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Abstract

Simulated annealing (SA) is a generic optimization method that is quite popular because of its ease of implemen-
tation and its optimal convergence properties. Still, SA is widely reported to converge very slowly and it is common
practice to allow extra freedom in its design at the expense of losing global convergence guarantees.

In this paper, we derive simple sufficient conditions for the global convergence of SA when the cost function and
the candidate solution generation mechanism are temperature-dependent. These conditions are surprisingly weak —
they do not involve the variations of the cost function with temperature — and exponential cooling makes it possible
to be arbitrarily close to the best possible convergence exponent of standard SA.
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1. Introduction

We consider the problem of finding a global minimum of an arbitrary real-valued energy function U defined
on a general but finite state space E. We denote by Uinf the ground state energy and we let Einf(U) be the set of
global minima of U, that is, Uinf = infx∈E U(x) and Einf(U) =

{
x ∈ E | U(x) = Uinf

}
. A simulated annealing

(SA) algorithm is a Markov chain (Xn)n∈N on E whose transitions are guided by a communication mechanism q
and controlled by a sequence of temperatures (τn)n∈N∗ called a cooling schedule; the communication mechanism is a
symmetric and irreducible Markov matrix on E which specifies how to generate a new candidate solution from the
current solution, and the cooling schedule is decreasing and converges to zero. The transitions of (Xn)n∈N are defined
by P(Xn = y | Xn−1 = x) = Pτn (x, y) with

Pτ(x, y) =

 q(x, y) exp
(
− τ−1(U(y) − U(x)

)+) if y , x

1 −∑
z∈E\{x} Pτ(x, z) if y = x,

(1)

where a+ := sup{a, 0}. The key feature of the Markov matrix Pτ is that its stationary distribution πτ tends to the
uniform distribution on Einf(U) as the temperature τ decreases to zero (πτ is the Gibbs distribution with energy U at
temperature τ). Consequently, the law of Xn should stay close to πτn if the cooling schedule decreases slowly enough,
and hence we can expect that the convergence measure

M(n) = sup
x∈E

P
(
Xn < Einf(U)

∣∣∣ X0 = x
)

(2)

goes to zero as n→ +∞. It is well known (see Hajek (1988)) that this is the case for logarithmic cooling schedules of
the form τn = τ0/ ln(n + 1) provided τ0 is larger than the critical height HU of the energy landscape. Formally, HU is
the maximum energy barrier separating a non-optimal state from a ground state, that is,

HU = sup
x∈E\Einf (U)

hU(x), (3)
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where hU(x) — the depth of x — is defined as follows:

hU(x) = inf
y∈Einf (U)

ηU(x, y) − U(x) with ηU(x, y) = inf
(xi)m

i=1∈ Πq(x,y)
sup

16i6m
U(xi), (4)

where Πq(x, y) denotes the set of paths from x to y in the digraph

(E,∆(q)), ∆(q) =
{
(x, y) ∈ E2

∣∣∣ y , x and q(x, y) > 0
}
. (5)

Logarithmic cooling, however, is inefficient for most practical problems: HU is generally too large to reach the low
temperature regime in a reasonable amount of computation time, while the annealing process gets easily stuck in poor
local minima for feasible values of τ0.

The most significant advance in SA theory beyond the asymptotic properties in Hajek (1988) is due to Catoni.
He showed in Catoni (1992) that exponential cooling must be preferred over logarithmic cooling when the available
computing time is bounded (as is the case in practice), and that the convergence measure (2) cannot decrease faster
than some optimal power of 1/n. More precisely, the optimal convergence speed exponent is 1/DU , where DU — the
difficulty of the energy landscape — is the maximum ratio of the depth to the energy level above the ground state
energy:

DU = sup
x∈E\Einf (U)

hU(x)
U(x) − Uinf

. (6)

Besides, the upper bound 1/DU is sharp, since it is possible to construct a family {(τN
n )16n6N ; N ∈ N∗} of finite

exponential cooling sequences such that lnM(N) ∼ ln
(
N−1/DU

)
; such families are of the form τN

n = τ0 exp(−n ξN),
where τ0 does not depend on the horizon N and ξN ∼ N−1 ln N. These results provide the first theoretical justification
for the widely used exponential cooling schedules. Still, although successfully applied to many difficult combinatorial
optimization problems, SA is often criticized for converging very slowly. In fact, it is common practice to allow extra
freedom in the design of SA algorithms, but such variations on the theme generally come without optimal convergence
guarantees.

