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Uniform Hölder exponent of a stationary increments Gaussian
process: estimation starting from average values

Qidi Peng

U.M.R. CNRS 8524, Bât M2
Laboratory Paul Painlevé, University Lille 1

Cité scientifique, 59655 Villeneuve d’Ascq, France

Abstract

Let {X(t)}t∈R be a stationary increments Gaussian process satisfying some assumptions. By using
the notion of generalized quadratic variation we build a strongly consistent and asymptotically
normal estimator of the uniform Hölder exponent ofX, over a compact interval. Our estimator is
obtained starting from average values of the process over a regular grid.
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1. Introduction

Since several years, there has been a considerable interestin the statistical estimation of some
indices related to Hölder regularity of sample paths of stochastic processes, we refer e.g. to Ay-
ache and Lévy Véhel (2004), Bardet (2000), Bardet and Bertrand (2007), Benassi et al. (1998),
Coeurjolly (2005), Gloter and Hoffmann (2007), Istas and Lang (1997); as for instance the uni-
form Hölder exponent over a compact interval. Let us recallthe definition of the latter exponent.
Denote by{X(t)}t∈R a real-valued stochastic process and byK a fixed compact interval inR;
one says that a sample pathX(·, ω) : t 7−→ X(t, ω) belongs to the Hölder spaceCγ(K) where
γ ∈ R+ \ Z+, if the following two conditions (i) and (ii) are satisfied:

(i) X(·, ω) is a [γ]-times continuously differentiable function overK, where [·] denotes the inte-
ger part function;

(ii) there is a constantc = c(K, ω) > 0 such that for alls1, s2 ∈ K,

∣∣X([γ])(s1, ω) − X([γ])(s2, ω)
∣∣ ≤ c|s1 − s2|γ−[γ] . (1.1)
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The uniform Hölder exponent ofX(·, ω) overK is defined as,

hX(K, ω) := sup
{
γ ∈ R+ \ Z+ : X(·, ω) ∈ Cγ(K)

}
.

From now on, we suppose that{X(t)}t∈R is a centered stationary increments Gaussian process
satisfying almost surelyX(0) = 0; thus the distribution of{X(t)}t∈R is completely determined by
its variogram, namely the even functionv defined for allt ∈ R, as,

v(t) = 2−1E
(
X(t)

)2
; (1.2)

moreover it follows from zero-one law that there is a deterministic quantityH = HX(K) ∈
[0,+∞] such that one has, for almost allω, hX(K, ω) = H. There is no restriction to assume that
K = [0, 1]. In their seminal article Istas and Lang (1997), by using the notion of generalized
quadratic variation, Istas and Lang have constructed, under some assumptions, asymptotically
normal estimators ofH, starting from the observation of{X(iδN)}i=0,...,[δ−1

N ]−1, the true values of
X over a regular grid. However, in the setting of some applications, for example when one
has to model a quite fluctuating signal, it sounds to be more realistic to say that one observes
average values of the processX, namely

{
δ−1

N

∫ (i+1)δN
iδN

X(s) ds
}

i=0,...,[δ−1
N ]−1. The goal of our article

is to construct a strongly consistent and asymptotically normal estimator ofH starting from such
data. From now on, for the sake of simplicity, we assume that the discretization meshδN = 1/N
(N being an integer big enough) and we set

{
Xi,N

}
i=0,...,N−1 :=

{
N
∫ (i+1)/N

i/N
X(s) ds

}
i=0,...,N−1

. (1.3)

Our results as well as their proofs are inspired by Istas and Lang (1997), however new difficulties
appear in our setting; they are mainly due to the fact that

Cov
( p∑

k=0

akXi+k,N,

p∑

k′=0

ak′X j+k′,N

)
,

is more difficult to estimate, than

Cov
( p∑

k=0

akX
( i + k

N

)
,

p∑

k′=0

ak′X
( j + k′

N

))
,

herep ≥ 1 is an integer anda = (a0, . . . , ap) denotes an arbitrary finite fixed sequence ofp+ 1
real numbers satisfying Assumption (2.6).

