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Uniform Holder exponent of a stationary increments Gaussian
process: estimation starting from average values
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Cité scientifique, 59655 Villeneuve d'Ascq, France

Abstract

Let {X(t)}ir be a stationary increments Gaussian process satisfying assumptions. By using
the notion of generalized quadratic variation we build arsfity consistent and asymptotically
normal estimator of the uniform Holder exponendqfover a compact interval. Our estimator is
obtained starting from average values of the process ovegdar grid.
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1. Introduction

Since several years, there has been a considerable iritetleststatistical estimation of some
indices related to Holder regularity of sample paths ofls&stic processes, we refer e.g. to Ay-
ache and Lévy Véhel (2004), Bardet (2000), Bardet andr8edt(2007), Benassi et al. (1998),
Coeurjolly (2005), Gloter and Himann (2007), Istas and Lang (1997); as for instance the uni-
form Holder exponent over a compact interval. Let us rebaldefinition of the latter exponent.
Denote by{X(t)}r a real-valued stochastic process andkby fixed compact interval iR;
one says that a sample patl¢-, w) : t — X(t, w) belongs to the Holder spac&(K) where
v € R, \ Z,, if the following two conditions (i) and (ii) are satisfied:

(i) X(-,w) is a [y]-times continuously dferentiable function ovelK, where [] denotes the inte-
ger part function;

(ii) thereis a constamt= c(K, w) > 0 such that for alk;, s, € K,

|x([7])(51’ w) - X0 (s, a))| <ds - 0. (1.1)
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The uniform Holder exponent of(:, w) overK is defined as,
hx(K, w) = sup{y e Ry \ Z, : X(-,w) € C'(K)}.

From now on, we suppose thg{(t)}r iSs a centered stationary increments Gaussian process
satisfying almost surelX(0) = 0; thus the distribution ofX(t)}«cr is completely determined by
its variogram, namely the even functigefined for allt € R, as,

v(t) = 27E (X(1))%; (1.2)

moreover it follows from zero-one law that there is a detaistic quantityH = Hx(K) €

[0, +0] such that one has, for almost all hx(K, w) = H. There is no restriction to assume that
K = [0,1]. In their seminal article Istas and Lang (1997), by usimg motion of generalized
quadratic variation, Istas and Lang have constructed, usmi®e assumptions, asymptotically
X over a regular grid. However, in the setting of some apﬁt’ﬁ:é;t for example when one
has to model a quite fluctuating signal, it sounds to be maabsti to say that one observes
average values of the proc@ésnamely{é‘g,l j;g;l)é“ X(9) ds}i:O ’’’’’ (611" The goal of our article
is to construct a strongly consistent and asymptoticaltynad estimator oH starting from such
data. From now on, for the sake of simplicity, we assume tiatiscretization meséy = 1/N
(N being an integer big enough) and we set

(i+1)/N

{Kinbico. wa ::{N/WN X(s)ds} : (1.3)

i=0,..,N-1

Our results as well as their proofs are inspired by Istas amgjl(1997), however newftliculties
appear in our setting; they are mainly due to the fact that

P p
COV( Z ak7i+k,N, Z ak’ij+k',N) s

k=0 k'=0

is more dificult to estimate, than

o Sax(' 9 S ax(5)),

k'=0

herep > 1is an integer and = (ay, . . ., &p) denotes an arbitrary finite fixed sequenceof 1
real numbers satisfying Assumption (2.6).

2. Statement of the main results

Let us first precisely present the assumptions we need fairoby our main results. Note in
passing that these assumptions are nearly similar to sontafaental hypotheses in Istas and
Lang (1997).

(A1) Assumptions on the variogram functionv: We assume that there exists a finite non-
negative integed such thatv is 2d-times continuously dierentiable on {2,2] andv is not
2(d + 1)-times continuously dierentiable on this interval. We denote 43 the derivative ofs
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of order &, with the convention that® = v. Also we assume that there are two real numbers
¢ # 0 and O< 9 < 2 such that for alt € [-2, 2], one has

V@D () = VD (0) + gJt| + r(t), (2.1)
where the remaindersatisfies the following two properties:

e For|t| small enough, one has,
r(t) = o(t|®). (2.2)

e There are two real numbers- 0,w > 5 and an integeq > w+1/2 such that the remainder
r is g-times continuously dierentiable on{2, 2]\ {0} and for allt € [-2, 2] \ {0}, one has

r@e)] < ¢t (2.3)

