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Finite-sample density and its small sample asymptotic

approximation

Jana Jurečková, Radka Sabolová

Department of Probability and Statistics, MFF UK, Charles University,
Sokolovská 83, CZ-186 75 Prague 8, Czech Republic

Abstract

To derive the exact density of a statistic, which can be intractable, is some-
times a difficult problem. The exact densities of estimates of the shift or
regression parameters can be derived with the aid of score functions. More-
over, extremely accurate approximations can be obtained by the small sample
asymptotics, based on the saddlepoint method. It is of interest to compare
these two approaches, at least for small samples. We numerically compare
the exact densities of estimates of the shift parameter with their small sam-
ple approximations for various parent distributions of the data. For some
distributions both methods are in surprising concordance even under very
small samples.

Keywords: finite-sample density, small sample asymptotics, saddlepoint
approximation, score function
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1. Introduction

Many estimators have asymptotic normal distribution, which is light-
tailed. However, the asymptotic distribution approximates well the central
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URL: http://www.karlin.mff.cuni.cz/~jurecko (Jana Jurečková)
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part of the true distribution, but not so well its tails. An estimator can
be heavy-tailed under a finite number of observations, even the robust one,
provided the parent distribution is heavy-tailed. We should be also cautious
when using the asymptotic tests, because their critical regions are based
on the high quantiles of the asymptotic distribution, while the finite-sample
distribution of the test criterion can be heavy-tailed. Hence, before taking a
recourse to the asymptotics, we should first analyze the finite-sample beha-
vior of an estimator or a test, whenever possible.

To derive the exact density of a statistic is often a difficult problem, and
the finite sample density of a statistic can be intractable. One possible way of
expressing the finite-sample density of a statistic is to use its score function,
which is a conditional expectation of the parent score function, given the
pertaining statistic. This method was used by Jurečková (1999), (2010) and
Jurečková and Milhaud (2003) for a general statistic and for the regression
quantile.

Extremely accurate approximations for the density of a statistic and for
the p-values of a test criterion, even under a very small sample size, yields the
saddlepoint method or the saddlepoint approximation. Saddlepoint approx-
imations were introduced to statistics by Daniels (1954) and further elabo-
rated by Hampel (1973) and by Field and Hampel (1982); we also refer to
Barndorff-Nielsen and Cox (1979). The saddlepoint density approximation
can be considered as the best Edgeworth approximation at each point in the
support of the distribution. However, the computations of such approxima-
tions became feasible only rather recently. This technique, also known as the
small-sample asymptotics, was developed by Field and Ronchetti (1990) for a
class of estimators, including the robust ones. Let us refer also to Huzurbazar
(1999), who illustrates the practical use of the saddlepoint approximation on
the sample mean and other statistics for the sample size n = 1, and to re-
ferences cited in his article. Among more recent books we refer to Jensen
(1995) and to Butler (2007). Both the exact finite-sample and the small sam-
ple asymptotic approximations of the density of a statistic are connected with
an intensive computation, affected also by the computer rounding. Thus it is
of interest to verify the effectiveness of both methods and to compare them
numerically. This is done in the present paper on various special estimates
of the shift parameter and on several parent distributions. In many cases,
the outcomes of both methods are surprisingly close to each other.
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2. Finite-sample density of equivariant estimators

We are interested in the density of a statistic in its whole scope, not
only in the center. This is always a difficult problem, and generally the
finite sample density of a statistic does not have a simple form. Under some
conditions we can find a density of a statistic in the model with a shift or
regression parameters. Let X1, . . . , Xn be a sample from the distribution with
distribution function F (x − θ) such that F has a continuously differentiable
density f and finite Fisher information. Let Sn = Sn(X1, . . . , Xn) be a
statistic whose distribution function Hθ(s) is continuously differentiable in
θ. Then we have the following identity for the derivative of Hθ(s) in θ (see
Jurečková (1999)):

∂Hθ(s)

∂θ
=

∫

S(x1,...,xn)≤s
. . .

∫ n∑

i=1

(
−f ′(xi − θ)

f(xi − θ)

) n∏

k=1

f(xk − θ)dx1 . . . dxn

= IEθ

[
n∑

i=1

(
−f ′(xi − θ)

f(xi − θ)

)
.I[S(X1, . . . , Xn) ≤ s]

]
. (1)

Let, especially, Tn be a translation equivariant estimator of θ and let gθ(t) be
its density. A possible finite-sample expression for density gθ(t) we get from
(1); it will further enable to study various properties of Tn :

gθ(t) =

∫

T (x1,...,xn)≤t
. . .