2. Statement of the main results

Let us first precisely present the assumptions we need for obtaining our main results. Note in
passing that these assumptions are nearly similar to some fundamental hypotheses in Istas and
Lang (1997).
(A1) Assumptions on the variogram functionv: We assume that there exists a finite non-
negative integerd such thatv is 2d-times continuously differentiable on [−2, 2] and v is not
2(d+ 1)-times continuously differentiable on this interval. We denote byv(2d) the derivative ofv
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of order 2d, with the convention thatv(0) = v. Also we assume that there are two real numbers
c , 0 and 0< s0 < 2 such that for allt ∈ [−2, 2], one has

v(2d)(t) = v(2d)(0)+ c|t|s0 + r(t), (2.1)

where the remainderr satisfies the following two properties:

• For |t| small enough, one has,
r(t) = o(|t|s0). (2.2)

• There are two real numbersc > 0,w > s0 and an integerq > w+1/2 such that the remainder
r is q-times continuously differentiable on [−2, 2] \ {0} and for allt ∈ [−2, 2] \ {0}, one has

|r (q)(t)| ≤ c|t|w−q. (2.3)

2

The integersd andq are supposed to be known; in fact the unknown parameter we want to
estimate, starting from the data (1.3), iss0. It is worth noticing that Assumption (A1) implies,
see for instance Cramér and Leadbetter (1967), Ibragimov and Rozanov (1978), that the uniform
Hölder exponentH satisfies,

H = d+
s0

2
. (2.4)

Though, this assumption might seem to be a bit technical, it is satisfied Istas and Lang (1997) by
fractional Brownian motion (i.e.v(t) = c|t|2α wherec > 0 is a constant andα ∈ (0, 1) the Hurst
parameter) and other, more or less, classical classes of stationary increments Gaussian processes
(for example whenv(t) = 1− exp(−|t|β), whereβ ∈ (0, 2) is a parameter).

For any integerN ≥ p+1, the generalized increments of the average valuesXi,N, i = 0, . . . ,N−
1 of the processX are defined as,

{
∆aXi,N

}
i=0,...,N−p−1 =

{ p∑

k=0

akXi+k,N

}
i=0,...,N−p−1

, (2.5)

wherea = (a0, . . . , ap) ∈ Rp+1 is an arbitrary finite fixed sequence ofp+ 1 real numbers whose
M(a) ≥ d+ q/2 first moments vanish, that is:

p∑

k=0

klak = 0, for all l = 0, . . . ,M(a) − 1, and
p∑

k=0

kM(a)ak , 0. (2.6)

It worth noticing that one necessarily hasp ≥ M(a). Also notice that (2.6) implies that for all
l ∈ {0, . . . , 2M(a) − 1},

p∑

k=0

p∑

k′=0

akak′(k− k′)l = 0. (2.7)

The important idea of replacing usual 1-order increments bygeneralized increments has been
initially introduced by Istas and Lang (1997). The main advantage in doing so, is that the sta-
tistical estimator ofH, defined through generalized quadratic variation, is asymptotically normal
whatever the value ofH might be. Basically, this asymptotic normality comes from the fact that
generalized increments are less correlated than usual increments.
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In fact, we need to impose to the sequencea an additional assumption.
(A2) Assumption related to the generalized increments:For all ν ∈ (0, 2), one has

R
(
0, 1, 2d, (·)ν) , 0, (2.8)

whereR
(
0, 1, 0, (·)ν) is defined by (3.5) andR

(
0, 1, 2d, (·)ν) is defined by (3.6) whend ≥ 1. 2

It is worth noticing that standard computations allow to show that: the sequencea(2) =

(1,−2, 1) has 2 vanishing moments (i.e.M(a(2)) = 2) and satisfies Assumption (A2) whend = 0;
the sequencea(3) = (1,−3, 3,−1) has 3 vanishing moments (i.e.M(a(3)) = 3) and satisfies As-
sumption (A2) whend ∈ {0, 1}.

Now we are in position to state the two main results of our article.