O

The integersd andq are supposed to be known; in fact the unknown parameter we twan
estimate, starting from the data (1.3)sis It is worth noticing that Assumption (Al) implies,
see for instance Cramér and Leadbetter (1967), Ibragimd\Razanov (1978), that the uniform
Holder exponenH satisfies,

H=d+ %. (2.4)

Though, this assumption might seem to be a bit technical sidfisfied Istas and Lang (1997) by
fractional Brownian motion (i.ev(t) = c|t}** wherec > 0 is a constant and < (0, 1) the Hurst
parameter) and other, more or less, classical classegiohstey increments Gaussian processes
(for example when(t) = 1 - ex(—[t[), whereg € (0, 2) is a parameter).

For any integeN > p+1, the generalized increments of the average vafugsi = 0,...,N—
1 of the procesX are defined as,

p
{Aaxi,N}i:O AAAA N-p-1 o { % akxi+k,N}i:O N—p—l’ (25)

.....

wherea = (ay, ..., ap) € RP*! is an arbitrary finite fixed sequence pf+ 1 real numbers whose
M(a) > d + q/2 first moments vanish, that is:

p p
> Kac=0, foralll =0,....M(@-1,and ) _k"@a 0. (2.6)
k=0 k=0

It worth noticing that one necessarily hps> M(a). Also notice that (2.6) implies that for all
I €{0,...,2M(a) — 1},

P P

> > aa(k-k) =0. (2.7)

k=0 k'=0
The important idea of replacing usual 1-order incrementgédayeralized increments has been
initially introduced by Istas and Lang (1997). The main atege in doing so, is that the sta-
tistical estimator oH, defined through generalized quadratic variation, is asgtigally normal
whatever the value dfi might be. Basically, this asymptotic normality comes frdra fact that
generalized increments are less correlated than usuahesrts.
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In fact, we need to impose to the sequeae additional assumption.
(A2) Assumption related to the generalized incrementsFor allv € (0, 2), one has

R(0,1,2d,(-)") #0, (2.8)

whereR(0, 1,0, (-)") is defined by (3.5) anR(0, 1, 2d, (-)") is defined by (3.6) whed > 1. O

It is worth noticing that standard computations allow towhibat: the sequence® =
(1, -2, 1) has 2 vanishing moments (i.#(a®) = 2) and satisfies Assumption (A2) wher= 0;
the sequence® = (1, -3, 3, -1) has 3 vanishing moments (i.81(a®) = 3) and satisfies As-
sumption (A2) wherd € {0, 1}.

Now we are in position to state the two main results of oucketi

Theorem 2.1 Let us denote by

1

Ay =
NT2

VN
<1+|0g2 (V—ZN)), (29)
where \{ is the generalized quadratic variation defined as,

N-p-1

W= Y (AaXin) (2.10)
i=0

Then, under Assumptions (A1) and (A2), wherN-co, Hi converges almost surely to H,

Theorem 2.2 Under the same assumptions as in Theorem 2.1 and the additissumption
that
r(t) = o(|t}**4/?), (2.11)

a Central Limit Theorem holds, namely’R(Hy — H) converges in law to a centered Gaussian
random variable.
3. Proof of the main results

First it is convenient to notice that the stationarity of therements of the proces§ implies
thatforallN > p+ 1andi € {0,...,N — p— 1}, one has

oA = Var(AaXon) = Var(AaXin). (3.1)
The proof of Theorem 2.1 mainly relies on the following prsition.

Proposition 3.1 Under Assumptions (Al) and (A2), there exist two constants@and ¢ > O,
such that the following two equalities hold for allNp + 1

02N =CN™ + (N2, (3.2)
and —
1o v
&= Var( 3 M) = N + o(N). (3.3)
io “aN
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Now, let us focus on the proof of Proposition 3.1. In ordertiovs that the latter proposition
holds, we need several preliminary results. The followargina (whose proof has been omitted
since it is more or less similar to that of Lemma 1 in Gloter &twfmann (2004)) gives a nice
expression of Co@AaYi,N, Aan,N), in terms of the variogram function

Lemma 3.1 For all integer N> p+ 1andalli,j € {0,...,N - p — 1}, the following equality
holds:

E (AaXinAaXin) = -N2S " aa // '_” s—5 + )ds’ds) (3.4)

o<kl<p

Next we will use (3.4) and (2.1) for estimatirig(AaYi,NAaYJ,N); to this end, we need to
introduce some notations. Lbtandg be two real-valued Borel functions defined on the real
line, letN > p+ 1 andu > 1 be two integers and lete R, we set

R(x, N, 0, h) = Zaka// (x+s- m%)dgda (3.5)

o<kl<p
and

u-1
R(x, N, U, g) Zaka(k-nu// (iu 77)1)|

o<kl<p
xg(x+s-9 + k N|)77) dyds ds.
(3.6)

Of course we assume thiatg, N, u andx have been chosen in such a way that all the integrals
in (3.5) and (3.6) are well-defined and finite. Observe thaiéw of Lemma 3.1, one has
E (AaXinAaXin) = -N R(" . Il o, v). 3.7)

In the sequel we seh = |i — j|. Let us now give a hice property &

Lemma 3.2 Let x € R and u be an integer such th@t< u < 2M(a). Assume that h is u-times
continuously dferentiable on the intervdix— (p+ 1)/N, X+ (p+ 1)/N]. Then, for all integer 4
satisfying0 < u’ < u, Rx, N, u’, h)) is well-defined and one has

R(x, N, u’, h)) = N-U-YR(x, N, u, h®). (3.8)

Proor oF Lemma 3.2: First observe that, Lemma 3.2 clearly holds when 0, so from now on
we assume that > 1. Next observe that for alls(s') € [0,1/N]? and all k1) € {O,...,p}% h
is aC! function on the compact interval of extremities- s— s andx+ s— s + (k—1)/N. By
applying Taylor formula td on this interval, one has

(e s ) - - Hs=S) (Tly”
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Then using (3.5), (2.7) and (3.6), it follows that

R(x, N, 0, h) = N"UR(x, N, u, h). (3.9)
By replacing in (3.9 by u’, one also has

R(x, N,0,h) = N"YR(x, N, o, h("). (3.10)

Finally combining (3.9) with (3.10) one obtains (3.8).
The following remark is a consequence of (3.8), (3.5), (IB)) and (2.7).

Remark 3.1 For all integer N> p+ 1 and for all me {0O,...,N — p- 1}, one has
m _2d m m
R(3»N-0.v) = N(cR(5.N.2d, |- %) + R(T.N.2d.1) ). (3.11)

Now our goal will be to estimat®(m/N, N, 2d, | - %) andR(m/N, N, 2d,r).
The following lemma can be obtained by setting in the integira (3.5) and (3.6),%Y) =
(Ns Ns), and then by using the fact that/* is a homogeneous function of degige

Lemma 3.3 For all integers N> p+1, me {0,...,N - p—1}and u> 0, one has

R(g, N.u |- %) = NZ9R(m 1,u, |- [%). (3.12)

Lemma 3.4 There is a constant & 0, only depending on d, g and a, such that one has for all
me{p+2,...,N-p-1},

IR(m 1,2d,]-1%)| < ¢(m-p— 1) (3.13)

Proor or Lemma 3.4: First notice that for als s € [0,1], me {p+2,...,N-p-1}, kI €
{O,..., p}andy € [0, 1], one has

m+s—-s+k-yp=zm-p-1>1>0. (3.14)
Then by using the definition d® ((3.5) and (3.6)) as well as (3.14), one gets
R(m 1,2d,]-[®) = R(m,1,2d, (-)¥). (3.15)

Moreover, denoting bﬁ(-)%)@ the derivative of ordeq of the functionz — z%, it follows from
Lemma 3.2 that

R(m 1,2d+q, (()*)®)
ciR(m 1,2d + g, ()*79), (3.16)

R(m 1, 2d, (\)*)

wherec; is a constant only depending @gandg. Since 2 + q > 1, again by using (3.6), one
has

1(1 _ n)2d+q—1

R(ML.2d+0.()*%) = > _aa@k- " | 52—

0<k,I<p
1,1
x//(m+ s— ¢ + (k=) ¥ ds dsdy.
0J0

(3.17)
6




Then, it results from (3.17), the triangle inequality, @).and the inequalitg, — q < 0, that

IR(M L u+q, () 9| < cy(m-p-1)9, (3.18)
wherec; is a constant only depending and andq. Finally, putting together (3.15), (3.16) and
(3.18) one obtains the lemna.