∫ n∑

i=1

f ′(xi − θ)

f(xi − θ)

n∏

k=1

f(xk − θ)dx1 . . . dxn (2)

= IE0

{
n∑

i=1

f ′(Xi)

f(Xi)
I
[
T (X1, . . . , Xn) ≤ t − θ

]}
.

If Tn is a solution of the equation
∑n

i=1 ψ(Xi − t) = 0 with monotone ψ, then
g(t) can be rewritten

gθ(t) = IE0

{
n∑

i=1

f ′(Xi)

f(Xi)
I
[ n∑

j=1

ψ(Xj − (t − θ)) ≤ 0
]}

. (3)

Besides the distribution, the exact finite-sample moments of an estimate are
of interest. An identity for the derivative of the ν-th moment γ(ν)(θ) =
IEθ(Tn)

ν of Tn follows from Jurečková and Milhaud (2003):

γ̇(ν)(θ) = IE0

[
(Tn(X) + θ)ν

(
−

n∑

i=1

f ′(Xi)

f(Xi)

)]
. (4)
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It holds for all θ ∈ R, provided γ(ν)(θ) is finite and differentiable in θ; ν > 0
is not necessary an integer. The moment convergence of the M- and L-
estimates of θ as n → ∞ (to the moments of their asymptotic normal distri-
butions) was proved by Jurečková and Sen (1982) under some conditions on
their weight functions. The identity (4) enables to compare the finite-sample
moments with their limits.

3. Small sample asymptotics

Let X1, . . . , Xn be i.i.d. observations with density f(x, θ). Consider an
M-estimator Tn of θ, defined as a solution of the equation

∑n
i=1 ψ(Xi, t) = 0.

Denote its density as fn(t). An approximation of density of M-estimator
is based on techniques derived for the mean (Field and Ronchetti (1990),
Chapter 3); Tn is expressed as a mean up to a certain order and then the
saddlepoint approximation for the mean is used. Denote Dn the n-th deriva-
tive of ψ(x, θ) with respect to θ. The following assumptions on ψ and f(x, θ)
are required in order to develop the approximation.

A.1 The equation
∑n

i=1 ψ(Xi, t) = 0 has a unique solution Tn and the equa-
tion ∫

ψ(x, t)eα(t)ψ(x,t)f(x, θ)dx = 0

has a unique solution α(t).

A.2 There is an open subset U ⊂ R such that
(i) Fθ(U) = 1 for each θ ∈ Θ
(ii) D ψ(x, θ), D2ψ(x, θ), D3ψ(x, θ) exist.

A.3 For each compact K ⊂ Θ
(i) supθ0∈K IEθ0 |D2ψ(X, θ0)|4 < ∞,
(ii) there is an ε > 0 such that supθ0∈K IEθ0(max|θ−θ0| ≤ε |D3ψ(X, θ)|3) <
∞.

A.4 IEθ0ψ(X, θ0) = 0 and A(θ0) = IEθ0Dψ(X, θ0) 6= 0 for each θ0 ∈ Θ.

A.5 The functions A(θ) and IEθ0 [D
2ψ(X, θ)]2 are continuous on Θ.

The following theorem summarizes the approximation of fn(t) (see Theorem
4.3 in Field and Ronchetti (1990)):
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Theorem 3.1. (Field and Ronchetti). If Tn represents the solution of∑n
i=1 ψ(xi, t) = 0 and A.1 - A.5 hold, then the density of Tn admits the

following asymptotic expansion:

fn(t0) =

√
n

2π
c−n(t0)

[
A(t0)

σ(t0)
+O(n−1)

]
(5)

where α(t0) is the solution of
∫
ψ(x, t0)e

αψ(x,t0)f(x, θ)dx = 0,

A(θ0) = IEθ0

∂ψ(X, θ0)

∂θ0
, (6)

c−1(t0) =

∫
eα(t0)f(x,θ)dx, (7)

σ2(t0) = Et0ψ
2(X, t0) (8)

and IEt0 is expectation with respect to the conjugate density

ht0(x) = c(t0)e
α(t0)ψ(x,t0)f(x).

Theorem 3.1 gives the following approximation of density fn :

gn(t0) =

√
n

2π
c−n(t0)

A(t0)

σ(t0)
. (9)

This approximation will be computed for several estimates and will be com-
pared with their exact densities.

4. Numerical study

The densities calculated from (2) are compared with their approximations
(9) for three location estimators:

(i) The mean (M-estimator with ψ(x) = x).