Theorem 2.1 Let us denote by

ĤN =
1
2

(
1+ log2

( VN

V2N

))
, (2.9)

where VN is the generalized quadratic variation defined as,

VN =

N−p−1∑

i=0

(
∆aXi,N

)2
. (2.10)

Then, under Assumptions (A1) and (A2), when N→ +∞, ĤN converges almost surely to H,

Theorem 2.2 Under the same assumptions as in Theorem 2.1 and the additional assumption
that

r(t) = o(|t|s0+1/2), (2.11)

a Central Limit Theorem holds, namely N1/2(ĤN − H) converges in law to a centered Gaussian
random variable.

3. Proof of the main results

First it is convenient to notice that the stationarity of theincrements of the processX, implies
that for allN ≥ p+ 1 andi ∈ {0, . . . ,N − p− 1}, one has

σ2
a,N := Var(∆aX0,N) = Var(∆aXi,N). (3.1)

The proof of Theorem 2.1 mainly relies on the following proposition.

Proposition 3.1 Under Assumptions (A1) and (A2), there exist two constants c1 > 0 and c2 > 0,
such that the following two equalities hold for all N≥ p+ 1:

σ2
a,N = c1N−2H + o(N−2H), (3.2)

and

s2
N := Var

( N−p−1∑

i=0

(∆aXi,N)2

σ2
a,N

)
= c2N + o(N). (3.3)
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Now, let us focus on the proof of Proposition 3.1. In order to show that the latter proposition
holds, we need several preliminary results. The following lemma (whose proof has been omitted
since it is more or less similar to that of Lemma 1 in Gloter andHoffmann (2004)) gives a nice
expression of Cov

(
∆aXi,N,∆aX j,N

)
, in terms of the variogram functionv.

Lemma 3.1 For all integer N ≥ p + 1 and all i, j ∈ {0, . . . ,N − p − 1}, the following equality
holds:

E
(
∆aXi,N∆aX j,N

)
= −N2

∑

0≤k,l≤p

akal

(∫ 1
N

0

∫ 1
N

0
v
( |i − j|

N
+ s− s′ +

k− l
N

)
ds′ ds

)
. (3.4)

Next we will use (3.4) and (2.1) for estimatingE
(
∆aXi,N∆aX j,N

)
; to this end, we need to

introduce some notations. Leth andg be two real-valued Borel functions defined on the real
line, letN ≥ p+ 1 andu ≥ 1 be two integers and letx ∈ R, we set

R(x,N, 0, h) =
∑

0≤k,l≤p

akal

∫ 1
N

0

∫ 1
N

0
h
(
x+ s− s′ +

k− l
N

)
ds′ ds, (3.5)

and

R(x,N, u, g) =
∑

0≤k,l≤p

akal(k− l)u
∫ 1

N

0

∫ 1
N

0

∫ 1

0

(1− η)u−1

(u− 1)!

×g
(
x+ s− s′ +

(k− l)η
N

)
dη ds′ ds.

(3.6)

Of course we assume thath, g, N, u andx have been chosen in such a way that all the integrals
in (3.5) and (3.6) are well-defined and finite. Observe that inview of Lemma 3.1, one has

E
(
∆aXi,N∆aX j,N

)
= −N2R

( |i − j|
N
,N, 0, v

)
. (3.7)

In the sequel we setm= |i − j|. Let us now give a nice property ofR.

Lemma 3.2 Let x ∈ R and u be an integer such that0 ≤ u ≤ 2M(a). Assume that h is u-times
continuously differentiable on the interval[x− (p+1)/N, x+ (p+ 1)/N]. Then, for all integer u′,
satisfying0 ≤ u′ ≤ u, R(x,N, u′, h(u′)) is well-defined and one has

R(x,N, u′, h(u′)) = N−(u−u′)R(x,N, u, h(u)). (3.8)

P  L 3.2: First observe that, Lemma 3.2 clearly holds whenu = 0, so from now on
we assume thatu ≥ 1. Next observe that for all (s, s′) ∈ [0, 1/N]2 and all (k, l) ∈ {0, . . . , p}2, h
is aCu function on the compact interval of extremitiesx+ s− s′ andx+ s− s′ + (k − l)/N. By
applying Taylor formula toh on this interval, one has

h
(

x+ s− s′ +
k− l
N

)
=

u−1∑

m=0

h(m)(x+ s− s′)
m!

