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On stochastic orderings of the Wilcoxon Rank Sum test statistic - with
applications to reproducibility probability estimation testing

De Capitani L.a,∗, De Martini D.a

aDepartment of Quantitative Methods for Economics and Business, University of Milan-Bicocca, via Bicocca degli Arcimboldi 8, 20126, Italy.

Abstract

Recently, the possibility of testing statistical hypotheses through the estimate of the reproducibility probability(i.e. the
estimate of the power of the statistical test) in a general parametric framework has been introduced. In this paper, we
provide some results on the stochastic orderings of the Wilcoxon Rank Sum (WRS) statistic, implying, for example,
that the related test is strictly unbiased. Moreover, undersome regularity conditions, we show that it is possible to
define a continuous and strictly monotone power function of the WRS test. This last result is useful in order to obtain
a point estimator and lower bounds for the power of the WRS test. In analogy with the parametric setting, we show
that these power estimators, alias reproducibility probability estimators, can be used as test statistic, i.e. it is possible
to refer directly to the estimate of the reproducibility probability to perform the WRS test. Some reproducibility
probability estimators based on asymptotic approximations of the power are provided. A brief simulation shows a
very high agreement between the approximated reproducibility probability based tests and the classical one.

Keywords: Wilcoxon Rank Sum Test, Reproducibility Probability Estimation, Reproducibility Probability
Estimation testing

1. Introduction

In the context of clinical trials, the power of a test is sometimes referred to as Reproducibility Probability (RP).
This terminology was introduced by Goodman (1992) and it is due to the fact that the power is estimated only after a
statistical test has been performed, in order to evaluate the reproducibility of the test result. Roughly speaking, once
a statistical test is computed referring to data from a particular experiment, the RP is the probability of obtaining
the same test result in a second, identical experiment. In detail, if we acceptH0 in the first experiment, 1-RP is
the probability to acceptH0 even in the second experiment. Otherwise, if we rejectH0 in the first experiment, the
probability of a further rejection is the RP itself. Then, the RP is an indicator of the stability of the test result
and its estimate can be used to measure the reproducibility of the outcome of an experiment. The evaluation of
the reproducibility of the outcome of an experiment is a pillar of the experimental method (alias Galilean method).
For this reason the RP-Estimation (RPE) is a very important tool whereas the experimental method is applied. For
example, the evaluation of the reproducibility is very important in the context of clinical trial. For a discussion on this
topic see Goodman (1992) and Shao and Chow (2002).

Recently, De Martini (2008) showed that RPE can also be used for testing parametric statistical hypotheses. In
particular, it is shown that the point estimate of the RP is greater than 1/2 if and only if the null hypotheses is rejected.
This leads to the simple and intuitive decision rule“accept H0 if the estimate of the RP is lower or equal to1/2 and
reject H0 otherwise”which is equivalent to the commonly used rules based on thep-value and on the direct evaluation
of the test statistic. In general, the rule based on thep-value is preferred to the one based on test statistic. This is
due to the fact that thep-value can be used not only to reject/acceptH0 but it can also be viewed as a measure of
the degree to which the data support or contradictH0 (i.e. p-values measures the evidence against or in favor toH0).

∗Corresponding author
Email addresses:l.decapitani@campus.unimib.it (De Capitani L.),daniele.demartini@unimib.it (De Martini D.)

Preprint submitted to Statistics& Probability Letters March 31, 2011

*Manuscript
Click here to view linked References



The evaluation of the evidence is important since it allows the researcher to understand how much stable the decision
taken is, shedding light on the reproducibility of the test result. However, there are some arguments suggesting that the
rule based on the RP is better than those based on thep-value. The first argument stems from the work of Goodman
(1992) who showed that a smallp-value can overstate the evidence against the null hypotheses and it can thus lead
to an underestimation of the variability of the test result (i.e. to an overestimation of the reproducibility). Indeed,
unlike the RP, thep-value is not a direct measure of reproducibility. As a further argument, it should be noted that the
p-value is a very misinterpreted measure. In particular, as pointed out by several authors (see, e.g., Goodman (1992),
Berger and Sellke (1987) and Hubbard and Bayarri (2003)) thep-value is often confused with the Type I error rate
and erroneously interpreted as the “observedα”. On the contrary, in our opinion, the use of the RP avoid all these
misunderstandings since its interpretation is easier and more direct.

The technical result obtained in De Martini (2008) holds fora large class of parametric tests (e.g. those whose
test statistic has Gaussian, orχ2, or t, or F distribution) and it is based on the key assumption that the test statistics is
stochastically strictly ordered by the parameter under testing. Consequently, in the case of one-sided hypotheses, the
power function of the test is strictly monotone in the parameter under testing and the test is strictly unbiased. These
are the necessary properties that assure the possibility ofmaking “RP-testing”, i.e. they assure that the RPE can be
used for testing statistical hypotheses.

In this paper we focus on the Wilcoxon Rank Sum (WRS) test in order to provide the regularity conditions that
make RP-testing possible. The problem arising in the nonparametric context of the WRS test consists in the absence
of the parameter under testing which, in this case, is a distribution. As a consequence, the power is not a function but a
functional, and the extension of the results given in De Martini (2008) is not immediate. Then, we show that the WRS
statistics is stochastically strictly ordered for the stochastically strictly ordered distributions, and we use thisresult to
show that the WRS test is strictly unbiased. Moreover, we findthe regularity conditions under which the WRS test has
a continuous and strictly monotone power function. In doingthat, we analyze first the case of the well known location
shift model and later the more general context of the strictly stochastically ordered alternative hypothesis. Finallywe
apply these results to RP-testing for the WRS test. We remarkthat the above results concerning the WRS statistic and
the WRS test are of general theoretical interest even if theywere mainly derived in order to study the RP-testing.