(ii) The Huber M-estimator with

ψ(x) =

{
x : |x| ≤ k
k · sign(x) : |x| ≥ k

,

where k was set to 1.4.
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(iii) The maximum likelihood estimator, i.e. the M-estimator with

ψ(x) = −f ′(x)

f(x)
.

The calculation was made for the following parent distributions:

• Standard normal distribution N(0, 1) with density

f(x) = 1√
2π
e− x2

2 and −f ′(x)
f(x)

= x.

• Logistic distribution Log(0, 1) with density

f(x) = e−x

(1+e−x)2
and −f ′(x)

f(x)
= − 1−ex

1+ex .

• The Cauchy distribution C(0, 1) with density

f(x) = 1
π(1+x2)

and −f ′(x)
f(x)

= 2x
1+x2 .

• The Student t-distribution with 3 degrees of freedom t3 with density

f(x) = 6
√

3
π(3+x2)2

and −f ′(x)
f(x)

= 4x
3+x2 .

• The Student t-distribution with 5 degrees of freedom t5 with density

f(x) = 100
√

5
3π(5+x2)3

and −f ′(x)
f(x)

= 6x
5+x2 .

Various steps and regions of numerical integration depending on the shape
of the distribution were considered for the specific densities. All simulations
were coded in C.

As the approximation of multidimensional integrals is quite time consum-
ing, the densities using the formula (2) were evaluated for small values of n,
namely the results are available only for n ≤ 4 (and n ≤ 3 for the Cauchy
distribution).

When approximating the density of Tn by formula (9), it is necessary to
find α(t) solution of the equation

∫
ψ(x, t)eα(t)ψ(x,t)f(x, θ)dx = 0.

For ψ(x, t) = x − t (i.e. the mean) and f(x) being density of N(0, 1) is
α(t) = t. For other distributions and estimators one can use the fact that
α(t) = 0 always for t = θ; that provides a good starting point for the Newton-
Raphston method for other t [however, the exception is ψ(x, t) = x − t
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Figure 1: Density of the mean, n = 1
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Figure 2: Density of the mean, n = 1

combined with the Cauchy distribution]. Then c, S and A are approximated
by numerical integration using formulas (7), (8) and (6) and then inputed
into formula (9) for fn.

When approximating mean for n = 1 we get approximation of the original
density f . Results of these approximation are presented in the Figures 1 and
2, where exact density is drawn by solid line, saddle point approximation by
dashed line and formula (2) by dotted line.

The outcomes of both methods are presented in the Figures 3 – 16: The
results based on formula (2) are drawn by dashed line, while those by formula
(9) are drawn by dotted line.
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Figure 3: Density of the mean based on the sample from N(0,1)
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Figure 4: Density of the Huber estimator, k=1.4, based on the sample from N(0,1)
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Figure 5: Density of the mean based on sample from logistic (0,1) distribution
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Figure 6: Density of the Huber estimator, k=1.4, sample from logistic (0,1) distribution
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Figure 7: Density of the MLE, sample from logistic (0,1) distribution
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Figure 8: Density of the mean, sample from the Cauchy (0,1) distribution
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Figure 11: Density of the mean, sample from t3 distribution
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Figure 12: Density of the Huber estimator, k=1.4, sample from t3 distribution
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Figure 13: Density of the MLE, sample from t3 distribution
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Figure 14: Density of the mean, sample from t5 distribution
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Figure 15: Density of the Huber estimator, k=1.4, sample from t5 distribution
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Figure 16: Density of the MLE, sample from t5 distribution
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5. Conclusion

Both methods lead to similar outcomes for normally distributed data.
The results are also quite similar for f logistic unless t is close to 0. The
method based on (2) does not work for the Laplace distribution whose den-
sity is not continuously differentiable. As it was already observed by Field
and Ronchetti (1990), their approximation does not work very well for the
Laplace distribution, either. For the Cauchy distribution the obtained re-
sults vary, although the differences between two methods are smaller for Hu-
ber estimator than for the mean. The situation is similar for the Student’s
t-distribution, although the results improve. It is of interest that the approx-
imations are very close to each other for the maximum likelihood estimators;
this apparently demonstrates the important role of the score functions.

Even though formula (2) provides exact expression of the density of the
estimator, the discrepancies are caused by approximation of integrals (even
resulting in negative values for Laplace distribution). The main disadvantage
of this method is its time complexity. Since for larger n the computations take
a lot of time, this method proves to be inefficient for large n. On the other
hand, the time consumed when approximating the density by saddlepoint
techniques does not increase with larger n.

Although it may seem useless to estimate fn for n = 1,, in the case of
mean it is approximating the density f itself, and mainly it shows that these
”approximations work well even for n = 1”.
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