A natural generalization of SA is to allow the energy function and the communication mechanism to be temperature-
dependent. We call this class of algorithms stochastic continuation (SC) by extension of the stochastic optimization
processes studied in Robini et al. (2007). The first idea is to ease the annealing process by gradually revealing the
complexity of the optimization problem, which is obtained by replacing the energy U by the elements of a family
(Uτ)τ∈R∗+ of functions whose difficulty DUτ increases with decreasing τ. The second idea is to facilitate the exploration
of the state space by adapting the communication mechanism to the temperature regime. SC belongs to the general
class of Markov processes studied in Del Moral and Miclo (1999); it includes SA with temperature-dependent energy,
which is studied in Robini et al. (2007) for the finite-time case and in Frigerio and Grillo (1993) and Löwe (1996) for
the asymptotic case. The convergence results in Robini et al. (2007) and Del Moral and Miclo (1999) require that

sup
(x,τ)∈E×R∗+

τ−1|Uτ(x) − U(x)| < +∞, (7)

while it is assumed in Frigerio and Grillo (1993) and Löwe (1996) that there exists a > 0 such that

sup
(x,n)∈E×N∗

na|Uτn (x) − Uτn−1 (x)| < +∞. (8)

Both conditions (7) and (8) significantly limit the freedom in parameterizing the energy with temperature, and, in
addition, the conditions for convergence in Del Moral and Miclo (1999), Frigerio and Grillo (1993) an Löwe (1996)
involve impractical logarithmic cooling sequences. We show here that these limitations can be overcome while allow-
ing the communication mechanism to vary with temperature.

The formalism and the basic ideas of SC are presented in Section 2. Our starting point for studying the convergence
of SC is the observation that its transitions obey a large deviation principle with speed τ−1, which suggests to appeal
to generalized SA (GSA) theory (see, e.g., Trouvé (1996) and Catoni (1999)). The convergence properties of GSA
are outlined in Section 3, and those of SC are then derived in Section 4. Our main result states that SC with suitably
adjusted exponential cooling can have a convergence speed exponent arbitrarily close to the optimal exponent 1/DU

of SA. Moreover, the conditions for this to happen are weak and only involve the communication mechanism (putting
aside the obvious necessary condition that (Uτ)τ∈R∗+ converges pointwise to the target energy U as τ→ 0).
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2. Definition and basic ideas

We define an SC process with target energy landscape (E,U, q) to be a family (Qτ)τ∈R∗+ of Markov matrices on E
of the form

Qτ(x, y) =

 qτ(x, y) exp
(
− τ−1(Uτ(y) − Uτ(x)

)+) if y , x

1 −∑
z∈E\{x} Qτ(x, z) if y = x,

(9)

with lim
τ→0

Uτ(x) = U(x) and lim
τ→0

qτ(x, y) = q(x, y).

Given such a family together with a cooling sequence (τn)n∈N∗ , we call a Markov chain (Xn)n∈N on E with transitions
P(Xn = y | Xn−1 = x) = Qτn (x, y) an SC algorithm, and we denote it by SC(E, (Uτ), (qτ), (τn)) — we use the notation
(E, (Qτ)) or (E, (Uτ), (qτ)) for the underlying SC process. The family of energy functions (Uτ : E → R)τ is called the
continuation scheme and the family of Markov matrices (qτ : E2 → [0, 1])τ is called the communication scheme. The
limit communication matrix q is assumed to be irreducible, as there is otherwise no guarantee to reach a ground state
of the target energy U.

The basic idea of SC is quite easy to explain if qτ is symmetric for all τ (we will relax this assumption in Section
4). Indeed, Proposition 1 below states that in this case the invariant measure θτ of Qτ is a Gibbs distribution which
concentrates on the set of global minima of U as τ → 0. Consequently, similarly to SA, if the cooling sequence does
not decrease too fast, the law of Xn should stay close enough to θτn to expect convergence to an optimum.