The paper is organized as follows. Section 2 recalls the WRS test and the asymptotic distribution of its test statistic.
In section 3 some general qualitative features of the WRS test statistic are stated and proved. These qualitative features
concerns the stochastic orderings of WRS statistics, the power and the unbiasedness of the WRS test. In Section 4 the
RP-testing result given in De Martini (2008) is extended to the nonparametric context of the WRS test. In section 5
an application of the results of section 4 and a brief simulation are provided.

2. Recalling WRS test

Let X andY be absolutely continuous random variables with distribution functionsF andG, respectively. Further,
let Xm = (X1, ...,Xm) andYn = (Y1, ...,Yn) be independent random samples fromF andG, respectively. We want to
test the null hypothesis thatX andY are equal in distribution against the alternative thatY is stochastically strictly
greater thanX:

H0 : Y
d
= X vs H1 : Y >st X (1)

To test these hypotheses it is possible to use the WRS test, which is based on the following statistic (written in the
Mann-Whtiney form):

WXY = #
{
(Xi,Yj) : Xi < Yj ; i = 1, ...,m j = 1, ..., n

}
. (2)

For a given level of the type I error (α), the WRS test is

Φα(WXY) =

{
1 if WXY > w1−α
0 if WXY ≤ w1−α

(3)

wherewq is theq-quantile of the null distribution ofWXY (hereafter denoted byW0). The null distributionW0 de-
pends only on the sample sizesmandn and it has been widely studied. In particular,W0 can be exactly computed us-
ing the recurrence relations known in literature (see Di Bucchianico (1999) and references therein) and implemented,
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for example, inR. Approximated values ofW0 can be obtained through the well known normal approximation

WXY −mn/2
(mn(m+ n+ 1)/12)1/2

a∼ N(0, 1) . (4)

Further, in Beanet al. (2004) it is shown that the previous normal approximation can be improved by an Edgeworth
approximation or a saddlepoint one.

UnlikeW0, the distribution ofWXY under the alternative hypothesis, denoted byWFG, depends not only on
the sample sizesm andn, but also onF andG. For this reason, it is more difficult to studyWFG thanW0. In
detail, due to analytical difficulties, the exact expression ofWFG has been derived just in some particular cases.
For example, Haynam and Govindarajulu (1966) derived the exact expression ofWFG for the exponential and
uniform shift alternatives. A similar result is given in Lehmann (1953) for the so called Lehmann’s alternatives.
For some other references on this subject see Lehmann (1998), pp. 98-99. However it is well known thatWXY is
asymptotically normally distributed also underH1 (see Lehmann (1951)). In particular, whenm andn diverge, and
0 < p1 = P(X < Y) < 1, we have that

WXY −mnp1√
V(p1, p2, p3)

a∼ N(0, 1) (5)

whereV(p1, p2, p3) = mnp1(1− p1)+mn(n−1)(p2− p2
1)+mn(m− 1)(p3− p2

1), with p2 = P(X < Y∧ X < Y′) (Y′ and
Y i.i.d.), andp3 = P(X < Y ∧ X′ < Y) (X′ andX i.i.d.). This last approximation can be improved by the Edgeworth
approximation given in Witting (1960) and it is very useful in order to study the power of the WRS test. In particular,
let n denotes the couple of sample sizes (m, n) and letπn,α(G, F) = P(WXY > w1−α) = 1 −WFG(w1−α) denotes the
power of the test (3). From approximation (5) it follows that(see Lehmann (1998), p. 71):

πn,α(F,G) � Φ

mn
(
p1 − 1

2

)
− z1−α

√
mn(N+1)

12√
V (p1, p2, p3)

 . (6)

In the following, we will refer to the powerπn,α(F,G) as to the RP of the test (3) (see De Martini , 2008, Definition 1).

3. Main results

First, we introduce some notations. LetF be the set of all absolutely continuous distribution functions.SL is the
support of a distribution functionL ∈ F . Let K andT be two random variables with distribution functionsL ∈ F and
M ∈ F . WKT denotes the Mann-Whitney statistic defined, according to (2), on the basis of two independent samples
Km andTn from L and M, respectively. We denote with the lower casewkt the realization ofWKT corresponding
to the realizationskm andtn of Km andTn, respectively.WLM is the distribution function ofWKT . GL denotes the
set of the distributions of all the absolutely continuous random variables strictly dominatingK in the sense of the
usual stochastic order, that is:GL = {M ∈ F : M(x) ≤ L(x) ∀ x ∈ R ∧ ∃ x : M(x) < L(x)} . G̃L denotes the set
of the distributions of all the absolutely continuous random variables strictly dominated byK in the sense of the
usual stochastic order, that is:̃GL = {M ∈ F : M(x) ≥ L(x) ∀ x ∈ R ∧ ∃ x : M(x) > L(x)} . Finally, hereafter
we rewrite hypotheses (1) as follows:

H0 : G = F vs H1 : G ∈ GF . (7)

We can now state the following theorem.

Theorem 1. Let X,Y and Z be absolutely continuous random variables withdistribution functions respectively given
by F, G ∈ {GF ∪ F} and H ∈ GG. Suppose that Y and Z are independent on X and letXm, Yn, andZn be random
samples from F, G, and H, respectively. Let WXY ∼ WFG be the WRS statistic defined, according to (2), on the basis
of Xm andYn. Similarly, WXZ ∼ WFH is the WRS statistic defined on the basis ofXm andZn.
If the following condition holds

∃ x ∈ SF : G(x) > H(x) , (8)

thenWFG(w) >WFH (w) for all w ∈ [0,mn).
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Proof. Let Z∗n be the random vector obtained fromYn through the transformation

Z∗j = H−1
(
G(Yj)

)
j = 1, ..., n (9)

whereH−1 indicates the generalized inverse ofH. The components ofZ∗n are i.i.d. with distributionH. Further,Z∗n
is independent onXm thanks to the independence ofX andY. Then the theorem can be proved by referring to the
distribution ofWXZ∗ = #

{
(Xi ,Z∗j ) : Xi < Z∗j ; i = 1, ...,m j = 1, ..., n

}
which is equal to the distribution ofWXZ, i.e.