Lemma 3.5 ForallN > p+1and ue Z,, let us set

ron = Mmax ]R(E,N,u,r)]. (3.19)

0<m<p+1

Then one has, when N is big enough
ron = o(N™%72), (3.20)

Proor or LEmma 3.5: We will only show that the lemma holds in the case wheke 0, since
it can be proved similarly in the case whare> 1. First observe that, by using the triangle
inequality, one has that, for all integexkOm < p+ 1, all s, s € [0, 1/N] andk, | € {0, ..., p},
m k-1 m k-1 2p+2
— - — | <= - — < i
|N+s s+ N \_N+|s S|+ N~ N
Moreover, the assumptiarfx) = o(|x|*) implies that, there is a sequen@g }nsp+1 Of positive
real-numbers converging to 0, such that for all real nunxtsstisfying|x| < (2p+2)/N < 2, one
has

(3.21)

Ir(¥)] < enlx®. (3.22)
It follows from (3.5), (3.21) and (3.22) that
m
R N-0.1)]
=’ Z aka/%/ﬁr(m+s—s’+ﬂ)dsds"
o<kl<p 0Jo N N
WA m k-1l\s
<en akal// —+|s—-9|+ dsds’
Og%jg; ) (R rIs=s1+ =)
= cayN-%2, (3.23)

wherec > 0 is a constant only depending anO

Lemma 3.6 ForallN > p+ 1, there is a constant s 0, only depending on a, r and d, such that
one hasforeachma{p+2,...,N—-p-1},

]R(%], N,2d,r)| < cN™2(m— p - 1)1, (3.24)
Proor or LEMma 3.6: First observe that, in view of Assumption (At)is g-times continuously
differentiable on the intervairj/N — (p + 1)/N,m/N + (p + 1)/N] c [1/N, 1]. Therefore we are

allowed to use Lemma 3.2 and we obtain that,

R(%,N, 2d.1) = N‘qR(g, N, 2d + g, r@). (3.25)
7




Moreover (3.6) implies that,

. 1 2d+g-1
> aak- I)qu// 1E2d+n2] i

0<k,I<p

(k="
xr(‘”(N+s $+ ) dndsds

R(%1 N,2d +q,r)
(3.26)

Then, it follows from (3.26), the triangle inequality, (2&nd the inequalityw - g < -1/2 < 0
that

m
RGN ur@) < e Y laallk— 1P
O<k,I<p
N Ym/N 4+ s =8+ (k= Dp/N[YT
X drds ds
/o /0 /0 (2d+q- 1) §
< NI 2(m— p-1)*9, (3.27)

wherec; > 0 is the constant in (2.3) andc, > 0 is a constant only depending anr andd.
Finally, putting together (3.25), (3.26) and (3.27) we ¢etlemmad
Let us now recall a useful result concerning centered, 2-&)gSian random vectors.

Lemma 3.7 Let(Z,Z’) be a centered, 2-D Gaussian random vector such that the vegsof Z
and Z are equal; we denote bytheir common value. Then

E ((Z2 - 2)(Z? - 1) = 2(Covz, 2))°. (3.28)
Now we are in position to prove Proposition 3.1.

Proor or ProposiTion 3.1: First observe that it follows from (3.7) and (3.11) tf@tall integers
N>p+1landi,je{0,...,N-p-1},onehas

E (AaXinAaXjn) = —=NZ- 2d(cR(' 0N 20, 1) + (' I N 2, ). (329

Takingi = j in (3.29) and using (3.1), we get
o2 = Var(AXin) = -NZ2(cRO, N, 2d, | - [®) + R(0, N, 2d,)). (3.30)

Then (3.2) results from (3.30), Lemma 3.3, (2.4), (2.8) anthina 3.5.
Let us now prove that Relation (3.3) holds. We denotgi — j|) the correlation coficient
betweem\ Xy andA X, that is,

o E(AaXinAaX|
onli - jy = 2 RSN (331
g




On the other hand, using the definition of a variance, one has,

N-p-1 <
(AaXin)
= Var :
o= var( 3 )
N-p-1 -
(AaXin)
= Var . 1
(3 (@2 y)
_ NSNS g (X)) (B
= 3 Y E((BN (e )
i=0  j=0 aN aN
(3.32)
Then, it follows from (3.32), Lemma 3.7 and (3.31), that
N-p-1N-p-1
K o= 2> > pkli-in
=0 j=0
= 2 Y (N-p-liDeR(iD (3.33)
[jlsN-p-1

