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Abstract

Recently, the possibility of testing statistical hypotbethrough the estimate of the reproducibility probab(iiey. the
estimate of the power of the statistical test) in a genenaipatric framework has been introduced. In this paper, we
provide some results on the stochastic orderings of thedifln Rank Sum (WRS) statistic, implying, for example,
that the related test is strictly unbiased. Moreover, usdene regularity conditions, we show that it is possible to
define a continuous and strictly monotone power functiomefW/RS test. This last result is useful in order to obtain
a point estimator and lower bounds for the power of the WRES tasanalogy with the parametric setting, we show
that these power estimators, alias reproducibility prdbgplestimators, can be used as test statistic, i.e. it ssjae

to refer directly to the estimate of the reproducibility padbility to perform the WRS test. Some reproducibility
probability estimators based on asymptotic approximatifiithe power are provided. A brief simulation shows a
very high agreement between the approximated reproditgipibbability based tests and the classical one.

Keywords: Wilcoxon Rank Sum Test, Reproducibility Probability Essition, Reproducibility Probability
Estimation testing

1. Introduction

In the context of clinical trials, the power of a test is soimeis referred to as Reproducibility Probability (RP).
This terminology was introduced by Goodman (1992) and itis @ the fact that the power is estimated only after a
statistical test has been performed, in order to evaluategproducibility of the test result. Roughly speaking,®nc
a statistical test is computed referring to data from a paldr experiment, the RP is the probability of obtaining
the same test result in a second, identical experiment. taldé we acceptHy in the first experiment, 1-RP is
the probability to accepitl; even in the second experiment. Otherwise, if we ref&ctn the first experiment, the
probability of a further rejection is the RP itself. ThenetRP is an indicator of the stability of the test result
and its estimate can be used to measure the reproducikilityecoutcome of an experiment. The evaluation of
the reproducibility of the outcome of an experiment is agpithf the experimental method (alias Galilean method).
For this reason the RP-Estimation (RPE) is a very impor@witwhereas the experimental method is applied. For
example, the evaluation of the reproducibility is very impat in the context of clinical trial. For a discussion oisth
topic see Goodman (1992) and Shao and Chow (2002).

Recently, De Martini (2008) showed that RPE can also be usetd$ting parametric statistical hypotheses. In
particular, it is shown that the point estimate of the RP &aggr than A2 if and only if the null hypotheses is rejected.
This leads to the simple and intuitive decision rtdecept H, if the estimate of the RP is lower or equalt¢? and
reject H otherwise”which is equivalent to the commonly used rules based optteue and on the direct evaluation
of the test statistic. In general, the rule based onphalue is preferred to the one based on test statistic. Fhis i
due to the fact that thp-value can be used not only to rej@aiceptHy but it can also be viewed as a measure of
the degree to which the data support or contradic(i.e. p-values measures the evidence against or in favéig)o
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The evaluation of the evidence is important since it alldwesresearcher to understand how much stable the decision
taken is, shedding light on the reproducibility of the testuit. However, there are some arguments suggesting that th
rule based on the RP is better than those based op-tladue. The first argument stems from the work of Goodman
(1992) who showed that a smatvalue can overstate the evidence against the null hypesheesd it can thus lead

to an underestimation of the variability of the test resu#t.(to an overestimation of the reproducibility). Indeed,
unlike the RP, the-value is not a direct measure of reproducibility. As a fartargument, it should be noted that the
p-value is a very misinterpreted measure. In particularcésted out by several authors (see, e.g., Goodman (1992),
Berger and Sellke (1987) and Hubbard and Bayarri (2003)pthalue is often confused with the Type | error rate
and erroneously interpreted as the “obsery&dOn the contrary, in our opinion, the use of the RP avoid ladise
misunderstandings since its interpretation is easier aore whrect.

The technical result obtained in De Martini (2008) holdsddarge class of parametric tests (e.g. those whose
test statistic has Gaussian @ ort, or F distribution) and it is based on the key assumption thatebestatistics is
stochastically strictly ordered by the parameter unddintgsConsequently, in the case of one-sided hypotheses, th
power function of the test is strictly monotone in the pareamander testing and the test is strictly unbiased. These
are the necessary properties that assure the possibilibaking “RP-testing”, i.e. they assure that the RPE can be
used for testing statistical hypotheses.

In this paper we focus on the Wilcoxon Rank Sum (WRS) test deoto provide the regularity conditions that
make RP-testing possible. The problem arising in the napatric context of the WRS test consists in the absence
of the parameter under testing which, in this case, is ailigion. As a consequence, the power is not a function but a
functional, and the extension of the results given in De Maf2008) is not immediate. Then, we show that the WRS
statistics is stochastically strictly ordered for the &i@stically strictly ordered distributions, and we use tesult to
show that the WRS test is strictly unbiased. Moreover, wetfiedegularity conditions under which the WRS test has
a continuous and strictly monotone power function. In ddiveg, we analyze first the case of the well known location
shift model and later the more general context of the syrigtthchastically ordered alternative hypothesis. Finaky
apply these results to RP-testing for the WRS test. We rethatkhe above results concerning the WRS statistic and
the WRS test are of general theoretical interest even if Wene mainly derived in order to study the RP-testing.