WFH . Now, consider the realizationsxm andyn and the realizationz∗n obtained fromyn through the transformation
(9). Further, Letwxy andwxz∗ be the values ofWXY andWXZ∗ corresponding toxm,yn andz∗n. By construction,z∗j ≥ y j

for every j = 1, ...n andwxy ≤ wxz∗ for all thexm andyn in the sample space. As a consequenceP[WXY ≤ WXZ∗ ] = 1
and

P[WXY ≤ w] − P[WXZ∗ ≤ w] =
w∑

i=0

mn∑
j=w+1

P[WXY = i ∩WXZ∗ = j] ≥ P[WXY = 0∩WXZ∗ = mn] ∀w ∈ [0, 1) . (10)

From expression (10) it follows that the statement of Theorem 1 can be proved by showing that
P[WXY = 0 ∩ WXZ∗ = mn] > 0. To do this, let us first note thatwxy < wxz∗ if and only if y j < xi < z∗j for at
least one couple (i, j). The previous chain of inequalities holds true ify j < xi andxi < z∗j . The inequalityxi < z∗j
coincide withxi < H−1(G(y j)) which is equivalent toy j > G−1(H(xi)). To see why, we recall that ifY is absolutely
continuous then the generalized inverseG−1 is strictly increasing and satisfies the following relations: G(G−1(q)) = q
for all q ∈ (0, 1); G−1(G(y)) ≤ y for y ∈ R with equality if y ∈ SG; G(y) < q iff y < G−1(q), q ∈ (0, 1) (similar
relations hold forH−1). Then, beingy j ∈ SG, we havexi < H−1(G(y j))⇔ H(xi) < G(y j)⇔ y j > G−1(H(xi)). Putting
together the inequalitiesy j > G−1(H(xi)) andy j < xi we obtain thatwxy < wxz∗ if and only if y j ∈ (G−1(H(xi)), xi)
for at least one couple (i, j). Now, let us introduce the setE = {x ∈ SF : G(x) > H(x)}. Thanks to condition (8), the
setE is nonempty. Moreover, the continuity ofG andH (assured by the absolute continuity ofY andZ) ensures that
the setE contains at least one interval. Without loss of generality,let us assume thatE is an interval and letx∗ ∈ E.
Thenx∗ is an interior point ofSF and (G−1(H(x∗)), x∗) ∩ SF = (x̃, x∗) wherex̃ ≥ G−1(H(x∗)). Analogously, the set
(G−1(H(x∗)), x∗) ∩ SG contains at least an interval, say (yl , yu), since

P[Y ∈ (G−1(H(x∗)), x∗)] = G(x∗) −G(G−1(H(x∗))) = G(x∗) − H(x∗) > 0 . (11)

Now, assume that (yl , yu) ∩ (x̃, x∗) = ∅. In that caseyu < x̃. Furthermore, ifYj ∈ (yl , yu) for all j = 1, ..., n then
Z∗j > x∗ for all j = 1, ..., n. From expression (11) it follows thatP[Yj ∈ (yl , yu) ∀ j = 1, ..., n] = P[Y ∈ (yl , yu)]n > 0.
Analogously,P[Xi ∈ (x̃, x∗) ∀ i = 1, ...,m] = P[X ∈ (x̃, x∗)]n > 0. Consequently

P[Yj ∈ (yl , yu) ∩ Xi ∈ (x̃, x∗) ∀ i, j] = P[Xi ∈ (x̃, x∗) ∀ i]P[Yj ∈ (yl , yu) ∀ j] > 0 .

Moreover, ifYj ∈ (yl , yu) ∩ Xi ∈ (x̃, x∗) ∀ i, j thenWXY = 0 butWXZ∗ = mn. If the intervals (yl , yu) and (x̃, x∗) intersect
andyl < x̃ the last passages can be made by referring to the intervals (yl , x̃) and (x̃, x∗). Finally, if the intervals (yl , yu)
and (x̃, x∗) intersect andyl > x̃ the last passages can be made by referring to the intervals

(
yl ,

yl+x∗
2

)
and

(
yl+x∗

2 , x
∗).

ThenP[WXY = 0∩WXZ∗ = mn] > 0 and this completes the proof.

Remark 1. Roughly speaking, Theorem 1 shows that, beingF set, it is sufficient thatG is greater thanH over an
interval contained inSF to assure thatWFG is always greater thanWFH .

Remark 2. If the distributions of the random variablesX, Y andZ have common support, condition (8) is superfluous
thanks to the definition ofGF andGG. In the other cases, condition (8) is necessary in order to guarantee the validity
of Theorem 1. This is obvious if sup{SF } ≤ inf {SG}. In fact, in that case we have thatWFG(w) =WFH(w) = 0 for
all x ∈ [0,mn). Furthermore, ifG(x) = H(x) for everyx ∈ SF thenWFG(w) =WFH(w) for all w ∈ [0,mn].

