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To derive the exact density of a statistic, which can be intractable, is sometimes a difficult problem. The exact densities of estimates of the shift or regression parameters can be derived with the aid of score functions. Moreover, extremely accurate approximations can be obtained by the small sample asymptotics, based on the saddlepoint method. It is of interest to compare these two approaches, at least for small samples. We numerically compare the exact densities of estimates of the shift parameter with their small sample approximations for various parent distributions of the data. For some distributions both methods are in surprising concordance even under very small samples.

Introduction

Many estimators have asymptotic normal distribution, which is lighttailed. However, the asymptotic distribution approximates well the central part of the true distribution, but not so well its tails. An estimator can be heavy-tailed under a finite number of observations, even the robust one, provided the parent distribution is heavy-tailed. We should be also cautious when using the asymptotic tests, because their critical regions are based on the high quantiles of the asymptotic distribution, while the finite-sample distribution of the test criterion can be heavy-tailed. Hence, before taking a recourse to the asymptotics, we should first analyze the finite-sample behavior of an estimator or a test, whenever possible.

To derive the exact density of a statistic is often a difficult problem, and the finite sample density of a statistic can be intractable. One possible way of expressing the finite-sample density of a statistic is to use its score function, which is a conditional expectation of the parent score function, given the pertaining statistic. This method was used by [START_REF] Jurečková | Equivariant estimators and their asymptotic representations[END_REF], (2010) and Jurečková and Milhaud (2003) for a general statistic and for the regression quantile.

Extremely accurate approximations for the density of a statistic and for the p-values of a test criterion, even under a very small sample size, yields the saddlepoint method or the saddlepoint approximation. Saddlepoint approximations were introduced to statistics by [START_REF] Daniels | Saddlepoint approximations on statistics[END_REF] and further elaborated by [START_REF] Hampel | Some small-sample asymptotics[END_REF] and by [START_REF] Field | Small-sample asymptotic distribution of m-estimators of location[END_REF]; we also refer to [START_REF] Barndorff-Nielsen | Edgeworth and saddlepoint approximations with statistical applications (with discussion)[END_REF]. The saddlepoint density approximation can be considered as the best Edgeworth approximation at each point in the support of the distribution. However, the computations of such approximations became feasible only rather recently. This technique, also known as the small-sample asymptotics, was developed by [START_REF] Field | Small Sample Asymptotics[END_REF] for a class of estimators, including the robust ones. Let us refer also to [START_REF] Huzurbazar | Saddlepoint approximations on statistics[END_REF], who illustrates the practical use of the saddlepoint approximation on the sample mean and other statistics for the sample size n = 1, and to references cited in his article. Among more recent books we refer to [START_REF] Jensen | Saddlepoint Approximations[END_REF] and to [START_REF] Butler | Saddlepoint Approximations with Applications[END_REF]. Both the exact finite-sample and the small sample asymptotic approximations of the density of a statistic are connected with an intensive computation, affected also by the computer rounding. Thus it is of interest to verify the effectiveness of both methods and to compare them numerically. This is done in the present paper on various special estimates of the shift parameter and on several parent distributions. In many cases, the outcomes of both methods are surprisingly close to each other.

Finite-sample density of equivariant estimators

We are interested in the density of a statistic in its whole scope, not only in the center. This is always a difficult problem, and generally the finite sample density of a statistic does not have a simple form. Under some conditions we can find a density of a statistic in the model with a shift or regression parameters. Let X 1 , . . . , X n be a sample from the distribution with distribution function F (xθ) such that F has a continuously differentiable density f and finite Fisher information. Let S n = S n (X 1 , . . . , X n ) be a statistic whose distribution function H θ (s) is continuously differentiable in θ. Then we have the following identity for the derivative of H θ (s) in θ (see [START_REF] Jurečková | Equivariant estimators and their asymptotic representations[END_REF]):