The paper is organized as follows. Section 2 recalls the VERISihd the asymptotic distribution of its test statistic.
In section 3 some general qualitative features of the WRStatistic are stated and proved. These qualitative featur
concerns the stochastic orderings of WRS statistics, theepand the unbiasedness of the WRS test. In Section 4 the
RP-testing result given in De Martini (2008) is extendedt® honparametric context of the WRS test. In section 5
an application of the results of section 4 and a brief sinmtedre provided.

2. Recalling WRS test

Let X andY be absolutely continuous random variables with distrdoufunctionsF andG, respectively. Further,
let Xm = (Xg, ..., Xm) @andY,, = (Y, ..., Yn) be independent random samples frenandG, respectively. We want to
test the null hypothesis tha andY are equal in distribution against the alternative tias stochastically strictly
greater tharX:

Ho: Y2X vs  H: Y>gX 1)
To test these hypotheses it is possible to use the WRS teith wehbased on the following statistic (written in the

Mann-Whtiney form):
Wiy = #{(X%,Y) : X <Yj5i=1..m j=1,..n} . )

For a given level of the type | erroe], the WRS test is

1 if WXY > Wi

(DQ(WXY) = { 0 if Wxy <wi, (3)

wherewy is theg-quantile of the null distribution ofWxy (hereafter denoted b#y). The null distributionW, de-
pends only on the sample siz@sandn and it has been widely studied. In particuld¥, can be exactly computed us-
ing the recurrence relations known in literature (see Did@ugnico (1999) and references therein) and implemented,
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for example, iRR. Approximated values o#/; can be obtained through the well known normal approximation

Wy — mn/2

(mn(m+ n+ 1)/12)1/2 2N@O1) . @

Further, in Bearet al. (2004) it is shown that the previous normal approximatiamlgca improved by an Edgeworth
approximation or a saddlepoint one.

Unlike Wy, the distribution ofWxy under the alternative hypothesis, denotedWits, depends not only on
the sample sizem andn, but also onF andG. For this reason, it is more fliicult to studyWgs than Wy. In
detail, due to analytical ficulties, the exact expression 6#rc has been derived just in some particular cases.
For example, Haynam and Govindarajulu (1966) derived trectegxpression ofiW kg for the exponential and
uniform shift alternatives. A similar result is given in Limlann (1953) for the so called Lehmann’s alternatives.
For some other references on this subject see Lehmann (189898-99. However it is well known th&ty is
asymptotically normally distributed also undéy (see Lehmann (1951)). In particular, wherandn diverge, and

0< p1 = P(X<Y) <1, we have that
Wxy —mnp

VV(p1, P2, p3)
whereV(py, P2, ps) = mnp (1 - py) + mn(n—1)(p2 — p3) + mn(m—1)(ps — p2), with p, = P(X < Y AX < Y’) (Y’ and
Yii.d.),andps = PX <Y A X <Y) (X andX i.i.d.). This last approximation can be improved by the Bugeh
approximation given in Witting (1960) and it is very usefuldrder to study the power of the WRS test. In particular,
let n denotes the couple of sample sizesrf) and letr, (G, F) = P(Wxy > Wi_,) = 1 — Weg(W;-,) denotes the
power of the test (3). From approximation (5) it follows tiis¢e Lehmann (1998), p. 71):

mn(pl - %) —Z1q \/%
VV (p1, p2, p3)

In the following, we will refer to the power, . (F, G) as to the RP of the test (3) (see De Martini, 2008, Definitipn 1

2 N(0,1) (5)

7Tn,a(F’ G) = (D

(6)

3. Main results

First, we introduce some notations. l£the the set of all absolutely continuous distribution fuoet. S is the
support of a distribution functioh € #. LetK andT be two random variables with distribution functidng # and
M € F. Wkt denotes the Mann-Whitney statistic defined, accordingYoof2the basis of two independent samples
KmandT, from L and M, respectively. We denote with the lower casg the realization oMk corresponding
to the realization&, andt, of K, and T, respectively. Wy is the distribution function o¥Vxt. G, denotes the
set of the distributions of all the absolutely continuousdam variables strictly dominatin§ in the sense of the
usual stochastic order, thati§. = (M e F : M(X) <L(X) ¥YxeR A 3Ix:M(X) <L(X)} .G, denotes the set
of the distributions of all the absolutely continuous ramdeariables strictly dominated bk in the sense of the
usual stochastic order, thatig, = (M eF : M(X) >L(X) YxeR A 3Ix:M(X)>L(x)} .Finally, hereafter
we rewrite hypotheses (1) as follows:

Ho: G=F VS H: GeGr . @)
We can now state the following theorem.