Remark 3. If the sample size forZ (saynZ) is lower than the sample size forY (saynY > nZ), Theorem 1 does not
hold becauseWFH(mnZ) = 1 whileWFG(mnZ) < 1. On the contrary, ifnZ > nY then Theorem 1 still holds since,
keeping fixedF, H andm, the random variableWXZ is stochastically increasing innZ.
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We shall now show a first application of Theorem 1. In Lehmann (1951) it is shown that the WRS test is unbiased
against the alternatives (7). Namely:πn,α(F,H) ≥ α for all H ∈ GF . Thanks to Theorem 1 it is now possible to refine
this latter result.

Corollary 1. The test (3) for testing hypothesis (7) is strictly unbiased: πn,α(F,H) > α for all H ∈ GF .

Proof. The corollary follows directly from the Theorem 1 specialized to the caseF = G. In more detail, ifF = G,
Theorem 1 states thatW0(w) >WFH (w) for all w ∈ [0,mn). Consequently 1−W0(w1−α) < 1−WFH(w1−α). The
corollary now follows observing thatα ≤ 1−W0(w1−α) and remembering the definition ofπn,α(F,H).

For completeness, we state the following theorem concerning, in a sense, the opposite situation of Theorem 1.

Theorem 2. Let X,Y and Z be absolutely continuous random variables withdistribution functions respectively given
by F, G ∈ {G̃F ∪ F} and H ∈ G̃G. Suppose that Y and Z are independent on X and letXm, Yn, andZn be random
samples from F, G, and H, respectively. Let WXY ∼ WFG be the WRS statistic defined on the basis ofXm andYn.
Similarly, WXZ ∼ WFH is the WRS statistic defined on the basis ofXm andZn.
If the following condition holds

∃ x ∈ SF : G(x) < H(x) , (12)

thenWFG(w) <WFH (w) for all w ∈ [0,mn).

The proof of Theorem 2 is omitted because it is quite similar to the proof of Theorem 1.
Theorems 1 and 2 can be used as starting points for a more detailed study on the features ofWFG whenG belongs

to some particular subset ofGF . For example, consider the so calledlocation shift model(lsm), where it is assumed
thatG ∈ G∆F = {G ∈ GF : G(x) = F(x− ∆) ∀ x ∈ R; ∆ > 0}. The testing problem then becomes:

H0 : G = F vs H1 : G ∈ G∆F . (13)

The amount of shift∆ can be used as a parameter for the distributionWFG. Namely, keeping fixed the distributionF,
WFG can be seen as a function ofw and∆. For this reason, in the context of thelsm, we writeWF(w; ∆) rather than
WFG(w). The following Corollary describes the features ofWF(w; ∆) as a function of∆.

Corollary 2. For a given w∈ [0,mn) and F ∈ F , the functionWF (w;∆) is continuous and strictly decreasing in∆
over the range−r < ∆ < r, where r= sup{SF } − inf{SF } if SF is bounded and r= ∞ otherwise.

Proof. Thanks to Theorems 1 and 2, keeping fixedF, the functionWF (w;∆) is strictly decreasing in∆ over the range
−r < ∆ < r for everyw ∈ [0,mn). To prove the continuity, note first that the monotonicity ofWF(w;∆) in ∆ implies
that the following limits exist for everyw ∈ [0,mn):

lim
δ→∆−
WF(w; δ) = aw , lim

δ→∆+
WF(w; δ) = bw .

For a given, arbitrary smallǫ > 0, let {∆−h }h∈N be a monotone increasing succession of values in (∆ − ǫ,∆) ⊂ (−r, r).
Further, let{∆+h }h∈N be a monotone decreasing succession of values in (∆,∆ + ǫ) ⊂ (−r, r). Suppose that limh→∞ ∆−h =
∆ = limh→∞ ∆+h .We prove the continuity ofWF(w;∆) by showing that limh→∞WF(w;∆−h ) = limh→∞WF(w;∆+h ) .
For that purpose, the following notation is introduced:

Gh−(x) = F(x− ∆−h ) , Gh+(x) = F(x− ∆+h ) .

Consider the random samplesXm andYn drawn fromF andG(x) = F(x− ∆), respectively. Further, letY−n,h andY+n,h
be the random samples obtained fromYn through the transformations

Y−j,h = G−1
h−(F(Yj)) and Y+j,h = G−1

h+(F(Yj)) , j = 1, ..., n . (14)

By definition, the distribution of

WX,Y−h = #
{
(Xi,Y

−
j,h) : Xi < Y−j,h ; i = 1, ...,m j = 1, ..., n

}
5



isWF(·;∆−h ) for all h ∈ N. Analogously, the distribution of

WX,Y+h
= #

{
(Xi,Y

+
j,h) : Xi < Y+j,h ; i = 1, ...,m j = 1, ..., n

}
isWF(·;∆+h ) for all h ∈ N. Now, consider the realizationsxm andyn and the sequences of realizations

{
y−n,h

}
h∈N and{

y+n,h
}
h∈N obtained fromyn through the transformations (14). Further, letwxy,

{
wxy+h

}
h∈N and

{
wxy−h

}
h∈N the corresponding

realizations of the WRS statistics. Finally, let us introduce the following subsets of the sample space:

EXY(w) =
{
(xm, yn) ∈ Sm

F × Sn
G : wxy > w

}
,

EXY−h (w) =
{
(xm, yn) ∈ Sm

F × Sn
G : wxy−h > w

}
,

EXY+h
(w) =

{
(xm, yn) ∈ Sm

F × Sn
G : wxy+h

> w
}
.

