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Abbreviations 

COPD: Chronic Obstructive Pulmonary Disease 

CSE: Cigarette smoke extract 

GOLD: The Global Initiative for Chronic Obstructive Lung Disease 

iPLA2: Calcium-independent Phospholipase A2  

FEV: Forced Expiratory Volume 

MC-C: Mast cell-chymase 

MC-T: Mast cell-tryptase 
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Abstract 
 
The pathogenesis of chronic obstructive pulmonary disease (COPD) is based on 

the innate and adaptive inflammatory immune response to the inhalation of toxic 

particles and gases. Although tobacco smoking is the primary cause of this 

inhalation injury, many other environmental and occupational exposures 

contribute to the pathology of COPD. The immune inflammatory changes 

associated with COPD are linked to a tissue-repair and -remodeling process that 

increases mucus production and causes emphysematous destruction of the gas-

exchanging surface of the lung. The common form of emphysema observed in 

smokers begins in the respiratory bronchioles near the thickened and narrowed 

small bronchioles that become the major site of obstruction in COPD. The 

inflamed airways of COPD patients contain several inflammatory cells including 

neutrophils, macrophages, T lymphocytes, and dendritic cells. The relative 

contribution of mast cells to airway injury and remodeling is not well documented. 

In this review, an overview is given on the possible role of mast cells and their 

mediators in the pathogenesis of COPD. Activation of mast cells and mast cell 

signaling in response to exposure to cigarette smoke is further discussed. 
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1- Chronic obstructive pulmonary disease (COPD) 

Both asthma and COPD are characterized by chronic inflammation of the airways. 

Cigarette smoking is considered as a important risk factor for COPD [1-3] and it 

has been reported that 15–20% of smokers develop clinically significant COPD, 

suggesting that genetic factors most likely modify each individual's risk [1,4-6]. 

COPD has been redefined in the GOLD guidelines as a disease state 

characterized by airflow limitation that is not fully reversible. The airflow limitation 

is usually both progressive and associated with an abnormal inflammatory 

response of the lungs to noxious particles or gases [7]. Although COPD affects 

the lungs, it also produces significant systemic consequences. Loss of elastic 

recoil - airway collapse, increase smooth muscle tone, pulmonary hyperinflation, 

gas exchange abnormalities, hypoxemia and/or hypercapnia are important 

manifestation of COPD [8].  

 

1.1. Inflammation in COPD 

Several inflammatory cells and their mediators, both of the innate and adaptive 

immune system, participate in the inflammatory response in COPD. CD8+ T cells, 

macrophages and neutrophils are the cells usually considered the prime effector 

cells in pathogenesis of COPD [1,9-11], but also mast cells may be important 

[12-14]. 

The pulmonary inflammation is accompanied by increased mucus production and 

an excessive propensity of the airway smooth musculature to contract in 

response to exogenous stimuli, a phenomenon that is termed airway 
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hyperreactivity [8,11,15]. It has long been speculated but not clearly shown that 

viruses are involved in the development of these diseases  [16]. 

As mentioned before, COPD is mostly associated with cigarette smoking and 

thereby cigarette smoke is defined as major risk factor [17,18]. Cigarette smoke is 

a complex medium containing approximately 4700 different constituents 

separated into gaseous and particulate phases [19]. Carbon monoxide, carbon 

dioxide, ammonia, hydrogen dioxide, hydrogen cyanide, volatile sulphur-

containing compounds, nitrogen oxides (including nitric oxide, NO), water, and 

tar are part of the gaseous and/or particulate phase of cigarette smoke [19,20]. A 

major contributory factor to the development of COPD is the inflammatory 

response to cigarette smoke. The cellular and molecular mechanisms that are 

involved in the pathogenesis have not yet been fully described. Thus, 

understanding the role of inflammatory cells will help to explore the pathogenesis 

of this disease.  

COPD consists of mixture of diseases - bronchitis, small airways disease and 

emphysema - that exhibit different patterns of inflammation and different 

pathology [1]. It is widely accepted that the proteolytic potential of neutrophils and 

macrophages is important for the destruction of the extracellular matrix in 

emphysema [11]. This is supported by increased numbers of neutrophils and 

macrophages in both airways and parenchyma of patients with COPD [11,21]. 