Theorem 1. Let X,Y and Z be absolutely continuous random variables igttiibution functions respectively given
by F, Ge {Gr UF} and H e Gg. Suppose that Y and Z are independent on X an¥letY,,, andZ, be random
samples from F, G, and H, respectively. Lety* Wgs be the WRS statistic defined, according to (2), on the basis
of Xm andY,. Similarly, Wz ~ “WEgy is the WRS statistic defined on the basiXgfandZ,,.
If the following condition holds

dxe Sk : G(X) > H(X) , (8)

thenWeg (W) > Wen (W) for all w e [0, mn).



P . LetZ;, be the random vector obtained frof through the transformation

Zr=HG(Y)) j=1L..n (9)
whereH ™! indicates the generalized inversetdf The components d;, are i.i.d. with distributiorH. Further,Z;,

is independent oiX, thanks to the independenceXfandY. Then the theorem can be proved by referring to the
distribution of Wxz = #{(Xi,Z’f) X < Z]f‘ i=1,..,m j=1, n} which is equal to the distribution iz, i.e.
“Wen. Now, consider the realizations, andy, and the realizatiom;, obtained fromy,, through the transformation
(9). Further, Letvy, andwy, be the values oWy andWxz. corresponding t&m,y, andz;. By constructionzj* >,

for everyj = 1, ...nandw,y < Wy, for all thexy, andy, in the sample space. As a consequePBxy < Wxz] =1

and

w mn
PIWky < W] - P[Wyz <w] = > ) Py =inWiz = j] > P[Wky =0nWyz =mrl  vwe[0,1) . (10)

i=0 j=w+1

From expression (10) it follows that the statement of Theoré& can be proved by showing that
P[Wxy = 0N Wxz = mr] > 0. To do this, let us first note that,, < wy if and only ify; < X < z; for at
least one coupléi(j). The previous chain of inequalities holds trugyjf< x; andx; < z. The inequalityx, < z
coincide withx; < H™1(G(y;)) which is equivalent tyy; > G *(H(x)). To see why, we recall that ¥ is absolutely
continuous then the generalized inve®e is strictly increasing and satisfies the following relao®(G(q)) = q
for all g € (0,1); GY(G(y)) < yfory € R with equality ify € Sg; G(y) < qiff y < G(q), g € (0,1) (similar
relations hold foH=1). Then, being/j € Sg, we havex, < H™Y(G(y;)) © H(x) < G(y)) © y; > G1(H(x)). Putting
together the inequalitieg > G 1(H(x)) andy; < x we obtain thatv,, < W, if and only if y; € (G"1(H(x)), %)
for at least one couplé,(j). Now, let us introduce the s& = {x € Sg : G(X) > H(X)}. Thanks to condition (8), the
setE is nonempty. Moreover, the continuity & andH (assured by the absolute continuity\oindZ) ensures that
the setE contains at least one interval. Without loss of generdktyyus assume thd is an interval and lex* € E.
Thenx* is an interior point ofSe and G1(H(x")), xX*) NS¢ = (% x*) wherex > G 1(H(x")). Analogously, the set
(G™Y(H(x")), x*) N Sg contains at least an interval, say, §.), since

PLY € (G Y(H(XY)), x)] = G(X) - GG L(H(X"))) = G(X*) - H(X*) > 0 . (11)

Now, assume thaty(, yy) N (X, x*) = 0. In that casey, < X. Furthermore, ifY; € (yi,y,) for all j = 1,...,n then
ZT > x* forall j = 1,..,n. From expression (11) it follows th&{Y; € (yi,yu) ¥V j=1,...,n =P[Y € (yi,y)]" > 0.
AnalogouslyP[Xi € (X, x*) ¥V i=1,...,m] = P[X € (%X, x*)]" > 0. Consequently

PIYije .y N Xi e (X, X) Vi, jl =P[X e (X x) Vi]P[Yje W Y) Vil >0 .

Moreover, ifYj € (i, Yu) N X € (X X*) ¥ i, j thenWxy = 0 butWxz = mn If the intervals ¢, y,) and K x*) intersect
andy, < Xthe last passages can be made by referring to the integyat$ &nd (K x*). Finally, if the intervals ¥, yu)
and (¢ x°) intersect andj > X the last passages can be made by referring to the intwafs) and (X35, x°).
ThenP[Wxy = 0N Wxz = mn] > 0 and this completes the proof.

Remark 1. Roughly speaking, Theorem 1 shows that, bdinget, it is stficient thatG is greater thaH over an
interval contained iS¢ to assure thaWrg is always greater that/r .

Remark 2. If the distributions of the random variabl¥sY andZ have common support, condition (8) is superfluous
thanks to the definition afr andGg. In the other cases, condition (8) is necessary in order &oagutee the validity
of Theorem 1. This is obvious if s§i§c} < inf{Sg}. In fact, in that case we have th&/rg(W) = Wen(w) = O for

all x € [0, mn). Furthermore, if5(x) = H(X) for everyx € Sg thenWeg(wW) = Wen(w) for all w e [0, mr].