(k− l
N

)m

+

∫ 1

0

(1− η)u−1

(u− 1)!
h(u)
(

x+ s− s′ +
(k− l)η

N

)
dη ×

(k− l
N

)u
.
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Then using (3.5), (2.7) and (3.6), it follows that

R(x,N, 0, h) = N−uR(x,N, u, h(u)). (3.9)

By replacing in (3.9)u by u′, one also has

R(x,N, 0, h) = N−u′R(x,N, u′, h(u′)). (3.10)

Finally combining (3.9) with (3.10) one obtains (3.8).2

The following remark is a consequence of (3.8), (3.5), (3.6), (2.1) and (2.7).

Remark 3.1 For all integer N≥ p+ 1 and for all m∈ {0, . . . ,N − p− 1}, one has

R
(m

N
,N, 0, v

)
= N−2d

(
cR
(m

N
,N, 2d, | · |s0

)
+ R
(m

N
,N, 2d, r

))
. (3.11)

Now our goal will be to estimateR
(
m/N,N, 2d, | · |s0

)
andR

(
m/N,N, 2d, r

)
.

The following lemma can be obtained by setting in the integrals in (3.5) and (3.6), (y, y′) =
(Ns,Ns′), and then by using the fact that| · |s0 is a homogeneous function of degrees0.

Lemma 3.3 For all integers N≥ p+ 1, m∈ {0, . . . ,N − p− 1} and u≥ 0, one has

R
(m

N
,N, u, | · |s0

)
= N−2−s0R

(
m, 1, u, | · |s0

)
. (3.12)

Lemma 3.4 There is a constant c> 0, only depending on d, q and a, such that one has for all
m ∈ {p+ 2, . . . ,N − p− 1},

∣∣R
(
m, 1, 2d, | · |s0

)∣∣ ≤ c(m− p− 1)s0−q. (3.13)

P  L 3.4: First notice that for alls, s′ ∈ [0, 1], m ∈ {p + 2, . . . ,N − p − 1}, k, l ∈
{0, . . . , p} andη ∈ [0, 1], one has

m+ s− s′ + (k− l)η ≥ m− p− 1 ≥ 1 > 0. (3.14)

Then by using the definition ofR ((3.5) and (3.6)) as well as (3.14), one gets

R
(
m, 1, 2d, | · |s0

)
= R
(
m, 1, 2d, (·)s0

)
. (3.15)

Moreover, denoting by
(
(·)s0
)(q)

the derivative of orderq of the functionz 7→ zs0, it follows from
Lemma 3.2 that

R
(
m, 1, 2d, (·)s0

)
= R

(
m, 1, 2d+ q,

(
(·)s0
)(q))

= c1R
(
m, 1, 2d+ q, (·)s0−q

)
, (3.16)

wherec1 is a constant only depending ons0 andq. Since 2d + q ≥ 1, again by using (3.6), one
has

R
(
m, 1, 2d+ q, (·)s0−q

)
=
∑

0≤k,l≤p

akal(k− l)2d+q
∫ 1

0

(1− η)2d+q−1

(2d+ q− 1)!

×
∫ 1

0

∫ 1

0

(
m+ s− s′ + (k− l)η

)s0−q
ds′ dsdη.

(3.17)
6



Then, it results from (3.17), the triangle inequality, (3.14) and the inequalitys0 − q < 0, that
∣∣R
(
m, 1, u+ q, (·)s0−q

)∣∣ ≤ c2(m− p− 1)s0−q, (3.18)

wherec2 is a constant only depending ona, d andq. Finally, putting together (3.15), (3.16) and
(3.18) one obtains the lemma.2

Lemma 3.5 For all N ≥ p+ 1 and u∈ Z+, let us set

r∗u,N = max
0≤m≤p+1

∣∣R
(m

N
,N, u, r

)∣∣. (3.19)

Then one has, when N is big enough

r∗u,N = o(N−s0−2). (3.20)