Proposition 1. Let (E, (Qτ)) be an SC process with q irreducible and qτ symmetric for all τ. Then, there exists τ∗ > 0
such that for any τ ∈ (0, τ∗], Qτ is irreducible and its unique invariant measure θτ satisfies θτ(x) ∝ exp

( − τ−1Uτ(x)
)

and limτ→0 θτ(Einf(U)) = 1.

Proof. For τ sufficiently small, qτ inherits the irreducibility of q and hence Qτ is irreducible. By the symmetry of qτ,
we have

∀(x, y) ∈ E2, exp
( − τ−1Uτ(x)

)
Qτ(x, y) = exp

( − τ−1Uτ(y)
)
Qτ(y, x),

and therefore θτ(x) ∝ exp
( − τ−1Uτ(x)

)
.

Let Zτ(F) =
∑

z∈F exp
( − τ−1Uτ(z)

)
and let ωτ = supz∈Einf (U) Uτ(z). We have

lim
τ→0

Zτ(E \ Einf(U))
Zτ(Einf(U))

= 0,

and it follows that
∀x ∈ E, θτ(x) ∈ O

τ→0

(
exp

( − τ−1(Uτ(x) − ωτ))).
Then, since limτ→0

(
Uτ(x) − ωτ) = U(x) − Uinf , we have limτ→0 θτ(x) = 0 for any x < Einf(U). �

Proposition 1 gives the go-ahead for studying the global convergence properties of SC. To do so, we start from the
basic observation that SC and SA behave similarly at low temperatures in the sense that

∀(x, y) ∈ ∆(q), lim
τ→0
−τ ln Qτ(x, y) = lim

τ→0
−τ ln Pτ(x, y) = (U(y) − U(x))+. (10)

In other words, for any (x, y) ∈ E2 such that y , x and q(x, y) > 0, Qτ(x, y) obeys a large deviation principle with
speed τ−1 and rate (U(y)−U(x))+, which suggests to appeal to the GSA theory developed in Trouvé (1996) and Catoni
(1999).

3. Generalized simulated annealing

A GSA process on E is defined by a family (Θτ)τ∈R∗+ of Markov matrices on E satisfying a large deviation assump-
tion with speed τ−1 and with irreducible rate function J : E2 → R+ ∪ {+∞}; that is,

∀(x, y) ∈ E2, lim
τ→0
−τ lnΘτ(x, y) = J(x, y) (11)
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(with the convention that ln 0 = −∞), and the digraph

(E,∆(J)), ∆(J) =
{
(x, y) ∈ E2

∣∣∣ y , x and J(x, y) < +∞
}

(12)

is strongly connected. Given a GSA process (E, (Θτ)) and a cooling sequence (τn)n, we call a Markov chain (Xn)n∈N
on E with transitions P(Xn = y | Xn−1 = x) = Θτn (x, y) a GSA algorithm; we denote it by GSA(E, (Θτ), (τn)).

The Markov matrix Θτ has a unique invariant measure ϑτ for τ sufficiently small, and it is shown in Catoni (1999)
that (ϑτ)τ satisfies a large deviation principle: there is a function V : E → R+, called the virtual energy, such that

∀x ∈ E, lim
τ→0
−τ lnϑτ(x) = V(x) − Vinf , (13)

where Vinf = infx∈E V(x). Clearly, ϑτ concentrates on the set of global minima of V as τ→ 0, which is to say that the
virtual energy plays the role of the objective function. It is defined by

∀x ∈ E, V(x) = inf
T∈T (x)

∑
(z,t)∈ET

J(z, t), (14)

where T (x) is the set of directed trees T = (E,ET ), ET ⊂ E2, with root x and whose edges are directed towards x (i.e.,
d+(x) = 0 and d+(y) = 1 for all y , x, where d+(z) is the outdegree of vertex z in T ). Similarly to standard SA theory,
the triplet (E,V, J) defines an energy landscape and is accompanied with a critical depth HV and a difficulty DV ; these
two constants are defined by

HV = sup
x∈E\Einf (V)

hV (x) and DV = sup
x∈E\Einf (V)

hV (x)
V(x) − Vinf

, (15)

where hV (x) denotes the depth of x in (E,V, J) :

hV (x) = inf
y∈Einf (V)

ηV (x, y) − V(x) with ηV (x, y) = inf
(xi)m

i=1∈ ΠJ (x,y)
sup

16i6m−1

(
V(xi) + J(xi, xi+1)

)
, (16)

where ΠJ(x, y) is the set of paths from x to y in (E,∆(J)).
The main convergence result for GSA is stated in the following theorem; it gives an asymptotic bound on the

probability of error for suitably adjusted piecewise-constant exponential cooling sequences.