Remark 3. If the sample size foZ (sayny) is lower than the sample size f¥r(sayny > nz), Theorem 1 does not
hold becaus&Vgy(mry) = 1 while Wes(mrz) < 1. On the contrary, ifiz > ny then Theorem 1 still holds since,
keeping fixed=, H andm, the random variablé/xz is stochastically increasing im.
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We shall now show a first application of Theorem 1. In Lehmah®5() it is shown that the WRS test is unbiased
against the alternatives (7). Namehy; . (F, H) > a for all H € G. Thanks to Theorem 1 it is now possible to refine
this latter result.

Corollary 1. The test (3) for testing hypothesis (7) is strictly unbiasegd,(F, H) > a forall H € Ge.

P . The corollary follows directly from the Theorem 1 spedali to the cas& = G. In more detail, ifF = G,
Theorem 1 states that/o(w) > Wey(w) for all w € [0, mn). Consequently + Wo(Wi—o) < 1 — Wen(Wi_,). The
corollary now follows observing that < 1 — Wy(w;_,) and remembering the definition of . (F, H).

For completeness, we state the following theorem concgyimira sense, the opposite situation of Theorem 1.

Theorem 2. Let X,Y and Z be absolutely continuous random variables ettribution functions respectively given
by F, Ge {Gr UF}and He Gs. Suppose that Y and Z are independent on X anXlgtY,,, andZ, be random
samples from F, G, and H, respectively. LetW- ‘Wes be the WRS statistic defined on the basiXgfand Y.
Similarly, Wz ~ Wgy is the WRS statistic defined on the basiXgfandZ,.
If the following condition holds

Axe Sk G(X) < H(X) , (12)

thenWe(W) < Wey(w) for all w € [0, mn).

The proof of Theorem 2 is omitted because it is quite simdethe proof of Theorem 1.

Theorems 1 and 2 can be used as starting points for a moréedetaidy on the features s whenG belongs
to some particular subset gi-. For example, consider the so calledation shift mode(lsm), where it is assumed
thatG e G2 ={G e Gr : G(X) = F(x—A) YxeR; A> 0} The testing problem then becomes:

Ho: G=F vs H: Gegp . (13)

The amount of shifA can be used as a parameter for the distribulitips. Namely, keeping fixed the distributids
‘Weg can be seen as a functionwfandA. For this reason, in the context of tleen we write W (w; A) rather than
“Wee(W). The following Corollary describes the featuresdf:(w; A) as a function ofA.

Corollary 2. For a given we [0, mn) and F € ¥, the functionWg(w; A) is continuous and strictly decreasing in
over the range-r < A < r, where r= sugSg} — inf{Sg} if Sk is bounded and & « otherwise.

P . Thanksto Theorems 1 and 2, keeping fixedhe functionWg(w; A) is strictly decreasing inA over the range
—r < A < r for everyw € [0, mn). To prove the continuity, note first that the monotonicityld’s (w; A) in A implies
that the following limits exist for everw € [0, mn):

lim We(w;9) = ay, lim We(w;8) =by .
oA~ O—oA*
For a given, arbitrary smadl > 0, let{A; }ncy be a monotone increasing succession of valueain  A) c (-r,r).
Further, le{ A} }nen be @ monotone decreasing succession of values i ¢ €) ¢ (-r,r). Suppose that lifL.. A, =
A = limy Af . We prove the continuity ald/g (w; A) by showing that limg_.. We(w; A) = limpse WE(W, Af) .
For that purpose, the following notation is introduced:
Gh(X) = F(x=4p) , Gn:(¥) = F(x-Ap) .

Consider the random sampl¥g andY, drawn fromF andG(x) = F(x - A), respectively. Further, &, andY [,
be the random samples obtained fr¥mthrough the transformations

Yin=Gl(F(Y})) and Y/, =G(F(Y)), j=1..n. (14)
By definition, the distribution of

Wiy = #{(X. Yj) X < Y si=1..m j=1,.n|
5



is We(-; Ap) for all h € N. Analogously, the distribution of
Wiy, = #{(%, Y) X < Yipii=1..m j=1..n}

is We(-; Af) for all h € N. Now, consider the realizationg, andy, and the sequences of realizati(*yﬁh}hGN and

{y;!h}heN obtained frony, through the transformations (14). Furtherigy, {wxy | and{wyy | the corresponding
realizations of the WRS statistics. Finally, let us introdthe following subsets cﬁ‘ the samp?e space:

Exv(w) = {(Xm, Yn) € SE XSG 1 Wyy > w} ,

Exy, (W) = {(Xm.yr) € SP X ST 1 Wiy > W]

Exyr (W) = {(xm, Yn) € SE XSG Wy > W} .