P  L 3.5: We will only show that the lemma holds in the case whereu = 0, since
it can be proved similarly in the case whereu ≥ 1. First observe that, by using the triangle
inequality, one has that, for all integer 0≤ m≤ p+ 1, all s, s′ ∈ [0, 1/N] andk, l ∈ {0, . . . , p},

∣∣m
N
+ s− s′ +

k− l
N

∣∣ ≤ m
N
+ |s− s′| + |k− l|

N
≤ 2p+ 2

N
. (3.21)

Moreover, the assumptionr(x) = o(|x|s0) implies that, there is a sequence{eN}N≥p+1 of positive
real-numbers converging to 0, such that for all real numberx satisfying|x| ≤ (2p+2)/N ≤ 2, one
has ∣∣r(x)

∣∣ ≤ eN|x|s0. (3.22)

It follows from (3.5), (3.21) and (3.22) that
∣∣R
(m

N
,N, 0, r

)∣∣

=

∣∣∣
∑

0≤k,l≤p

akal

∫ 1
N

0

∫ 1
N

0
r
(m

N
+ s− s′ +

k− l
N

)
dsds′

∣∣∣

≤ eN

∑

0≤k,l≤p

|akal |
∫ 1

N

0

∫ 1
N

0

(m
N
+ |s− s′| + |k− l|

N

)s0 dsds′

= ceNN−s0−2, (3.23)

wherec > 0 is a constant only depending ona. 2

Lemma 3.6 For all N ≥ p+ 1, there is a constant c> 0, only depending on a, r and d, such that
one has for each m∈ {p+ 2, . . . ,N − p− 1},

∣∣R
(m

N
,N, 2d, r

)∣∣ ≤ cN−w−2(m− p− 1)w−q. (3.24)

P  L 3.6: First observe that, in view of Assumption (A1),r is q-times continuously
differentiable on the interval [m/N − (p+ 1)/N,m/N + (p+ 1)/N] ⊂ [1/N, 1]. Therefore we are
allowed to use Lemma 3.2 and we obtain that,

R
(m

N
,N, 2d, r

)
= N−qR

(m
N
,N, 2d+ q, r (q)

)
. (3.25)
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Moreover (3.6) implies that,

R
(m

N
,N, 2d+ q, r (q)

)
=

∑

0≤k,l≤p

akal(k− l)2d+q
∫ 1

N

0

∫ 1
N

0

∫ 1

0

(1− η)2d+q−1

(2d+ q− 1)!

×r (q)
(m

N
+ s− s′ +

(k− l)η
N

)
dη ds′ ds.

(3.26)

Then, it follows from (3.26), the triangle inequality, (2.3) and the inequalityw − q < −1/2 < 0
that

∣∣R
(m

N
,N, u, r (q)

)∣∣ ≤ c1

∑

0≤k,l≤p

|akal ||k− l|2d+q

×
∫ 1

N

0

∫ 1
N

0

∫ 1

0

∣∣m/N + s− s′ + (k− l)η/N
∣∣w−q

(2d+ q− 1)!
dη ds′ ds

≤ c2N−w+q−2(m− p− 1)w−q, (3.27)

wherec1 > 0 is the constantc in (2.3) andc2 > 0 is a constant only depending ona, r andd.
Finally, putting together (3.25), (3.26) and (3.27) we get the lemma.2

Let us now recall a useful result concerning centered, 2-D, Gaussian random vectors.

Lemma 3.7 Let (Z,Z′) be a centered, 2-D Gaussian random vector such that the variances of Z
and Z′ are equal; we denote byλ their common value. Then

E
(
(Z2 − λ)(Z′2 − λ)) = 2

(
Cov(Z,Z′)

)2
. (3.28)

Now we are in position to prove Proposition 3.1.
P  P 3.1: First observe that it follows from (3.7) and (3.11) thatfor all integers
N ≥ p+ 1 andi, j ∈ {0, . . . ,N − p− 1}, one has

E
(
∆aXi,N∆aX j,N

)
= −N2−2d

(
cR
( |i − j|

N
,N, 2d, | · |s0

)
+ R
( |i − j|

N
,N, 2d, r

))
. (3.29)