Let us now splits3 in two parts:|j| < p+ 1 andp+2 < |j| < N - p— 1; more precisely we
expresss; as,

s =Fn +Gn, (3.34)
where
Fn=2 % (N=p=1ied(lil, (3.35)
lil<p+1
and
Gn=2 Y (N-p-1ihpk(liD- (3.36)
p+2<|jl<N-p-1

Thus for finishing our proof, it remains to show that theresekivo non-vanishing constantg
andcy, such that
Fn = N+ o(N), (3.37)

and
Gn =N+ O(N) (338)

By using (3.31), (3.29) and Lemma 3.3, one gets

cR(jl, 1, 2d, |- [*) + N2*R(]j|/N,N, 2d,r)
cR(0,1,2d, |- [%) + N2+%R(0, N, 2d, r)

on(ljl) = (3.39)

Thanks to Lemma 3.5, the two termN?*®R(j|/N,N,2d,r) (for |j] < p + 1) and
NZ*%R(0, N, 2d, r) converge to 0. This fact together with (3.39) implies

lim - max |on(1jl) - C(1j)| = 0, (3.40)

N—o+oo |jl<p+1l




where for all 0< |j| < p+ 1, we have set,

R(jl, 1, 2d, |- %)

Cain = RO.12d,] %)

Then, combining (3.35) with (3.40), one obtains that

Fn— 22\j\§p+l(c(|j|))2N B -2 Z\j\sp+l(p + 1iNC(jN)?
N - N
+22H\Sp+l(N - p-1iN(p& i) - (CAiD)?)
N
— 0
N—+oco

which proves that (3.37) holds; observe that (2.8) impled t

cii=2 Y (C(j)*#0.

lil<p+1

Let us now show that (3.38) is satisfied. For the sake of sgitplifrom now on, for all
lile{p+2,...,N—p-1}, we set

L(jD = R(jl. 1, 2d, ()%). (3.41)

First, we will show that there is a non-vanishing constarguch that

> Jekai - csL2(iD| ——o. (3.42)
p+2<|jl<N-p-1

By using (3.31), (3.29) and the fact that fgr> p + 1, one has,

i = TN (R .20, (%) + R(I. N 20t1) (3.43)
O'iN N T N7 ' '

It follows from (3.43), (2.4), (3.12) and (3.41) that,

N—2H N2—2d H
N R N 2d, ). (3.44)
Oan Tan N

An(iN = —cL(iD

On the other hand, assuming tleatis the constant introduced in (3.2), the following relation
holds:

c ) N~ )
(=)L(iD = cL(jl)—— + cL(iM(N), (3.45)
C1 OaN
where
_2H 2 _ o N-2H
My = = - N Tan AR gy, (3.46)
C1 TanN Cla—a,N
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Next using the inequalityx® — y?| = |(X + ¥)? — 2(x + y)y| < (X + y)? + 2|(x + y)y| for all real
numbersk andy, (3.44) and (3.45), one gets

PRI = ()2 = Jonti + ()LD + 2ondiD + () LAIDI () L0iD)
N2—2d |J| . 2
= ] = R(3 N2 1) —CL(|J|)M(N)‘
N> il | c\
2[5 R(g N2 1) = e () L)

(3.47)

It follows from (3.47), (3.2), (2.4), Lemma 3.6 and Lemma thdt there exists a constant> 0,
non depending o andN, such that,

. C.2 .
IRl - (C—l) L2(j))|
< ca (N1 - p—~ 1) + IM(N)(l ~ p - 1))’
(N1 = p = 1) 9+ IM(N)I(| - p= D) (1l - p— 1))
< 204(N2(S°‘W)(| il = p= 19+ (M(N)?(jl - p— 129

H(N 4 IMN)) (1 - p— =727,
(3.48)

Next, settingcs = ¢2/c2, it follows from (3.48), (3.46) and the inequalitigs—w < 0, s — g <
-1/2,w-q < -1/2, that (3.42) is satisfied.
Now we are in position to show that (3.38) holds. On one ha®d3) and (3.42) imply

|Gn - 2¢5 2prasfjin-p-1 (N~ P~ LD

N
N-p-|jl . .
<2 3 TP 2y cozin)
p+2<|jI<N-p-1
<4 > |pRG) - csl2(jD)]
p+2<|jl<N-p-1
——0, (3.49)