∂H θ (s) ∂θ = S(x 1 ,...,xn)≤s . . . n i=1 - f ′ (x i -θ) f (x i -θ) n k=1 f (x k -θ)dx 1 . . . dx n = IE θ n i=1 - f ′ (x i -θ) f (x i -θ) .I[S(X 1 , . . . , X n ) ≤ s] . (1) 
Let, especially, T n be a translation equivariant estimator of θ and let g θ (t) be its density. A possible finite-sample expression for density g θ (t) we get from (1); it will further enable to study various properties of T n :

g θ (t) = T (x 1 ,...,xn)≤t . . . n i=1 f ′ (x i -θ) f (x i -θ) n k=1 f (x k -θ)dx 1 . . . dx n (2) = IE 0 n i=1 f ′ (X i ) f (X i ) I T (X 1 , . . . , X n ) ≤ t -θ .
If T n is a solution of the equation n i=1 ψ(X it) = 0 with monotone ψ, then g(t) can be rewritten

g θ (t) = IE 0 n i=1 f ′ (X i ) f (X i ) I n j=1 ψ(X j -(t -θ)) ≤ 0 . (3) 
Besides the distribution, the exact finite-sample moments of an estimate are of interest. An identity for the derivative of the ν-th moment γ Jurečková and Milhaud (2003):

(ν) (θ) = IE θ (T n ) ν of T n follows from
γ(ν) (θ) = IE 0 (T n (X) + θ) ν - n i=1 f ′ (X i ) f (X i ) . (4) 
It holds for all θ ∈ R, provided γ (ν) (θ) is finite and differentiable in θ; ν > 0 is not necessary an integer. The moment convergence of the M-and Lestimates of θ as n → ∞ (to the moments of their asymptotic normal distributions) was proved by [START_REF] Jurečková | M-estimators and l-estimators of location: Uniform integrability and asymptotically risk-efficient sequential versions[END_REF] under some conditions on their weight functions. The identity (4) enables to compare the finite-sample moments with their limits.

Small sample asymptotics

Let X 1 , . . . , X n be i.i.d. observations with density f (x, θ). Consider an M-estimator T n of θ, defined as a solution of the equation n i=1 ψ(X i , t) = 0. Denote its density as f n (t). An approximation of density of M-estimator is based on techniques derived for the mean (Field and Ronchetti (1990), Chapter 3); T n is expressed as a mean up to a certain order and then the saddlepoint approximation for the mean is used. Denote D n the n-th derivative of ψ(x, θ) with respect to θ. The following assumptions on ψ and f (x, θ) are required in order to develop the approximation.

A.1 The equation n i=1 ψ(X i , t) = 0 has a unique solution T n and the equation ψ(x, t)e α(t)ψ(x,t) f (x, θ)dx = 0 has a unique solution α(t).

A.2 There is an open subset

U ⊂ R such that (i) F θ (U) = 1 for each θ ∈ Θ (ii) D ψ(x, θ), D 2 ψ(x, θ), D 3 ψ(x, θ) exist. A.3 For each compact K ⊂ Θ (i) sup θ 0 ∈K IE θ 0 |D 2 ψ(X, θ 0 )| 4 < ∞, (ii) there is an ε > 0 such that sup θ 0 ∈K IE θ 0 (max |θ-θ 0 |≤ε |D 3 ψ(X, θ)| 3 ) < ∞. A.4 IE θ 0 ψ(X, θ 0 ) = 0 and A(θ 0 ) = IE θ 0 Dψ(X, θ 0 ) = 0 for each θ 0 ∈ Θ.
A. [START_REF] Field | Small Sample Asymptotics[END_REF] The functions A(θ) and IE θ 0 [D 2 ψ(X, θ)] 2 are continuous on Θ.

The following theorem summarizes the approximation of f n (t) (see Theorem 

f n (t 0 ) = n 2π c -n (t 0 ) A(t 0 ) σ(t 0 ) + O(n -1 ) (5) 
where α(t 0 ) is the solution of ψ(x, t 0 )e αψ(x,t 0 ) f (x, θ)dx = 0,

A(θ 0 ) = IE θ 0 ∂ψ(X, θ 0 ) ∂θ 0 , (6) 
c -1 (t 0 ) = e α(t 0 )f (x,θ) dx, (7) 
σ 2 (t 0 ) = E t 0 ψ 2 (X, t 0 ) (8) 
and IE t 0 is expectation with respect to the conjugate density

h t 0 (x) = c(t 0 )e α(t 0 )ψ(x,t 0 ) f (x).
Theorem 3.1 gives the following approximation of density f n :

g n (t 0 ) = n 2π c -n (t 0 ) A(t 0 ) σ(t 0 ) . (9) 
This approximation will be computed for several estimates and will be compared with their exact densities.