Taking i = j in (3.29) and using (3.1), we get

σ2
a,N = Var

(
∆aXi,N

)
= −N2−2d

(
cR(0,N, 2d, | · |s0) + R(0,N, 2d, r)

)
. (3.30)

Then (3.2) results from (3.30), Lemma 3.3, (2.4), (2.8) and Lemma 3.5.
Let us now prove that Relation (3.3) holds. We denote byρN(|i − j|) the correlation coefficient

between∆aXi,N and∆aX j,N, that is,

ρN(|i − j|) = E (∆aXi,N∆aX j,N)

σ2
a,N

. (3.31)

8



On the other hand, using the definition of a variance, one has,

s2
N := Var

( N−p−1∑

i=0

(∆aXi,N)2

σ2
a,N

)

= Var
( N−p−1∑

i=0

( (∆aXi,N)2

σ2
a,N

− 1
))

=

N−p−1∑

i=0

N−p−1∑

j=0

E
(( (∆aXi,N)2

σ2
a,N

− 1
)( (∆aX j,N)2

σ2
a,N

− 1
))
.

(3.32)

Then, it follows from (3.32), Lemma 3.7 and (3.31), that

s2
N = 2

N−p−1∑

i=0

N−p−1∑

j=0

ρ2
N(|i − j|)

= 2
∑

| j|≤N−p−1

(N − p− | j|)ρ2
N(| j|). (3.33)

Let us now splits2
N in two parts: | j| ≤ p + 1 andp + 2 ≤ | j| ≤ N − p − 1; more precisely we

expresss2
N as,

s2
N = FN +GN, (3.34)

where
FN = 2

∑

| j|≤p+1

(N − p− | j|)ρ2
N(| j|), (3.35)

and
GN = 2

∑

p+2≤| j|≤N−p−1

(N − p− | j|)ρ2
N(| j|). (3.36)

Thus for finishing our proof, it remains to show that there exist two non-vanishing constantsc1

andc2, such that
FN = c1N + o(N), (3.37)

and
GN = c2N + o(N). (3.38)

By using (3.31), (3.29) and Lemma 3.3, one gets

ρN(| j|) = cR(| j|, 1, 2d, | · |s0) + N2+s0R(| j|/N,N, 2d, r)
cR(0, 1, 2d, | · |s0) + N2+s0R(0,N, 2d, r)

. (3.39)

Thanks to Lemma 3.5, the two termsN2+s0R(| j|/N,N, 2d, r) (for | j| ≤ p + 1) and
N2+s0R(0,N, 2d, r) converge to 0. This fact together with (3.39) implies

lim
N→+∞

max
| j|≤p+1

∣∣ρN(| j|) −C(| j|)
∣∣ = 0, (3.40)
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where for all 0≤ | j| ≤ p+ 1, we have set,

C(| j|) = R(| j|, 1, 2d, | · |s0)
R(0, 1, 2d, | · |s0)

.

Then, combining (3.35) with (3.40), one obtains that

FN − 2
∑
| j|≤p+1(C(| j|))2N

N
=
−2
∑
| j|≤p+1(p+ | j|)C(| j|)2

N

+
2
∑
| j|≤p+1(N − p− | j|)(ρ2

N(| j|) − (C(| j|))2
)

N
−−−−−→
N→+∞

0,

which proves that (3.37) holds; observe that (2.8) implies that

c1 := 2
∑

| j|≤p+1

(C(| j|))2 , 0.

Let us now show that (3.38) is satisfied. For the sake of simplicity, from now on, for all
| j| ∈ {p+ 2, . . . ,N − p− 1}, we set

L(| j|) = R(| j|, 1, 2d, (·)s0). (3.41)

First, we will show that there is a non-vanishing constantc3 such that

∑

p+2≤| j|≤N−p−1

∣∣∣ρ2
N(| j|) − c3L2(| j|)

∣∣∣ −−−−−→
N→+∞

0. (3.42)

By using (3.31), (3.29) and the fact that for| j| ≥ p+ 1, one has,

ρN(| j|) = −N2−2d

σ2
a,N

(
cR
( | j|

N
,N, 2d, (·)s0

)
+ R
( | j|

N
,N, 2d, r

))
. (3.43)