Moreover, animal studies have demonstrated that macrophages and their 

proteolytic activity are a prerequisite for the development of cigarette smoke–

induced emphysema [22,23]. In addition, Churg and coworkers [24] and others 
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demonstrated that neutrophil elastase, is essential for cigarette smoke–induced 

emphysema in mice and human [25,26]. Moreover, neutrophils are present in the 

conducting airways, whereas macrophages are the major cell in secretions from 

the small airways and parenchyma [27,28]. Macrophages are increased 

throughout the respiratory tract airway lumen and epithelium in COPD and are 

positively related to severity of disease, airway obstruction and degree of alveolar 

wall damage in emphysema [29]. There is controversial data reported on the 

number and type of T cells in human disease and animal models of COPD, 

however generally it is accepted that during COPD there is either an increase in 

the CD8+/CD4+ ratio of T cells, or an increase in the in total numbers of both 

CD8+ and CD4+ T cells, in the tissue [30]. Until now, the mechanism for this 

process is not well documented. Maeno and coworkers described a critical role 

for CD8+T cells in inflammatory cell recruitment and lung destruction in a murine 

model of cigarette smoke-induced COPD [30]. In this line, we recently showed 

that CD8+ T cell proliferation was increased in the presence of cigarette smoke 

extract (CSE) primed conventional dendritic cells (cDC) [31]. CD8+ 

cytotoxic/suppressor T cells release cytotoxic perforins and granzyme B, which 

cause cell death and apoptosis, a feature of emphysema [30]. 

Epidemiological studies indicated that smoking can induce the incidence of many 

diseases such as heart diseases [32], lung diseases [33] and cancer [34]. Further, 

a link between cigarette smoking and allergic reactions has been published [35-

37]. For instance, maternal smoking, particularly in utero, is clearly associated 

with an increased risk for the later development of childhood atopy and asthma 
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[38,39]. Limited pathological data in asthmatic individuals who smoke, suggest 

that cigarette smoking may modify the airway inflammatory process [40]. On the 

other hand, a population-based cohort study indicated that personal or parental 

smoking reduces risk of allergic sensitization in people with a family history of 

atopy [41]. Cigarette smoke affects both suppressor T cells and T helper cells 

[42], but its final effect on allergic sensitization is not well understood.  

 

 

1.2. Mast cells and COPD 

 

Mast cells are playing a critical role in pathogenesis of allergic [43,44] and non-allergic 

disorders [45-47]. Studies are accumulating on the distribution, type of mast cells in 

lungs and tissues of smokers and COPD patients and their potential role in pathogenesis 

of disease. Mast cells normally reside close to epithelia, blood vessels, nerves, smooth 

muscle cells, and mucus-producing glands [48]. Recently, it has been demonstrated that 

the numbers of mast cells were significantly increased in sputum of smokers compared to 

ex-smokers [49]. Moreover, CXCL-10 is elevated in the airways of smokers compared to 

control groups [50]. CXCL-10 has been implicated in mast cell migration to the airway 

smooth muscle cells bundles [51]. In this line, TNF-α and IFNγ synergistically enhance 

transcriptional activation of CXCL-10 in human airway smooth muscle cells via STAT-1, 

NF-κB, and the transcriptional coactivator CREB-binding protein [50].  

Mast cells in the airways are exposed to inhaled, environmental challenges. As 

mast cell activation results in the coordinated release of proinflammatory 
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mediators into the surrounding tissue, exposure to environmental challenges may 

result in chronic inflammatory pathology [52, 53]. The mechanisms by which 

mast cells can be activated in the airways of patients with COPD are not well 

described. However, it has been shown that IgE-mediated mechanisms 

presumably do not play a primary role. On the other hand, it has been shown that 

mast cells have many other receptors that can possibly be activated in patients 

with COPD. For example, mast cells express Fc-gamma receptors that can be 

engaged by immune complexes, complement receptors that can be triggered by 

C3a and C5a  [54]  and c-kit, the receptor for stem cell factor [55]. Finally, 

activation of Toll-like receptors (TLR), which are abundantly expressed by mast 

cells [56, 57] can be activated by e.g. bacterial products during COPD 

exacerbations which results in production of leukotrienes, cytokines and 

chemokines, but generally not by the release of preformed mediators 

(degranulation) [58, 59].  Activation of mast cells can lead to production of a wide 

array of effector molecules including prestored mediators (serotonin, histamine, 

proteases), and actively synthesized mediators released within minutes 

(prostaglandins, leukotrienes) and a large variety of cytokines and chemokines at 

several hours after activation. The role these mediators play in tissue remodelling 

is poorly understood. Mast cells are a source of IL-4 and IL-13 that can influence 