Numerical study

The densities calculated from (2) are compared with their approximations (9) for three location estimators:

(i) The mean (M-estimator with ψ(x) = x).

(ii) The Huber M-estimator with

ψ(x) = x : |x| ≤ k k • sign(x) : |x| ≥ k ,
where k was set to 1.4.

(iii) The maximum likelihood estimator, i.e. the M-estimator with

ψ(x) = - f ′ (x) f (x) .
The calculation was made for the following parent distributions:

• Standard normal distribution N(0, 1) with density

f (x) = 1 √ 2π e -x 2 2 and -f ′ (x) f (x) = x.
• Logistic distribution Log(0, 1) with density

f (x) = e -x (1+e -x ) 2 and -f ′ (x) f (x) = -1-e x 1+e x .
• The Cauchy distribution C(0, 1) with density

f (x) = 1 π(1+x 2 ) and -f ′ (x) f (x) = 2x 1+x 2 . • The Student t-distribution with 3 degrees of freedom t 3 with density f (x) = 6 √ 3 π(3+x 2 ) 2 and -f ′ (x) f (x) = 4x 3+x 2 .
• The Student t-distribution with 5 degrees of freedom t 5 with density f (x) = 100 √ 5 3π(5+x 2 ) 3 and -f ′ (x) f (x) = 6x 5+x 2 . Various steps and regions of numerical integration depending on the shape of the distribution were considered for the specific densities. All simulations were coded in C.

As the approximation of multidimensional integrals is quite time consuming, the densities using the formula (2) were evaluated for small values of n, namely the results are available only for n ≤ 4 (and n ≤ 3 for the Cauchy distribution).

When approximating the density of T n by formula [START_REF] Jurečková | Equivariant estimators and their asymptotic representations[END_REF], it is necessary to find α(t) solution of the equation ψ(x, t)e α(t)ψ(x,t) f (x, θ)dx = 0.

For ψ(x, t) = xt (i.e. the mean) and f (x) being density of N(0, 1) is α(t) = t. For other distributions and estimators one can use the fact that α(t) = 0 always for t = θ; that provides a good starting point for the Newton-Raphston method for other t [however, the exception is ψ(x, t) = xt combined with the Cauchy distribution]. Then c, S and A are approximated by numerical integration using formulas ( 7), ( 8) and ( 6) and then inputed into formula (9) for f n . When approximating mean for n = 1 we get approximation of the original density f . Results of these approximation are presented in the Figures 1 and2, where exact density is drawn by solid line, saddle point approximation by dashed line and formula (2) by dotted line.

The outcomes of both methods are presented in the Figures 345678910111213141516The results based on formula (2) are drawn by dashed line, while those by formula (9) are drawn by dotted line. 

Conclusion

Both methods lead to similar outcomes for normally distributed data. The results are also quite similar for f logistic unless t is close to 0. The method based on (2) does not work for the Laplace distribution whose density is not continuously differentiable. As it was already observed by [START_REF] Field | Small Sample Asymptotics[END_REF], their approximation does not work very well for the Laplace distribution, either. For the Cauchy distribution the obtained results vary, although the differences between two methods are smaller for Huber estimator than for the mean. The situation is similar for the Student's t-distribution, although the results improve. It is of interest that the approximations are very close to each other for the maximum likelihood estimators; this apparently demonstrates the important role of the score functions.

Even though formula (2) provides exact expression of the density of the estimator, the discrepancies are caused by approximation of integrals (even resulting in negative values for Laplace distribution). The main disadvantage of this method is its time complexity. Since for larger n the computations take a lot of time, this method proves to be inefficient for large n. On the other hand, the time consumed when approximating the density by saddlepoint techniques does not increase with larger n.

Although it may seem useless to estimate f n for n = 1,, in the case of mean it is approximating the density f itself, and mainly it shows that these "approximations work well even for n = 1".
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 43 [START_REF] Field | Small Sample Asymptotics[END_REF]): Theorem 3.1. (Field and Ronchetti). If T n represents the solution of n i=1 ψ(x i , t) = 0 and A.1 -A.5 hold, then the density of T n admits the following asymptotic expansion:
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