It follows from (3.43), (2.4), (3.12) and (3.41) that,

ρN(| j|) = −cL(| j|) N−2H

σ2
a,N

− N2−2d

σ2
a,N

R
( | j|

N
,N, 2d, r

)
. (3.44)

On the other hand, assuming thatc1 is the constant introduced in (3.2), the following relation
holds:

( c
c1

)
L(| j|) = cL(| j|) N−2H

σ2
a,N

+ cL(| j|)M(N), (3.45)

where

M(N) =
1
c1
− N−2H

σ2
a,N

=
σ2

a,N − c1N−2H

c1σ
2
a,N

= o(1). (3.46)
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Next using the inequality|x2 − y2| = |(x + y)2 − 2(x + y)y| ≤ (x + y)2 + 2|(x + y)y| for all real
numbersx andy, (3.44) and (3.45), one gets

∣∣ρ2
N(| j|) − ( c

c1

)2
L2( j)

∣∣ ≤ ∣∣ρN(| j|) + ( c
c1

)
L( j)

∣∣2 + 2
∣∣∣ρN(| j|) + ( c

c1

)
L(| j|)∣∣∣∣( c

c1

)
L(| j|)

∣∣∣

=

∣∣∣N
2−2d

σ2
a,N

R
( | j|

N
,N, 2d, r

) − cL(| j|)M(N)
∣∣∣
2

+2
∣∣∣N

2−2d

σ2
a,N

R
( | j|

N
,N, 2d, r

) − cL(| j|)M(N)
∣∣∣
∣∣∣
( c

c1

)
L(| j|)

∣∣∣.

(3.47)

It follows from (3.47), (3.2), (2.4), Lemma 3.6 and Lemma 3.4that there exists a constantc4 > 0,
non depending onj andN, such that,

∣∣ρ2
N(| j|) − ( c

c1

)2
L2( j)

∣∣

≤ c4

((
Ns0−w(| j| − p− 1)w−q + |M(N)|(| j| − p− 1)s0−q

)2

+
(
Ns0−w(| j| − p− 1)w−q + |M(N)|(| j| − p− 1)s0−q

)
(| j| − p− 1)s0−q

)

≤ 2c4

(
N2(s0−w)(| j| − p− 1)2(w−q) + (M(N))2(| j| − p− 1)2(s0−q)

+
(
Ns0−w + |M(N)|)(| j| − p− 1)w+s0−2q

)
.

(3.48)

Next, settingc3 = c2/c2
1, it follows from (3.48), (3.46) and the inequalitiess0 − w < 0, s0 − q <

−1/2, w− q < −1/2, that (3.42) is satisfied.
Now we are in position to show that (3.38) holds. On one hand, (3.43) and (3.42) imply

∣∣GN − 2c3
∑

p+2≤| j|≤N−p−1(N − p− | j|)L2(| j|)∣∣
N

≤ 2
∑

p+2≤| j|≤N−p−1

(N − p− | j|)
N

∣∣ρ2
N(| j|) − c3L2(| j|)∣∣

≤ 4
∑

p+2≤| j|≤N−p−1

∣∣ρ2
N( j) − c3L2(| j|)∣∣

−−−−−→
N→+∞

0. (3.49)

On the other hand, standard computations allow to show that the sequence
(∑

p+2≤| j|≤N−p−1(N − p− | j|)L2(| j|)
N

)

N≥p+1

is increasing and bounded. Therefore this sequence converges to finite positive limit denoted by
c5. Then settingc2 = 2c3c5, (3.49) implies that (3.38) is satisfied. Finally, (3.3) results from
(3.34), (3.37) and (3.38).2

The previous proposition will play a crucial role in the proof of Theorem 2.1; the proof of this
theorem will also make use of the following lemma, which, roughly speaking, means that, almost
surely, the generalized quadratic variationVN behaves likecN1−2H whenN goes to infinity.
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Lemma 3.8 There exists a constant c> 0 such that

WN :=
VN

cN1−2H
− 1

a.s.−−−−−→
N→+∞

0.