T cell responses, mucus gland hyperplasia and smooth muscle 

hypertrophy/hyperplasia [60-63]. Angiogenesis is another feature of tissue 

remodelling and mast cells can be a major source of angiogenic factors such as 

VEGF [64- 66]. Besides, mast cell-derived mediators such as histamine and 
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cysteinyl leukotrienes can activate lung macrophages to generate nitric oxide, 

lysosomal enzymes and proinflammatory cytokines [67]. 

In the following sections, recent studies on the potential role of mast cells in 

COPD will be summarized.  

 

1.3. Mast cells and its regulatory effects on the immune system 

Mast cells arise from pluripotent stem cells, mature in tissue, and have the ability 

to generate inflammation following exposure to a variety of receptor-mediated 

signals initiated by both innate and acquired immune response mechanisms [68, 

69]. Tissue mast cells can be activated in wound healing, fibrosis, cardiovascular 

disease and autoimmunity in addition to allergic inflammation [70-72].  

Mast cells are easily identified by the presence of prominent granules within their 

cytoplasm and are heterogeneous in morphology and staining characteristics. 

Mast cells originate from myeloid stem cells and before full maturation they leave 

the bone marrow as immature committed progenitor cells and undergo their final 

differentiation in connective tissues such as the skin, and in the mucosa of the 

respiratory tract and gut under the influence of stem cell factor (SCF) and other 

locally produced cytokines [73-75]. Many different factors such as interleukin IL-3, 

IL-4, IL-9 and IL-10, nerve growth factor (NGF), chemokines and retinoids can 

influence mast cell maturation and differentiation [76]. Mast cell number within 

connective tissue is constant, whereas their numbers in e.g. respiratory and 

gastrointestinal tracts can vary considerably. For example, in inflammatory 

conditions such as allergy, asthma, rheumatoid arthritis and inflammatory bowel 
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disease, mast cells numbers may increase [72,77-79]. In this line it has been 

reported that during inflammation the number of immature progenitors mast cells 

in the circulation are increased [76].  

 

2.  Does the mast cell play a role in COPD? 

2.1. Animal models of lung emphysema 

To gain insight into the underlying pathophysiological mechanisms of human 

disease and to investigate and develop new compounds with therapeutic activity, 

animal models of human disease were designed. In vivo animal models can help 

to unravel the molecular and cellular mechanisms underlying the pathogenesis of 

emphysema and COPD. COPD due to the complexity in pathogenesis needs to 

be validated by in vivo models. The in vivo modeling of emphysema started in 

1965 by Gross et al. who described the first reproducible animal model of lung 

emphysema by instilling the proteinase papain intratracheally into rats [80].  

Inhalation of noxious stimuli, such as tobacco smoke, sulfur dioxide, nitrogen 

dioxide, may also lead to COPD-like lesions in mice, bases on the concentration, 

exposure time and strain specific genetic susceptibility. 

Many labs, developed cigarette smoke exposure-induced emphysema models in 

animals featuring either acute phase neutrophilic influx [17,71] or chronic disease 

[82-86].  
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Studies in rodent models of COPD revealed that cigarette smoke-exposure 

induces chronic inflammation in the lung associated with the development of 

emphysema, lung remodelling and decreased local immunity [87-89]. 

D'hulst et al, described a chronic model of developing lung emphysema by 

cigarette smoke. In this protocol, mice are exposed to the smoke of five 

cigarettes, 4 times a day with 30 min smoke-free intervals, 5 days per week for 

24 weeks in total [90]. An increased number of cells has been shown after 3 days 

and the end of 6 months with an accumulation of monocytes/macrophages, 

neutrophils, lymphocytes and DCs in BAL fluid. Moreover, microscopic analysis 

of lung tissue sections revealed a significant degree of emphysema after 6 

months of smoke exposure. 