By constructionwyy: < Wyy < Wy, for all (xm,yn) € SF x Sg and for allh € N. In addition,wyy: < Wy and
Wy < Wy for all (xm, yn) € SE' x Sg and for allh € N. Consequently, we have théky, (W) 2 Exy,(W) 2 ... 2
Exy; (W) 2 ... andExv; (W) € Exy; (W) € ... € Exy (W) € ... . Furthermore

L &x W) = Exvw) = [ Expw) Y we[0,mn) .
h=1 h=1

Observing thaWe(w; A{) =1-P [8XY’: (W)] andWe(w; A ) =1-P [Sxyh— (w)], the equality of the limits,, andb,y
follows from the continuity properties of a probability nseme. Then, the corollary is proved.

Under thelsmiit is also possible to define the power function. In partiguthe functionm,,(A;F) = 1 -
WEe(Wi—q; A), considered as a function &f over the range-c0 < A < oo, is the power function of the WRS test
under thdsm It is known (see Lehmann (1998), pp. 65-69) that the powectionn, ,(A; F) is non-decreasing in
A. Thanks to the Corollary 2 it is now possible to refine thisitesis formalized in the following proposition.

Proposition 1. Under the location shift model, the power function of thé {8sfor testing hypotheses (13) is contin-
uous and strictly increasing in for all A € (—r,r).

P . Immediate consequence of the Corollary 2.

Following the same scheme of proof, similar results to tlgigen in Corollary 2 and Proposition 1 can be stated also
for the models described below.

1. Lehmann’s Alternatives. Under the Lehmann’s alternative hypotheses (see Lehm&fh3y) it is assumed
thatG e G where
Gp ={GeGr :G(X)=F(xIVxeR, q>1} .

The testing problem then becomes:
Ho: G=F VS H: Gegp .

In this context we shall denot®’rg(w) by ‘We(w; ). Following the scheme of proof of Corollary 2, it can be
shown thatWg(w; g) is continuous and strictly decreasinghiover the range (8»). Then, the power function
ne(Q; F) = 1 — We(Wi_o; Q) is continuous and strictly increasingdgrover the range ().

2. Rescaling model Assume that the random variablésandY are positive. The alternative hypothesis of the
rescaling modeis Hy : G € Gk whereGk = {G € Gr : G(X) = F (x/K) ¥ x € R; k> 1}. Even for the rescaling
model it can be shown tha’r(w; k) is continuous and strictly decreasingkrover the rangeg, b), where
(a,b) = (0, ) if inf {Sk} = 0 andor sugSk} = 0 and &, b) = (inf{Sk}/ SUASE}, sSUASE}/ INf{Sk}) otherwise.
Consequently, the power functiem . (k; F) = 1 — Wg(w;_,; K) is continuous and strictly increasing krover
the ranged, b).



3. Probit shift alternative . Theprobit shift alternativehas been recently proposed by Rosner and Glynn (2009).
The alternative hypotheses of this modetis: G € g’; where

Gt ={GeGr :G(X) = D@ (F(X) +u) ¥xER; 1> 0}

and ®(-) denotes the standard normal cdf. It can be shownWai{w; 1) (or mn.(u; F)) is continuous and
strictly decreasing (respectively, increasingjiaver the range (o).

In order to extend to a more general context the results préaethe location shift model and outlined for the
three models described above, it is useful to highlight scoramon features of these models. For this purpose,
consider first thédsm and suppose, for simplicity, th&#= = R (in this caser = ). Further, let us introduce the
following set of distributions

={GeGr : G(X)=F(x—A) VxeR; A<O0}

and letDg = gA U QA U F. Note that the se‘DA is totally ordered with respect to the usual stochastic rimde
Moreover note that for every couple of dlstnbutloms ) € G2 x G& with L # M the condition (8) is satisfied.
Analogously, for every couple of distributionk,(M) € gA X gA with L # M the condition (12) is satisfied. These
last properties makes the application of Theorem 1 and Eme@ possible in order to show the strict monotonicity
of We(-; A) in A. Similarly, the Lehmann'’s alternatives give rise to theafatistributionsD? = G2 U G2 U F where

GP ={GeGr:G(X =F(X¥xeR, 0<q< 1. AlsoDf is totally ordered with respect to the usual stochastic

ordering. In addition, for every couple of distributiorls M) € (63 x G3) U (G2 x G?) such thatL # M, one of

the conditions (8) and (12) is satisfied. Then, Theorem 1 drebfiem 2 can be applied in order to deduce the strict
monotonicity of Wg(-; g) in g. The same observation can also be made concerning the srﬁsxr'cbfutions@'; and

i associated to the rescaling model and to the Probit ShiérAdttives, respectively.

Each of the models just described has its own natural pasam#t detail, A is the natural parameter for the
location shift model whiley, k, andu are the natural parameters for the Lehamnn’s AlternatthesRescaling Model,
and the Probit Shift Alternatives, respectively. Nevelehs, all the models considered can be described using the
parametep; = f FdG = p;(F, G) which is particularly meaningful in the context of the WRStt In more detalil,
in Lehmann (1998) (p. 70) and Newcombe (2006) it is arguetl phacan be viewed as theffect size in the
context of the WRS test. It should also be noted INay is, in practice, the natural estimator pf : p1 = Wxy/mn
Consequently, the statisti®¥xy can even be used for testing hypothesegp(e.g.Hop : p1 = 1/2vsH;y : p1 > 1/2)
as shown in Zaremba (1962).