By constructionwxy+h
≤ wxy ≤ wxy−h for all (xm, yn) ∈ Sm

F × Sn
G and for allh ∈ N. In addition,wxy+h

≤ wxy+h+1
and

wxy−h ≤ wxy−h+1
for all (xm, yn) ∈ Sm

F × Sn
G and for allh ∈ N. Consequently, we have thatEXY−1 (w) ⊇ EXY−2 (w) ⊇ ... ⊇

EXY−h (w) ⊇ ... andEXY+1
(w) ⊆ EXY+2

(w) ⊆ ... ⊆ EXY−h (w) ⊆ ... . Furthermore

∞⋃
h=1

EXY−h (w) = EXY(w) =
∞⋂

h=1

EXY+h
(w) ∀ w ∈ [0,mn) .

Observing thatWF(w;∆+h ) = 1− P
[
EXY+h

(w)
]

andWF (w;∆−h ) = 1− P
[
EXY−h (w)

]
, the equality of the limitsaw andbw

follows from the continuity properties of a probability measure. Then, the corollary is proved.

Under thelsm it is also possible to define the power function. In particular, the functionπn,α(∆; F) = 1 −
WF(w1−α;∆), considered as a function of∆ over the range−∞ < ∆ < ∞, is the power function of the WRS test
under thelsm. It is known (see Lehmann (1998), pp. 65-69) that the power functionπn,α(∆; F) is non-decreasing in
∆. Thanks to the Corollary 2 it is now possible to refine this result, as formalized in the following proposition.

Proposition 1. Under the location shift model, the power function of the test (3) for testing hypotheses (13) is contin-
uous and strictly increasing in∆ for all ∆ ∈ (−r, r).

Proof. Immediate consequence of the Corollary 2.

Following the same scheme of proof, similar results to thosegiven in Corollary 2 and Proposition 1 can be stated also
for the models described below.

1. Lehmann’s Alternatives. Under the Lehmann’s alternative hypotheses (see Lehmann (1953)) it is assumed
thatG ∈ Gq

F where
Gq

F = {G ∈ GF : G(x) = F(x)q ∀x ∈ R, q > 1} .
The testing problem then becomes:

H0 : G = F vs H1 : G ∈ Gq
F .

In this context we shall denoteWFG(w) byWF (w; q). Following the scheme of proof of Corollary 2, it can be
shown thatWF (w; q) is continuous and strictly decreasing inh over the range (0,∞). Then, the power function
πn,α(q; F) = 1−WF(w1−α; q) is continuous and strictly increasing inq over the range (0,∞).

2. Rescaling model. Assume that the random variablesX andY are positive. The alternative hypothesis of the
rescaling modelis H1 : G ∈ Gk

F whereGk
F = {G ∈ GF : G(x) = F (x/k) ∀ x ∈ R; k > 1}. Even for the rescaling

model it can be shown thatWF(w; k) is continuous and strictly decreasing ink over the range (a, b), where
(a, b) ≡ (0,∞) if inf {SF } = 0 and/or sup{SF } = 0 and (a, b) ≡ (inf{SF }/ sup{SF }, sup{SF }/ inf{SF }) otherwise.
Consequently, the power functionπn,α(k; F) = 1−WF (w1−α; k) is continuous and strictly increasing ink over
the range (a, b).
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3. Probit shift alternative . Theprobit shift alternativehas been recently proposed by Rosner and Glynn (2009).
The alternative hypotheses of this model isH1 : G ∈ GµF where

GµF =
{
G ∈ GF : G(x) = Φ(Φ−1(F(x)) + µ) ∀ x ∈ R; µ > 0

}
andΦ(·) denotes the standard normal cdf. It can be shown thatWF(w; µ) (or πn,α(µ; F)) is continuous and
strictly decreasing (respectively, increasing) inµ over the range (0,∞).

In order to extend to a more general context the results proved for the location shift model and outlined for the
three models described above, it is useful to highlight somecommon features of these models. For this purpose,
consider first thelsm and suppose, for simplicity, thatSF = R (in this caser = ∞). Further, let us introduce the
following set of distributions

G̃∆F = {G ∈ G̃F : G(x) = F(x− ∆) ∀ x ∈ R; ∆ < 0}
and letD∆F = G∆F ∪ G̃∆F ∪ F. Note that the setD∆F is totally ordered with respect to the usual stochastic ordering.
Moreover, note that for every couple of distributions (L,M) ∈ G∆F × G∆F with L , M the condition (8) is satisfied.
Analogously, for every couple of distributions (L,M) ∈ G̃∆F × G̃∆F with L , M the condition (12) is satisfied. These
last properties makes the application of Theorem 1 and Theorem 2 possible in order to show the strict monotonicity
ofWF (·;∆) in ∆. Similarly, the Lehmann’s alternatives give rise to the setof distributionsDq

F = Gq
F ∪ G̃q

F ∪ F where

G̃q
F =

{
G ∈ G̃F : G(x) = F(x)q ∀x ∈ R, 0 < q < 1

}
. AlsoDq

F is totally ordered with respect to the usual stochastic

ordering. In addition, for every couple of distributions (L,M) ∈ (Gq
F × Gq

F ) ∪ (G̃q
F × G̃q

F ) such thatL , M, one of
the conditions (8) and (12) is satisfied. Then, Theorem 1 and Theorem 2 can be applied in order to deduce the strict
monotonicity ofWF (·; q) in q. The same observation can also be made concerning the sets ofdistributionsDk

F and
DµF associated to the rescaling model and to the Probit Shift Alternatives, respectively.

Each of the models just described has its own natural parameter. In detail,∆ is the natural parameter for the
location shift model whileq, k, andµ are the natural parameters for the Lehamnn’s Alternatives,the Rescaling Model,
and the Probit Shift Alternatives, respectively. Nevertheless, all the models considered can be described using the
parameterp1 =

∫
FdG = p•1(F,G) which is particularly meaningful in the context of the WRS test. In more detail,

in Lehmann (1998) (p. 70) and Newcombe (2006) it is argued that p1 can be viewed as the effect size in the
context of the WRS test. It should also be noted thatWXY is, in practice, the natural estimator ofp1 : p̂1 = WXY/mn.
Consequently, the statisticsWXY can even be used for testing hypotheses onp1 (e.g.H0 : p1 = 1/2 vsH1 : p1 > 1/2)
as shown in Zaremba (1962).