 In another model, sub-chronic cigarette smoke exposure in mice has been 

reported [91]. In this protocol, mice are exposed to cigarette smoke in dose-

response experiments from 3, 6, or 9 cigarettes/day for 4 days, delivered three 

times per day 3, 6, and 9 cigarettes/day were very well tolerated. In this model   a 

dose-dependent increase in the total number of PMN and macrophages with low 

percent of CD4 and CD8 T cells was found. Further an increased amount of 

MMP-9 in BALF with low amount of lymphocytes has been shown.  In this model, 

mice exposed to 9 cigarettes/day for 4 days showed a low level of mononuclear 

peribronchial inflammation within the alveolar space. The epithelium showed 

inflammatory activation as indicated by Clara cell capping. Similarly, S100A8-

positive neutrophils were observed in alveoli as well as intravascularly, with some 

peribronchial infiltration. Mucus metaplasia was observed in larger airways, 
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where AB-PAS-stained sections from cigarette smoke-exposed mouse lungs 

showed acid and neutral mucins and goblet cell metaplasia. 

 In time course experiments, mice were exposed to cigarette smoke generated 

from 9 cigarettes/day for 1, 2, 3, or 4 days. Nose exposure of cigarette smoke for 

development of lung emphysema has also been employed [92]. In this model, 

mice are exposed to two 1R3 reference cigarettes daily for 5 days per week 

using a smoke exposure system. In this model,  isolated cells from the BAL of 

nose-only smoke- or sham-exposed mice are greater than 95% mononuclear 

cells (sham: 99.13 ± 0.50; smoke: 97.90 ± 0.57; n = 6 with 5 animals pooled per 

experiment). The remaining cells were neutrophils with no eosinophils present. 

No difference in cellular composition in the BAL was observed between the 

groups. Isolated cells from the BAL of whole-body smoke- or sham-exposed mice 

are greater than 95% mononuclear cells (sham: 99.88 ± 0.29; smoke: 96.96 ± 

4.82; n = 5 per group). Similar to nose-only exposure, the balance of the 

remaining cells was neutrophils, and no difference in cellular composition in the 

BAL was observed between groups 

In an initial lead-up period, animals are accustomed to 1 cigarette in the first and 

to two cigarettes in the second week. To control for handling, groups of mice are 

placed into restrainers only and exposed to room air (sham-exposure).  

At present the role of mast cells in the development of chronic obstructive 

pulmonary disease is not studied in detail. The described animal models for 

COPD could be helpful to delineate a possible involvement of mast cell in the 
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pathogenesis of this disease [93, 94]. For instance, employing (conditional) mast 

cell-deficient mice may shed more light on a participation of mast cells in COPD.  

 

2.2. In vitro studies using cigarette smoke extract 

Extracts from cigarette smoke bubbled through water have been used 

extensively to show that cigarette smoke can directly activate or inhibit cellular 

activation pathways possibly influencing an inflammatory outcome. Such studies 

have been performed predominantly with macrophages or monocytes [95-98]. 

Thomas et al studied the role of extracts of tobacco smoke on the activation of 

mast cells isolated from canine [99] and found that cigarette smoke extract 

solution induced the release of the preformed mediators histamine and tryptase 

in an energy- and temperature-dependent, non-cytotoxic manner. In another 

study, exposure of RBL-2H3 with tobacco-derived materials induced 

overproduction of proteinases, but attenuated degranulation via the release of 

NO [100]. In line with this, our studies demonstrated that CSE suppressed IgE-

mediated degranulation and cytokine release, while no effect was observed on 

leukotriene release [101] whereas in human cord mast cells, CSE increased the 

release of mediators [101]. It is presently not known if the type of mast cells 

and/or the condition of activation may account for this discrepancy. The role of 

mast cells in non-allergic diseases such as COPD is just starting to become 

unraveled. Likely, mast cell accumulation and activation in such processes is 

related to IgE-independent pathways involving for example releases of proteases, 

interleukin-8 [102] and chemokines [103] and TNF-α [47,104] which play an 
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important role in COPD as discussed before. Recently, we have demonstrated 

that CSE induces production of chemokines by mouse mast cells [103]. TNF-α or 

macrophage inflammatory protein-2 (mouse analogue of human IL-8) may induce 

the influx of neutrophils. Thus, smoking may cause the recruitment of 

inflammatory cells via mast cell-derived chemokines. On the other hand, 

exposure to cigarette smoke may lead to a reduced allergic (IgE-mediated) 

activation of mast cells without affecting their response to activation via e.g. 

bacterial derived LPS. 