For these reasons, in the general context described belostudyg the characteristics Vg andzry o(F, G) in
respect ofp;.

Let D¢ be the set of distributions generated by a particular maeeiisg fromF. Suppose thaby = G¢ UQN*,‘: UF
whereGr C Gr andgF c Ge. The testing problem of interest is:

Ho: G=F VS H: Gegr . (15)

Corollary 3. LetDp = Gr UGr UF be totally ordered with respect to the usual stochastiearnly. Further, assume
that for every(L, M) €(GExGE)U (g* X g*) such that L# M, one of the following relations holds:

1. L(X) < M(X) YVXeR A AxeSg : LX) <M(X ;
2. L(X) = M(X) YXeR A AXeSk : LX) >M(X) .

Let Im: (Dr) be the image oD¢ under [, keeping fixed F: IR(Dg) = pi(F; Di). Let Wr(w; p1) denote the
distribution'Weg(w) when g(F,G) = p1 and Ge Di.

If Img: (D) = (c,d) then We(w; py) is contlnuous and strictly increasing in, pver the range(c, d) for all
w e [0, mn)

P . KeepF fixed and observe that, thanks to conditions 1. and 2., thetitural pi(F, -) is a bijection fromDy.
to Imp: (Op). This assures that, for evewye [0, mn), We(w; p1) is a function ofp; over the rangeq d). Thanks to
conditions 1. and 2., we can apply Theorems 1 and 2 obtaihatgit’r (w; p,) is strictly increasing irp; over (, d).
Thanks to the hypotheses thatt®Dr ) is an interval, the continuity o#¥s(w; p1) can now be proved following the
method described in the proof of Corollary 2.



As a direct consequence of Corollary 3 we have the followesylt.

Proposition 2. Under the conditions of Corollary 3, the power function of test (3) for testing hypotheses (15) is
continuous and strictly increasing in ffor all p; € (c, d).

4. Reproducibility probability estimation for the WRS test.

In this section we show that the WRS test (3) can be perfornsetyua properly defined RP estimator as test
statistic. In order to demonstrate the equivalence betwleeRPE-based test and the classical one, we follow the
methodological scheme outlined in De Martini (2008): a fownservative RP estimator is defined starting from
a poinfconservative estimator of the parameter of interest anal yeapplying the plug in principle to the power
function. Finally, it is shown that the RP estimator so definan substitute the test statistics in order to perform the
test.

As observed earlier, in the context of the WRS test, it is ratio choosep; as the parameter of interest. Then,
we first provide a poiritonservative estimator qtf; .

Lemma 1. Let Dy satisfy the conditions of Corollary 3 and fete (0, 1). If Img: (D) = (0, 1), then the solutiorp]
of the equationW (Wxy; p]) = 1 -y is a lower bound at levefl — y) for p;. In particular:

P(py < p1) =1-vy (16)

P . First, we must ensure that the random variapJeis”well defined, i.e. we had to assure that the equa-
tion We(Wxy; p]) = 1 -y has a solution whatever the observed value\&k is. For that purpose note that
limp, oWe(w; p1) = 1 andlimp,,1We(w; p1) = 0 for everyw e [0, mr). Consequently, thanks to the continuity
and to the strict monotonicity ¥/ (-; p1), whatever the value of € (0, 1) is and assuming that the observed value
of Wxy is different frommn, we have that the solution of equatidf’s (Wxy; f]) = 1 — y exists and is unique. If
Wxy = mn, we assume that] "= 1. In this wayp} is well defined. The fact that]is a lower bound foip; at level
(1-) can now be proved following the proof scheme of Lemma 1 in DetMi (2008). Otherwisep;"is a lower
bound forp; at level (1- y) thanks to the inversion method described in Casella andeBef2002), Theorem 9.2.14
(p. 434).

Remark 4. As highlighted in (16), the random variah is a lower bound fop; at leveljust approximativelgqual
to (1- ). This is due to the fact th&/xy is a discrete random variable.

Thanks to Proposition 2, the random variaglg,(F) = m..(p], F) is a conservative RP-estimator at leveH().
That is:
P(;Tn,q(ﬁz, F) < 7Tn,a(p1, F)) =1- Y .

As formalized in the following proposition, the conservatRP-Estimator just introduced defines a test equivalent
to the WRS test.

Proposition 3. Under the conditions of Corollary 3, if Ig(Dr) = (0, 1) the test

1 if ma(F)>y
Do (.o (F)) = 17)
0 iff ma(F)<y

for testing hypotheses (15) is equivalent to the test (3).