On the other hand, standard computations allow to showhleatequence

(Zp+2§|j|sN—p—1(N -p- |j|)L2(|j|)>
N>p+1

N

is increasing and bounded. Therefore this sequence caws/trdinite positive limit denoted by
cs. Then settinge, = 2cscs, (3.49) implies that (3.38) is satisfied. Finally, (3.3)uks from
(3.34), (3.37) and (3.3811
The previous proposition will play a crucial role in the pfoé Theorem 2.1; the proof of this
theorem will also make use of the following lemma, which,gbly speaking, means that, almost
surely, the generalized quadratic variatinbehaves likeN'-2" whenN goes to infinity.
11




Lemma 3.8 There exists a constante0 such that

VN as.
Wy = -1
N cN1-2H N—+oo

Lemma 3.8 is a straightforward consequence of (3.2) andolfmfing result.

Lemma 3.9 The generalized quadratic variatiory\satisfies

AN as.

NU—%,N N—+c0
whereo, N has been defined in (3.1).

The proof of Lemma 3.9 is rather similar to that of Propositly equation (25), in Benassi et
al. (1998), this is why we will not give it. Now, we are in pasit to prove Theorem 2.1.
Proor or THEOREM 2.1: Letc; = ¢ andWy be respectively the constant and the random variable
which have been introduced in Lemma 3.8. Therefore, one has

Vn = ciNF2H (W + 1).
Thus, it follows from (2.9) that

- Seown ()

1 C;LN:L_2H (Wn + 1)
-2 (1 +log; (cl(ZN)l—ZH (W + 1)))

1
- H+ E( log,(Wh + 1) — log,(Wox + 1)).

Finally applying Lemma 3.8 one obtains the theorem.

From now on, our goal will be to show that Theorem 2.2 holdse Pproof of this theorem
mainly relies on the following lemma, which, roughly speaki means that a Central Limit
Theorem holds for the generalized quadratic variatign

Lemma 3.10 For any N> p + 1let us set,

N-p-1l,, &
2 = Var( -0’ (Aaxi’N)2> __S (3.50)

(N-p)oan)®> |  (N-p?
Then, there is a constante 0 such that one has
N = cNY2 4 o(N~Y3). (3.51)

Moreover,

1 NP AXin)? d

— = — -1 N(O,1).

™ ( (N- p)O'iN ) ©.1)

The proof of Lemma 3.10 mainly relies on the following two le@s. It is rather similar to

that of Proposition 2, equation (26), in Benassi et al. (3988s is why we will not give it.
12
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Lemma 3.11 (Cérgo and Révész (1981))Consider the sequence of random variables
{Sninsps1 defined by § = S5 Ajn(e2y - 1), where for all N> p + 1, {ejn}j-o..N-p-1

.....

SN d
(Var(Sn))¥2 No+e

N(O, 1).
This lemmais in fact a straightforward consequence of Lixedg-Féller Central Limit Theorem.

Lemma 3.12 (Luenberger (1979), Chapteb.2, Pagel94) For all integer n > 1, let C =
(Cij)nxn be a symmetric positive definite matrix and kebe its largest eigenvalue. Then one

has,
n

1m0 Gl
j=1

Lemma 3.13 Let Wy be the generalized quadratic variation defined in (2.10) betdy be the

quantity defined in (3.50). Then, under the additional agstion (2.11), there is ¢ 0 a constant

non depending on N, such that

1 VN d
- (o —1) o Mo

Lemma 3.13 can easily be proved by using Lemma 3.10, (3.2fhexfdllowing classical lemma.

Lemma 3.14 Let (Zy) be a sequence of random variables which converges in digimito to a
standard Gaussian random variable. (k) and(by) be two arbitrary sequences of real num-
bers satisfyindimy_.. ay = 1 andlimy_,. by = 0. Then, the sequence of random variables
(anZn + by) converges in distribution to a standard Gaussian randonialae.

At last let us give the proof of Theorem 2.2.
Proor or THeOREM 2.2: This Theorem can be obtained by using Lemma 3.13j-thethod (see
for instance Theorem.3.11 in Dacunha-Castelle (1983)) and Relation (3.51).
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