For these reasons, in the general context described below westudy the characteristics ofWFG andπn,α(F,G) in
respect ofp1.

LetD∗F be the set of distributions generated by a particular model starting fromF. Suppose thatD∗F = G∗F∪G̃∗F∪F
whereG∗F ⊂ GF andG̃∗F ⊂ G̃F . The testing problem of interest is:

H0 : G = F vs H1 : G ∈ G∗F . (15)

Corollary 3. LetD∗F = G∗F ∪G∗F ∪F be totally ordered with respect to the usual stochastic ordering. Further, assume
that for every(L,M) ∈ (G∗F × G∗F ) ∪ (G̃∗F × G̃∗F ) such that L, M, one of the following relations holds:

1. L(x) ≤ M(x) ∀ x ∈ R ∧ ∃ x ∈ SF : L(x) < M(x) ;
2. L(x) ≥ M(x) ∀ x ∈ R ∧ ∃ x ∈ SF : L(x) > M(x) .

Let Imp•1(D∗F ) be the image ofD∗F under p•1, keeping fixed F: Imp•1(D∗F) = p•1(F;D∗F). LetWF(w; p1) denote the
distributionWFG(w) when p•1(F,G) = p1 and G∈ D∗F .

If Imp•1(D∗F ) ≡ (c, d) thenWF(w; p1) is continuous and strictly increasing in p1 over the range(c, d) for all
w ∈ [0,mn).

Proof. KeepF fixed and observe that, thanks to conditions 1. and 2., the functional p•1(F, ·) is a bijection fromD∗F
to Imp•1(D∗F ). This assures that, for everyw ∈ [0,mn),WF (w; p1) is a function ofp1 over the range (c, d). Thanks to
conditions 1. and 2., we can apply Theorems 1 and 2 obtaining thatWF(w; p1) is strictly increasing inp1 over (c, d).
Thanks to the hypotheses that Imp•1(D∗F) is an interval, the continuity ofWF(w; p1) can now be proved following the
method described in the proof of Corollary 2.
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As a direct consequence of Corollary 3 we have the following result.

Proposition 2. Under the conditions of Corollary 3, the power function of the test (3) for testing hypotheses (15) is
continuous and strictly increasing in p1 for all p1 ∈ (c, d).

4. Reproducibility probability estimation for the WRS test.

In this section we show that the WRS test (3) can be performed using a properly defined RP estimator as test
statistic. In order to demonstrate the equivalence betweenthe RPE-based test and the classical one, we follow the
methodological scheme outlined in De Martini (2008): a point/conservative RP estimator is defined starting from
a point/conservative estimator of the parameter of interest and then by applying the plug in principle to the power
function. Finally, it is shown that the RP estimator so defined can substitute the test statistics in order to perform the
test.

As observed earlier, in the context of the WRS test, it is natural to choosep1 as the parameter of interest. Then,
we first provide a point/conservative estimator ofp1.

Lemma 1. LetD∗F satisfy the conditions of Corollary 3 and letγ ∈ (0, 1). If Imp•1(D∗F ) ≡ (0, 1), then the solution̂pγ1
of the equationWF (WXY; p̂γ1) = 1− γ is a lower bound at level(1− γ) for p1. In particular:

P(p̂γ1 ≤ p1) � 1− γ (16)

Proof. First, we must ensure that the random variable ˆpγ1 is well defined, i.e. we had to assure that the equa-
tion WF (WXY; p̂γ1) = 1 − γ has a solution whatever the observed value ofWXY is. For that purpose note that
limp1→0WF (w; p1) = 1 andlimp1→1WF (w; p1) = 0 for everyw ∈ [0,mn). Consequently, thanks to the continuity
and to the strict monotonicity ofWF (·; p1), whatever the value ofγ ∈ (0, 1) is and assuming that the observed value
of WXY is different frommn, we have that the solution of equationWF(WXY; p̂γ1) = 1 − γ exists and is unique. If
WXY = mn, we assume that ˆpγ1 = 1. In this wayp̂γ1 is well defined. The fact that ˆpγ1 is a lower bound forp1 at level
(1− γ) can now be proved following the proof scheme of Lemma 1 in De Martini (2008). Otherwise, ˆpγ1 is a lower
bound forp1 at level (1− γ) thanks to the inversion method described in Casella and Berger (2002), Theorem 9.2.14
(p. 434).

Remark 4. As highlighted in (16), the random variable ˆpγ1 is a lower bound forp1 at leveljust approximativelyequal
to (1− γ). This is due to the fact thatWXY is a discrete random variable.

Thanks to Proposition 2, the random variable ˆπ
γ
n,α(F) = πn,α(p̂

γ
1, F) is a conservative RP-estimator at level (1− γ).

That is:
P(π̂n,α(p̂

γ
1, F) ≤ πn,α(p1, F)) � 1− γ .

As formalized in the following proposition, the conservative RP-Estimator just introduced defines a test equivalent
to the WRS test.

Proposition 3. Under the conditions of Corollary 3, if Imp•1(D∗F) ≡ (0, 1) the test

Φα(π̂
γ
n,α(F)) =


1 iff π̂

γ
n,α(F) > γ

0 iff π̂
γ
n,α(F) ≤ γ

(17)

for testing hypotheses (15) is equivalent to the test (3).