Theorem 1 (Catoni (1999)). Let (E, (Θτ)) be a GSA process with virtual energy landscape (E,V, J). For any positive
reals α, β and γ, consider the family of finite-time algorithms

{ (
Xn

)
06n6σK = GSA

(
E, (Θτ),

(
τσ,Kn

))
; σ,K ∈ N∗

}
with

cooling sequence of the form

τσ,Kn =
1
α lnK

(
γ

β

) 1
σ

⌊ n − 1
K

⌋
. (17)

If α < 1/HV , β > HV/DV and γ < β, then, for any σ,

lim inf
K→+∞ −

ln supx∈E P
(
V(XσK) > Vinf + γ

∣∣∣ X0 = x
)

ln(σK)
> 1

DV

(
γ

β

) 1
σ
. (18)

4. Finite-time convergence of stochastic continuation

To apply Theorem 1 to optimization by SC, we need to find sufficient conditions for an SC process with target
energy U to be a GSA process with virtual energy V such that Einf(V) ⊂ Einf(U). This is the subject of the two
propositions below. The conditions for an SC process to fit into the GSA framework only involve the communication
scheme; they are given in Proposition 2. Proposition 3 gives a simple additional condition for the virtual energy to be
equal to the target energy plus a constant.
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Proposition 2. Let (E, (Qτ)) be an SC process with communication scheme (qτ)τ and with target energy landscape
(E,U, q). Assume that

(A1) q is irreducible,

(A2) ∀(x, y) ∈ E2, q(x, y) = 0 =⇒ limτ→0
(
qτ(x, y)

)τ
= 1{x=y}.

Then (E, (Qτ)) is a GSA process with rate function

J(x, y) =

 (U(y) − U(x))+ if q(x, y) > 0 or x = y

+∞ otherwise.
(19)

Proof. For any (x, y) ∈ E2,(
x , y and q(x, y) > 0

)
=⇒ −τ ln Qτ(x, y) = −τ ln qτ(x, y) + (U(y) − U(x))+ −→

t→0
(U(y) − U(x))+,(

x , y and q(x, y) = 0
)
=⇒ −τ ln Qτ(x, y) > −τ ln qτ(x, y) −→

t→0
+∞,

x = y =⇒ 0 6 −τ ln Qτ(x, x) 6 −τ ln
(
1 −∑

z,x qτ(x, z)
)
= −τ ln qτ(x, x) −→

t→0
0.

The irreducibility of J follows from the irreducibility of q. �

Proposition 3. Let (E, (Qτ)) be an SC process with target energy landscape (E,U, q) and satisfying assumptions (A1)
and (A2). If

(A3) ∆(q) is symmetric (i.e., ∀(x, y) ∈ E2, q(x, y) > 0 ⇐⇒ q(y, x) > 0),

then the virtual energy V of (E, (Qτ)) satisfies V − Vinf = U − Uinf .

Proof. Let (x, y) ∈ E2 such that x , y. Let T ∈ T (x) and let πT (x, y) = (xi)m
i=1 be the (unique) path from x to y in

T . Assume that πT (x, y) is J-admissible, that is, J(xi, xi+1) < +∞ for all i ∈ {1, . . . ,m − 1}. Then, by (19) and (A3),
J(xi, xi+1) − J(xi+1, xi) = U(xi+1) − U(xi) for all i, and it follows that∑

(z,t)∈ET : z∈πT (x,y)

J(z, t) = U(x) − U(y) +
∑

(z,t)∈ET : z∈πT (x,y)

J(t, z). (20)

Since J is irreducible, there exists T ∈ T (x) such that J(T ) :=
∑

(z,t)∈ET
J(z, t) < +∞ (and hence such that πT (x, y) is

J-admissible); consequently, using (20),

V(x) + U(y) = inf
T∈T (x): J(T )<+∞

( ∑
(z,t)∈ET : z<πT (x,y)

J(z, t) +
∑

(z,t)∈ET : z∈πT (x,y)

J(t, z) + U(x)
)
.

