X = I n (see footnote 1), one has η = tr((X ′ Σ -1 (ρ)X) -1 )/tr(X ′ Σ(ρ)X). For any n × n positive definite matrix Ω, and for Z a full rank n × (n -k) matrix such that Z ′ X = O, [START_REF] Rao | Least squares theory using an estimated dispersion matrix and its application to measurement of signals[END_REF]. Hence,

which we rewrite as
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where

by Lemma A.2, there is a left neighborhood of ρ = 1 where P eig ϕs (Σ(ρ)) Z = O. As ρ → 1, γ 1 (ρ) → 0, and, by Assumption 2, each ϕ i (ρ), i = 1, ..., s -1, has a finite limit.

Using again the fact that, when eig 1 (W ) = eig 1 (W ′ ) ⊆ col(X), there is a left neighborhood of ρ = 1 where P eig ϕs (Σ(ρ)) Z = O, we can see that B tends to a finite matrix as ρ → 1. The theorem now follows from expression (A.4).

Proof of Corollary 4.2. If W is irreducible and doubly stochastic, then eig 1 (W ′ ) = eig 1 (W ) = span{ι n }, because the vector ι n of all ones is an eigenvector of both W and W ′ , and because both eig 1 (W ) and eig 1 (W ′ ) have dimension 1 by the Perron-Frobenius Theorem. The result follows from Theorem 4.1.

Proof of Corollary 4.3. Any normal W can be diagonalized by a unitary matrix U , say W = U ΛU ′ , where Λ is a diagonal matrix containing the eigenvalues of W , and U denotes the conjugate matrix of U . Since U U ′ = U ′ U = I n , it follows that the i-th column of U and the i-th column of U are, respectively, an eigenvector of W and an eigenvector of W ′ associated to the eigenvalue Λ i,i . This implies eig 1 (W ) = eig 1 (W ′ ), because all eigenvectors associated to the eigenvalue 1 can be taken to be real. The result follows from Theorem 4.1.

Proof of Theorem 4.4. Assume without loss of generality that X ′ X = I n , and consider expression (A.4). As in the proof of Theorem 4.1, lim ρ→1 tr[C] = 0. Let λ 1 , ..., λ q denote the q distinct eigenvalues of W in non-decreasing order of modulus (so that λ q = 1). If W is diagonalizable,

where G i is the (oblique) projector onto eig λ i (W ) along col(W -λ i I n ), i = 1, ..., q.

Under the condition eig 1 (W ) ⊆ col(X), Z ′ G q = O, and hence

tends to a finite matrix as ρ → 1. Also, note that D has full rank as ρ → 1, because Z ′ has full rank and the rank of a matrix is unchanged upon multiplication by a nonsingular matrix. It follows that B = DD ′ tends to a finite and nonsingular matrix.

Looking at expression (A.4), in order to complete the proof of part (i) it remains to be shown that A → O under the conditions stated in the theorem.

This expression shows that

). This completes the proof.

Proof of Theorem 4.5. Write η = γ 1 (ρ)tr((X ′ Σ -1 (ρ)X) -1 ) γ 1 (ρ)tr(X ′ Σ(ρ)X) .

(A.8) By Lemma 3.3, as ρ → 1 the denominator of (A.8) approaches tr(X ′ P eig 1 (W ) X) = tr((XP eig 1 (W ) ) ′ P eig 1 (W ) X), which is zero if and only if eig 1 (W ) ⊥ col(X). Let us now look at the numerator of (A.8). The matrix lim ρ→1 X ′ Σ -1 (ρ)X = X ′ (I n -W ′ )(I n -W )X is singular if and only if X ′ (I n -W ′ )(I n -W )Xv = 0 for some vector v = 0, that is, if and only if there exists a nonzero linear combination of the columns of X that belongs to null(W -I n ) = eig 1 (W ). Thus, if eig 1 (W ) ∩ col(X) = {0}, then lim ρ→1 X ′ Σ -1 (ρ)X is nonsingular, which in turn implies that the numerator of (A.8) vanishes as ρ → 1.