 

3. Clinical evidence 

Exposure to cigarette smoke activates an inflammatory cascade in the airways, 

resulting in the production of a number of potent cytokines and chemokines with 

accompanying damage to the lung epithelium, increased permeability, and 

recruitment of inflammatory cells in to the lungs [1,5].  

In 1982, Walter et al reported a change in the number and degranulation of mast 

cells in smoker lungs of monkeys [105]. In the lungs and skin of human smokers, 

mast cells increase in absolute numbers, and smoking may be associated with 

activation of mast cells [13,106]. Earlier studies demonstrated elevated histamine 

and tryptase levels in bronchoalveolar lavage fluid of smokers [107]. Moreover, 

several human studies demonstrated increased numbers of mast cells in the 

circulation, airways, and parenchyma of patients with COPD [108]. Since mast 

cells are able to produce TNF-α [47,104] proteases [109, 111]  and IL-8 [102], it 

is tempting to speculate that these cells could contribute to the pathogenesis of 
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COPD. TNF-α and IL-8 contribute to neutrophilic inflammation in COPD [94-96], 

which is in turn associated with more severe airflow limitation. On the other hand, 

the release of tryptase and chymase may also be protective by prevention of 

epithelial cell proliferation [110]  and inhibiting smooth muscle proliferation [98], 

respectively.   

No consistent information on the Involvement of mast cells in pathogenesis of 

lung emphysema is available. Several studies suggest that mast cells may be 

involved in smoking induced lung diseases. For example, Kalenderian et al [13] 

found that the levels of the mast cell mediators, histamine and tryptase were 

considerably elevated in bronchoalveolar lavage fluids from smokers. The 

authors concluded that these data indicated ‘a greater propensity for mast cell-

mediated injury in the smoker. Subsequent studies have borne out this 

conclusion [111]. Gosman et al reported that the distribution of tryptase- and 

chymase-positive mast cells in the airways is similar in patients with COPD 

compared to controls without airflow limitation. In contrast, the number of these 

cells in the subepithelial area of central airways is lower in COPD compared to 

controls. Beside, the mast cell populations in the lung are altered in COPD, as 

exemplified by a change in the MC-TC/MC-T balance, altered tissue distribution, 

and modified morphological and molecular characteristics. Collectively, the data 

show alterations in lung mast cells in COPD that correlate with lung function 

which may have significant pathophysiological consequences [112]. 
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4. Conclusions, further questions and outlook 

In conclusion, in the current review, we tried to summarize current information on 

the possible role of mast cells in pathogenesis of lung emphysema and COPD. It 

remains to be clarified whether mast cells are central to or only supportive in the 

pathogenesis of these airway diseases.  

Clinical data show increased levels of mast cell-secreted tryptase and increased 

numbers of degranulated mast cells in the lavage and bronchial tissue of 

smokers [113]. Besides, proteinase-activated receptor (PAR)-2 is expressed by 

mast cells, and tryptase is a potent activator of this receptor [113]. Mast cells can 

be activated by a PAR-2 agonist to secrete IL-8, a chemokine which can 

contribute to the progress of inflammation [113]. 

Moreover, activation of calcium-independent phospholipase A2 (iPLA2) via mast 

cell tryptase could lead to arachidonic acid liberation, PAF production, cell 

surface P-selectin expression and increased neutrophil adherence [115] (Fig. 1). 

Activation of iPLA2 also could lead to the release of IL-1β, which is also involved 

in a neutrophilic response [116]. Mast cells could be a source of inflammatory 

mediators which induce recruitment of e.g. neutrophils (Fig.1). Taken together, 

present literature suggests a role for mast cells in pathogenesis of emphysema. 

Currently available animal models for emphysema could be employed to further 

address the role of mast cells and their possible value as therapeutic target in the 

treatment of COPD. 
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Figure legend: 
 
 
Fig. 1. Schematic diagram of possible involvement of mast cells in inflammatory 

responses induced by cigarette smoke 

        Chemokine production (CCL2, CXCL3) by mast cells induced by cigarette smoke 

could lead to recruitment of polymorphonuclear cells into the lung. Cigarette 

smoke may also induce the increased release of mast cell tryptase. This may 

trigger the activation of iPLA2, activation of inflammasome signaling and 

production of IL-1β and IL-18 to induce further lung inflammation and injury. On 

the other hand, inhibition the IgE-mediated degranulation may be beneficial in the 

suppression of allergic reactions. 
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