Lemma 3.8 is a straightforward consequence of (3.2) and the following result.

Lemma 3.9 The generalized quadratic variation VN satisfies

VN

Nσ2
a,N

− 1
a.s.−−−−−→

N→+∞
0,

whereσa,N has been defined in (3.1).

The proof of Lemma 3.9 is rather similar to that of Proposition 2, equation (25), in Benassi et
al. (1998), this is why we will not give it. Now, we are in position to prove Theorem 2.1.
P  T 2.1: Letc1 = c andWN be respectively the constant and the random variable
which have been introduced in Lemma 3.8. Therefore, one has

VN = c1N1−2H(WN + 1).

Thus, it follows from (2.9) that

ĤN =
1
2

(
1+ log2

( VN

V2N

))

=
1
2

(
1+ log2

( c1N1−2H(WN + 1)
c1(2N)1−2H(W2N + 1)

))

= H +
1
2

(
log2(WN + 1)− log2(W2N + 1)

)
.

Finally applying Lemma 3.8 one obtains the theorem.2

From now on, our goal will be to show that Theorem 2.2 holds. The proof of this theorem
mainly relies on the following lemma, which, roughly speaking, means that a Central Limit
Theorem holds for the generalized quadratic variationVN.

Lemma 3.10 For any N≥ p+ 1 let us set,

τ2N := Var

(∑N−p−1
i=0 (∆aXi,N)2

(N − p)(σa,N)2

)
=

s2
N

(N − p)2
. (3.50)

Then, there is a constant c> 0 such that one has

τN = cN−1/2 + o(N−1/2). (3.51)

Moreover,
1
τN

(∑N−p−1
i=0 (∆aXi,N)2

(N − p)σ2
a,N

− 1
) d−−−−−→

N→+∞
N(0, 1).

The proof of Lemma 3.10 mainly relies on the following two lemmas. It is rather similar to
that of Proposition 2, equation (26), in Benassi et al. (1998), this is why we will not give it.
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Lemma 3.11 (Cs̈orgo and Révész (1981))Consider the sequence of random variables
{SN}N≥p+1 defined by SN =

∑N−p−1
j=0 λ j,N(ǫ2j,N − 1), where for all N ≥ p + 1, {ǫ j,N} j=0,...,N−p−1

is a finite sequence of i.i.d. standard Gaussian random variables and{λ j,N} j=0,...,N−p−1 a finite
sequence of positive real numbers. LetλN = maxj=0,...,N−p−1 λ j,N, if λN = o((Var(SN))1/2), then

SN

(Var(SN))1/2

d−−−−−→
N→+∞

N(0, 1).

This lemma is in fact a straightforward consequence of Lindeberg-Féller Central Limit Theorem.

Lemma 3.12 (Luenberger (1979), Chapter6.2, Page194) For all integer n ≥ 1, let C =
(Ci j )n×n be a symmetric positive definite matrix and letλ be its largest eigenvalue. Then one
has,

λ ≤ max
1≤i≤n

n∑

j=1

|Ci j |.

Lemma 3.13 Let VN be the generalized quadratic variation defined in (2.10) andlet τN be the
quantity defined in (3.50). Then, under the additional assumption (2.11), there is c> 0 a constant
non depending on N, such that

1
τN

( VN

cN1−2H
− 1
) d−−−−−→

N→+∞
N(0, 1).

Lemma 3.13 can easily be proved by using Lemma 3.10, (3.2) andthe following classical lemma.

Lemma 3.14 Let (ZN) be a sequence of random variables which converges in distribution to a
standard Gaussian random variable. Let(aN) and(bN) be two arbitrary sequences of real num-
bers satisfyinglimN→+∞ aN = 1 and limN→+∞ bN = 0. Then, the sequence of random variables
(aNZN + bN) converges in distribution to a standard Gaussian random variable.

At last let us give the proof of Theorem 2.2.
P  T 2.2: This Theorem can be obtained by using Lemma 3.13, theδ-method (see
for instance Theorem 3.3.11 in Dacunha-Castelle (1983)) and Relation (3.51).2
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