Proof. The equivalence of tests (17) and (3) is proved by showing that π̂γn,α(F) ≤ γ if and only if WXY ≤ w1−α.
We begin by proving the first implication: if ˆπγn,α(F) ≤ γ thenWXY ≤ w1−α. By definition, if π̂γn,α(F) = γ then pγ1
satisfies the equationWF(w1−α; p̂γ1) = 1− γ and Lemma 1 assures thatWXY = w1−α. Analogously, ifπ̂γn,α(F) < γ then
WF(w1−α; p̂γ1) > 1 − γ. Further, Lemma 1 asserts thatpγ1 is the solution ofWF (WXY; p̂γ1) = 1 − γ. Consequently,
the inequalityWXY < w1−α holds becauseWF(w; p1) is non-decreasing inw for all p1 ∈ (0, 1). The first implication
is then proved. We now focus on the second implication: ifWXY ≤ w1−α then π̂γn,α(F) ≤ γ . Let WXY = w1−α.
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In this case, Lemma 1 assures that ˆpγ1 is the solution of the equationWF (w1−α; p̂γ1) = 1 − γ and, consequently
π̂
γ
n,α(F) = γ. Analogously, letWXY < w1−α. In this case, Lemma 1 asserts that ˆpγ1 is the solution of the equation
WF(WXY; p̂γ1) = 1 − γ and the inequality ˆπn,α(F) < γ holds becauseWF(w; p1) is non-decreasing inw for all
p1 ∈ (0, 1). Then, also the second implication is proved.

The proof of Proposition 3 is similar to the proofs of Corollaries 1 and 2 in De Martini (2008). However, these last
two corollaries concern the special casesγ = α andγ = 1/2, respectively, while Proposition 3 concerns the general
caseγ ∈ (0, 1).

5. Example of application

The result given in Proposition 3 is merely theoretical because the exact distribution ofWXY underH1 and, conse-
quently, the exact power of the WRS test are, in practice, unknown. However, for practical purposes, it is possible to
use the asymptotic distribution ofWXY given in (5). This latter large sample distribution can be used in order to define
a lower bound forp1 by the inversion method showed in Lemma 1 and it can be used to approximate the power of the
WRS test (as shown in (6)). Clearly, the use of the asymptoticapproximation implies that Proposition 3 holds only
approximately, i.e. the classical WRS test (3) and the RP-based test (17) do not exactly correspond.

In order to obtain the lower bounds forp1, we adopt method 5 in Newcombe (2006), since it provides good
coverage accuracies. In detail, the conservative estimator p̂γ1 is derived inverting the asymptotic distribution of ˆp1

(stemming from (5)) obtained under the assumption thatX is exponentially distributed andY
d
= kX with k > 1 (i.e.

under the rescaling model with exponential distribution).See Newcombe (2006) for details. Here, it is interesting to
note that the conservative estimator ˆp1/2

1 coincide with the point estimator ˆp1.
As regard the RP estimators, the following alternatives canbe considered:

1. Let p̂2 and p̂3 be consistent estimators ofp2 andp3, respectively. The following RP estimator can be defined
by applying the plug in principle to the power approximation(6):

π̂n,α(p̂
γ
1, p̂1, p̂2, p̂3) = Φ

mn
(
p̂γ1 − 1

2

)
− z1−α

√
mn(N+1)

12√
V (p̂1, p̂2, p̂3)

 (18)

2. Following Noether (1987), we can assume that the difference betweenF andG is quite small. Consequently, the
variance ofWXY is well approximated by the value it takes underH0, i.e. V0 =

√
mn(m+ n+ 1)/12. Replacing

V(p1, p2, p3) with V0 in expression (5) and plugging ˆpγ1 into the resulting formula, the following RP estimator
is obtained:

π̂n,α(p̂
γ
1) = Φ

√ 12mn
n+m+ 1

(
p̂γ1 −

1
2

)
− z1−α

 (19)

3. Following the method 5 of Newcombe (2006), we hypothesizethe rescaling model with exponential distribu-
tion. In this casep2 = p1/(2− p1) andp3 = 2p2

1/(1+ p1) and the varianceV(p1, p2, p3) becomes

VE(p1) = mnp1(1− p1)

[
1+ (n− 1)

1− p1

2− p1
+ (m− 1)

p1

1+ p1

]
.

ReplacingV(p1, p2, p3) with VE(p1) in expression (5) and plugging ˆpγ1 into the resulting formula, we obtain the
following RP estimator:

π̂n,α(p̂
γ
1) = Φ

mn
(
p̂γ1 − 1

2

)
− z1−α

√
mn(N+1)

12√
VE

(
p̂γ1

)
 (20)

Note that, for the three estimators proposed above, we have that π̂1/2
n,α > 1/2 if and only if

(wxy−mn/2)/
√

mn(m+ n+ 1)/12> z1−α. We can, therefore, conclude that the test (17), defined assumingγ = 1/2 and
using one of the estimators just proposed, is equivalent to the WRS test when the critical value is determined through
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the asymptotic approximation (4). Compared with the exact WRS test, there is, however, some slight disagreements.
For example, whenm = n = 20 andα = 0.05, the exact WRS test leads to the rejection ofH0 if wxy ≥ 262. Never-
theless, whenwxy = 261 the pointwise estimates of the power are equal to 0.5020752 and 0.5022004, by applying the
(19) and the (20), respectively. Consequently,H0 is accepted by the test (3) but it is rejected by the test (17) when it is
defined starting from the RP-estimators (19) and (20). Indeed, all the differences between the exact WRS test and an
approximated RPE-based test are explained by their joint distribution