Letting ζ : T (x)→ T (y) be the one-to-one mapping that reverses the orientation of each edge in the path from y to x,
we obtain

V(x) + U(y) = inf
T∈T (x): J(ζ(T ))<+∞

J(ζ(T )) + U(x) = V(y) + U(x).

In particular, given y0 ∈ Einf(U), we have V(x) = V(y0) + U(x) − Uinf > V(y0) for all x, and hence V(y0) = Vinf . �

Our main result is given by Theorem 2. Putting it simply, it states that increasing the number of temperature stages
of piecewise-constant exponential cooling makes it possible for SC to have a convergence speed exponent arbitrarily
close to the optimal convergence speed exponent of SA.

Theorem 2. Let (E, (Uτ), (qτ)) be an SC process with target energy landscape (E,U, q) and satisfying assumptions
(A1)–(A3), and letM be the convergence measure defined in (2). For any ε > 0, there is a family of piecewise-constant
cooling sequences

(
τσ,Kn

)
16n6σK with σ stages of length K such that the family of finite-time algorithms{ (

Xn
)
06n6σK = SC

(
E, (Uτ), (qτ),

(
τσ,Kn

))
; σ,K ∈ N∗

}
(21)
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satisfies

lim
K→+∞ −

lnM(σK)
ln(σK)

> 1
(1 + ε)DU

. (22)

These cooling sequences are of the form

τσ,Kn = AK exp
(
− B
σ

⌊n − 1
K

⌋ )
(23)

with AK >
HU

ln K
, B > ln

(
HU

DU inf
x∈E\Einf (U)

U(x) − Uinf

)
, and σ > B

ln(1 + ε)
.

Proof. Let (E,V, J) be the virtual energy landscape associated with (E, (Uτ), (qτ)). From Propositions 2 and 3, we
have Einf(V) = Einf(U), ∆(J) = ∆(q), and for any (z, t) ∈ ∆(J),

V(z) + J(z, t) = U(z) − Uinf + Vinf + (U(t) − U(z))+ = sup
{
U(z),U(t)

} − Uinf + Vinf .

It follows that ηV − Vinf = ηU − Uinf , and thus hV = hU , HV = HU , and DV = DU . Consequently, for a family of
finite-time SC algorithms of type (21) with cooling sequence of the form (17), Theorem 1 gives that if α < 1/HU ,
β > HU/DU , and γ < β, then

∀ε > 0, ∀σ > ln(β/γ)
ln(1 + ε)

, lim inf
K→+∞ −

ln supx∈E P
(
U(XσK) > Uinf + γ

∣∣∣ X0 = x
)

ln(σK)
> 1

(1 + ε)DU
.

Taking γ < infx∈E\Einf (U) U(x) − Uinf gives the asymptotic bound in (22). �

The conditions for Theorem 2 to apply are weak; they only concern the communication scheme (qτ)τ. Assumptions
(A1) and (A3) are standard in SA theory: the irreducibility of the limit q and the symmetry of its support ∆(q) ensure
that the target energy landscape can be fully explored and that any path in this landscape can be traveled in the opposite
direction. The meaning of (A2) is less clear, but a simple sufficient condition for it to hold is that q(x, x) > 0 for all x
and that ∆(qτ) = ∆(q) for τ small enough. In other words, it suffices to allow the limit communication mechanism to
rest anywhere and to “freeze” the set of possible moves at low temperatures. Quite interestingly, there is no condition
on the continuation scheme (Uβ)β apart from pointwise convergence to the target energy.
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Lecture Notes in Math. Springer, New York, pp. 69–119.
Del Moral, P., Miclo, L., 1999. On the convergence and applications of generalized simulated annealing. SIAM J. Control Optim. 37 (4), 1222–

1250.
Frigerio, A., Grillo, G., 1993. Simulated annealing with time-dependent energy function. Math. Z. 213, 97–116.
Hajek, B., 1988. Cooling schedules for optimal annealing. Math. Oper. Res. 13 (2), 311–329.
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