P . The equivalence of tests (17) and (3) is proved by showiagh,(F) < v if and only if Wxy < wy_,.
We begin by proving the first implication: if},(F) < y thenWxy < wi_,. By definition, if 7}, ,(F) = y thenp]
satisfies the equatiol/r (Wi—.; p}) = 1 -y and Lemma 1 assures thaky = wi_,. Analogously, if7} ,(F) < y then
We(Wi_o; P) > 1. Further, Lemma 1 asserts that is the solution of W (Wxy; p}) = 1 —y. Consequently,
the inequalityWxy < wi_, holds becaus8yr(w; p;) is non-decreasing iw for all p; € (0, 1). The first implication
is then proved. We now focus on the second implicationV§fy < wi_, thenm) (F) <y . Let Wxy = Wi_,.
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In this case, Lemma 1 assures thitis the solution of the equatiofr(wy_,; p}) = 1 -y and, consequently
#h(F) = y. Analogously, lebxy < wi_,. In this case, Lemma 1 asserts ttis the solution of the equation
We(Wxy; f){) = 1 - vy and the inequalityr,,(F) < vy holds becauséVe(w; p;) is non-decreasing im for all
p: € (0,1). Then, also the second implication is proved.

The proof of Proposition 3 is similar to the proofs of Coradks 1 and 2 in De Martini (2008). However, these last
two corollaries concern the special cases a andy = 1/2, respectively, while Proposition 3 concerns the general
casey € (0,1).

5. Example of application

The result given in Proposition 3 is merely theoretical lisegthe exact distribution &%y underH; and, conse-
quently, the exact power of the WRS test are, in practicenank. However, for practical purposes, it is possible to
use the asymptotic distribution Wy given in (5). This latter large sample distribution can bedis order to define
a lower bound fop; by the inversion method showed in Lemma 1 and it can be usgupt@rimate the power of the
WRS test (as shown in (6)). Clearly, the use of the asympégtjproximation implies that Proposition 3 holds only
approximately, i.e. the classical WRS test (3) and the Rsadbéest (17) do not exactly correspond.

In order to obtain the lower bounds f@gi, we adopt method 5 in Newcombe (2006), since it provides good
coverage accuracies. In detail, the conservative estinfgtis derived inverting the asymptotic distribution pf

(stemming from (5)) obtained under the assumption ¥& exponentially distributed and 2 kX withk > 1 (i.e.
under the rescaling model with exponential distributid®e Newcombe (2006) for details. Here, it is interesting to
note that the conservative estimap}f”coincide with the point estimatqr;.”

As regard the RP estimators, the following alternativestmnonsidered:

1. Let B, and g3 be consistent estimators pf and ps, respectively. The following RP estimator can be defined
by applying the plug in principle to the power approximat{6j

mn(p] - 3) - 210 ) "5
VV (P, P2, P3)

2. Following Noether (1987), we can assume that tiffedince betweelR andG is quite small. Consequently, the
variance oMy is well approximated by the value it takes undty; i.e. Vo = vYmn(m+ n + 1)/12. Replacing
V(p1, P2, p3) With Vg in expression (5) and pluggimi into the resulting formula, the following RP estimator

is obtained:
~ & 12mn |, 1
ﬂn,a(pjll) = (I)[ (pl - _) - Zl—oz] (19)

ﬁ'n,a(ﬁ{» pls f’z’ @3) = (D (18)

n+m+1 2

3. Following the method 5 of Newcombe (2006), we hypotheizaescaling model with exponential distribu-
tion. In this casep, = p1/(2— p1) andps = 2p§/(1 + p1) and the varianc¥(p1, p2, p3) becomes

1:p1 +(m-1) p1

1+(n—1)2 or Trp

VE(py) = mnp(1 - py)

ReplacingV(ps, p2, ps) with VE(p1) in expression (5) and pluggiqq into the resulting formula, we obtain the

following RP estimator:
[mr(NJrl)
12

mn(ﬁ{ -

ftna(P]) = @ (20)

%)_Zl—a
YVE(B)
Note that, for the three estimators proposed above, we haat A2 > 1/2 if and only if

(Wxyy—mn/2)/ yYmn(m+ n+ 1)/12> z_,. We can, therefore, conclude that the test (17), definedvdsgy = 1/2 and
using one of the estimators just proposed, is equivalegtd\tRS test when the critical value is determined through
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the asymptotic approximation (4). Compared with the exaBSNest, there is, however, some slight disagreements.
For example, whem = n = 20 ande = 0.05, the exact WRS test leads to the rejectiofgfif wy, > 262. Never-
theless, whem,, = 261 the pointwise estimates of the power are equal30ZD752 and 3022004, by applying the
(19) and the (20), respectively. Consequertlyjs accepted by the test (3) but it is rejected by the test (Hi8nit is
defined starting from the RP-estimators (19) and (20). Iddakthe diferences between the exact WRS test and an
approximated RPE-based test are explained by their jostrtiliition