Φα(π̂n,α) 1 0
Φα(WXY)
1 π − ǫ1 ǫ1 π
0 ǫ2 1− π − ǫ2 1− π

π′ 1− π′ 1

(21)

whereπ andπ′ denotes the power/level of the WRS test and the power/level of the RP-based test, respectively. The
probability of disagreement between the two tests is given by d = ǫ1 + ǫ2. Here, we present a brief simulation study
(with 10.000 replications) in order to evaluate the magnitude of the possible differences between the RPE-based tests
and the classical one. In the simulation we analyze the features of the tests based on (18), (19), and (20) in the
following scenario:

1. model: uniform distribution under location shift model;
2. sample sizes: m= n = 20 andm= n = 60;
3. significance level: α = 0.05;
4. shifts: ∆ = 0; 0.1; 0.2; 0.3 whenm = n = 20 and∆ = 0; 0.055; 0.11; 0.165 whenn = m = 60. The∆ values

for the two sample sizes are chosen in order to give approximately the same power levels (ranging fromα to 0.9)
for both the sample sizes (see the values in bold in the third line of Table 2). Moreover we avoid the situation in
which both the WRS test and the RP-based test have power 1 (or,very close to 1) since, in that situation, there
is no disagreement (or, there is a very low disagreement) even if the two tests are not equivalent.

Then, the simulation study analyses 2× 4× 3× 3 = 72 different combinations of sample sizes (2 values),∆ values
(4 values),γ values (3 values), and RP-based tests (3 different tests). For each combination we simulate the joint
distribution (21) and, then, we calculate the simulated disagreement rate (i.e. 100· d%) and the simulated powers (π
andπ′). The results concerning the disagreement rate and the power of the two tests are given in Table 1 and Table 2,
respectively. As it can be noted from the Table 1, the disagreement rates are very low, and in 11 cases out of 72 they
are lower than 0.1%. Moreover, as the sample size increases the magnitude of disagreement diminishes, whatever
RP-Estimator is used. It can be observed that for “intermediate” values of∆ (and then for intermediate levels of the
power) the disagreement is a bit higher. Whenγ = 0.5, all the RPE-based tests have the same disagreement. Whenγ
decreases some differences appear. In particular, for a given value of∆, the tests defined on the basis of the estimators
(19) and (20) have approximately the same disagreement for all the γ’s considered. To the contrary, as regards the
test defined on the basis of the RP-estimator (18), for a given∆ the disagreement is quite variable inγ. In general,
the magnitude of the disagreement can be considered negligible, except for the estimator (18) whenn = m = 20 and
γ = α. In Table 2, we give the simulated powers of the WRS test (in bold in the third line of Table 2) and the simulated
powers of the RPE-based tests. From that table it turns out that the simulated powers and levels of the RP-based tests
are very close to those of the classical test and that they aregenerally a bit higher. Then, in the scenario considered,
the test (17) defined through the estimators (19) or (20) approximates very well the classical test (3).

To conclude, we remark that the power of the WRS test can be approximated in many different ways, and that
(17), (18) and (19) represent just a few of them. In a further study, we aim comparing some other RP estimators on
some different scenarios, in order to provide a reliable tool for RP estimation and testing in the context of the WRS
test.
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γ RP-Estimator m= n = 20 m= n = 60
∆ 0.0 0.1 0.2 0.3 0.000 0.055 0.110 0.165

0.5 (18) 0.20% 0.79% 1.10% 0.45% 0.02% 0.24% 0.22% 0.14%
(19) 0.20% 0.79% 1.10% 0.45% 0.02% 0.24% 0.22% 0.14%
(20) 0.20% 0.79% 1.10% 0.45% 0.02% 0.24% 0.22% 0.14%

0.3 (18) 0.12% 0.11% 0.14% 0.05% 0.02% 0.11% 0.07% 0.04%
(19) 0.20% 0.79% 1.10% 0.45% 0.04% 0.40% 0.39% 0.27%
(20) 0.20% 0.79% 1.10% 0.45% 0.02% 0.24% 0.22% 0.14%

α (18) 0.48% 2.36% 3.07% 1.39% 0.14% 0.64% 0.82% 0.33%
(19) 0.20% 0.79% 1.10% 0.45% 0.02% 0.24% 0.22% 0.14%
(20) 0.20% 0.79% 1.10% 0.45% 0.02% 0.24% 0.22% 0.14%

Table 1: Simulated rate of disagreement of the RPE based tests defined according to (18), (19), and (20).

γ RP-Estimator m= n = 20 m= n = 60
∆ 0.0 0.1 0.2 0.3 0.000 0.055 0.110 0.165

Power 0.0505 0.2634 0.6290 0.9039 0.0500 0.2610 0.6244 0.8965
0.5 (18) 0.0525 0.2713 0.6400 0.9084 0.0502 0.2634 0.6266 0.8979

(19) 0.0525 0.2713 0.6400 0.9084 0.0502 0.2634 0.6266 0.8979
(20) 0.0525 0.2713 0.6400 0.9084 0.0502 0.2634 0.6266 0.8979

0.3 (18) 0.0517 0.2645 0.6304 0.9044 0.0502 0.2621 0.6251 0.8969
(19) 0.0525 0.2713 0.6400 0.9084 0.0504 0.2650 0.6283 0.8992
(20) 0.0525 0.2713 0.6400 0.9084 0.0502 0.2634 0.6266 0.8979

α (18) 0.0459 0.2404 0.5985 0.8900 0.0486 0.2550 0.6162 0.8934
(19) 0.0525 0.2713 0.6400 0.9084 0.0502 0.2634 0.6266 0.8979
(20) 0.0525 0.2713 0.6400 0.9084 0.0502 0.2634 0.6266 0.8979

Table 2: Simulated level and power of the WRS test (in bold in the third line of the table) and of the RPE based tests defined according to (18),
(19), and (20).
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