Dp(na) | 1 0
D, (Wyy)
1 T—€ € T (21)
0 & l-n-e |1-n
i 1-n 1

wherer andn’ denotes the powgevel of the WRS test and the povilerel of the RP-based test, respectively. The
probability of disagreement between the two tests is gived b €; + ;. Here, we present a brief simulation study
(with 10.000 replications) in order to evaluate the magitetof the possible flierences between the RPE-based tests
and the classical one. In the simulation we analyze the rfestaf the tests based on (18), (19), and (20) in the
following scenario:

1. model: uniform distribution under location shift model,

2. sample sizesm=n =20 andm = n = 60;

3. significance level @ = 0.05;

4. shifts: A = 0; 0.1; 0.2; 0.3 whenm = n = 20 andA = 0; 0.055; Q11; 0165 whem = m = 60. TheA values
for the two sample sizes are chosen in order to give apprdgigndne same power levels (ranging franto 0.9)
for both the sample sizes (see the values in bold in the timeddf Table 2). Moreover we avoid the situation in
which both the WRS test and the RP-based test have powerve(grelose to 1) since, in that situation, there
is no disagreement (or, there is a very low disagreement) ié¥iee two tests are not equivalent.

Then, the simulation study analysex 2 x 3 x 3 = 72 different combinations of sample sizes (2 valuasyalues

(4 values),y values (3 values), and RP-based tests (Berint tests). For each combination we simulate the joint
distribution (21) and, then, we calculate the simulatedglisement rate (i.e. 10@%) and the simulated powers (
andn’). The results concerning the disagreement rate and therpfiee two tests are given in Table 1 and Table 2,
respectively. As it can be noted from the Table 1, the disagent rates are very low, and in 11 cases out of 72 they
are lower than (1%. Moreover, as the sample size increases the magnitudeagfrdement diminishes, whatever
RP-Estimator is used. It can be observed that for “interatedivalues ofA (and then for intermediate levels of the
power) the disagreement is a bit higher. Whea 0.5, all the RPE-based tests have the same disagreement.¥Vhen
decreases someffirences appear. In particular, for a given valua ahe tests defined on the basis of the estimators
(19) and (20) have approximately the same disagreementlfthreay’s considered. To the contrary, as regards the
test defined on the basis of the RP-estimator (18), for a ghvére disagreement is quite variableyin In general,

the magnitude of the disagreement can be considered ragligkcept for the estimator (18) whar= m = 20 and

v = a. In Table 2, we give the simulated powers of the WRS test (Id lothe third line of Table 2) and the simulated
powers of the RPE-based tests. From that table it turns atitlie simulated powers and levels of the RP-based tests
are very close to those of the classical test and that thegeaarerally a bit higher. Then, in the scenario considered,
the test (17) defined through the estimators (19) or (20)@afiprates very well the classical test (3).

To conclude, we remark that the power of the WRS test can bezjppated in many dferent ways, and that
(17), (18) and (19) represent just a few of them. In a furtiedys we aim comparing some other RP estimators on
some dfferent scenarios, in order to provide a reliable tool for Rifredion and testing in the context of the WRS
test.
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v  RP-Estimator m=n=20 m=n=60

A 00 01 0.2 0.3 0.000 Q055 0110 Q165

0.5 (18) 020% Q79% 110% Q45% Q02% 024% Q22% Q14%
(29) 020% Q79% 110% Q45% Q02% 024% Q22% Q14%

(20) 020% Q79% 110% Q45% 002% 024% 022% Q14%

0.3 (18) 012% Q11% Q14% Q05% Q02% 0Q11% QO07% Q04%
(29) 020% Q79% 110% Q45% Q04% Q40% Q39% Q27%

(20) 020% Q79% 110% Q45% Q02% 024% Q22% Q14%

a (18) 048% 236% 307% 139% 014% 064% 082% Q33%
(29) 020% Q79% 110% Q45% Q02% 024% Q22% Q14%

(20) 020% Q79% 110% Q45% Q02% 024% Q22% Q14%

Table 1: Simulated rate of disagreement of the RPE basexideBihed according to (18), (19), and (20).

v  RP-Estimator m=n=20 m=n=60
A 0.0 01 0.2 0.3 0000 Q055 Q110 Q165
Power 0.0505 02634 06290 (09039 00500 02610 06244 08965
05 (18) Q0525 02713 06400 09084 00502 02634 06266 08979
(29) 00525 02713 06400 Q9084 00502 02634 06266 08979
(20) 00525 02713 06400 09084 00502 02634 06266 08979
0.3 (18) Q0517 02645 06304 09044 00502 02621 06251 08969
(29) 00525 02713 06400 09084 00504 02650 06283 08992
(20) 00525 02713 06400 09084 00502 02634 06266 08979
a (18) 00459 02404 05985 08900 00486 02550 06162 08934
(29) 00525 02713 06400 09084 00502 02634 06266 08979
(20) 00525 02713 06400 Q9084 00502 02634 06266 08979

Table 2: Simulated level and power of the WRS test (in bolchinthird line of the table) and of the RPE based tests defineatdiag to (18),
(19), and (20).
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