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Existence of global strong solution for the compressible Navier-Stokes system and the Korteweg system in two-dimension

.

In the second case we study the existence of global strong solution with large initial data in the sense of the scaling of the equations for Korteweg system with degenerate viscosity coefficient and with friction term.

Introduction

The motion of a general barotropic compressible fluid with capillary tensor is described by the following system, which can be derived from a Cahn-Hilliard free energy (see the pioneering work by J.-E. Dunn and J. Serrin in [START_REF] Dunn | On the thermomechanics of interstitial working[END_REF] and also in [START_REF] Anderson | Diffuse-interface methods in fluid mech[END_REF][START_REF] Cahn | Free energy of a nonuniform system, I. Interfacial free energy[END_REF][START_REF] Gurtin | Two-phases binary fluids and immiscible fluids described by an order parameter[END_REF]):

∂ t ρ + div(ρu) = 0, ∂ t (ρu) + div(ρu ⊗ u) -div(2µ(ρ)Du) -∇ λ(ρ)divu + ∇P (ρ) + aρu = divK,
(1.1) where divK is the capillary tensor which reads as follows:

divK = ∇ ρκ(ρ)∆ρ + 1 2 (κ(ρ) + ρκ (ρ))|∇ρ| 2 -div κ(ρ)∇ρ ⊗ ∇ρ . (1.2)
The term divK allows to describe the variation of density at the interfaces between two phases, generally a mixture liquid-vapor. P is a general increasing pressure term that we assume in the sequel under the form P (ρ) = bρ γ with b > 0 and γ ≥ 1, aρu is a friction term with a > 0 (see [START_REF] Pedlosky | Geophysical Fluid Dynamics[END_REF]). D(u) = 1 2 [∇u + t ∇u] being the stress tensor, µ and λ are the two Lamé viscosity coefficients depending on the density ρ and satisfying: µ > 0 and 2µ + N λ ≥ 0.

In the present paper, we are interested in dealing with two different situations:

• The case of the compressible Navier-Stokes system where we assume no capillarity, κ(ρ) = 0 and where µ(ρ) = 1 is a constant and λ(ρ) = λρ β with β ≥ 2.

• The case of Korteweg system with the viscosity coefficients and the capillarity coefficient such that:

µ(ρ) = µρ λ(ρ) = 0 and κ(ρ) = κ ρ with κ > 0, µ > 0.

In the first case we would like to extend the famous result of global strong solution in two dimension in the torus discovered by V. A. Vaigant and A. V. Kazhikhov in [START_REF] Vaigant | On existence of global solutions to the twodimensional Navier-Stokes equations for a compressible viscous fluid[END_REF]. Indeed in [START_REF] Vaigant | On existence of global solutions to the twodimensional Navier-Stokes equations for a compressible viscous fluid[END_REF], the authors assume that λ(ρ) = λρ β with β > 3 and λ > 0 and µ(ρ) = 1. Let us emphasize that a such choice on the viscosity coefficients allows to exhibits two different phenomena; the first one concerns the notion of effective velocity introduced by Lions in [START_REF] Lions | Mathematical Topics in Fluid Mechanics[END_REF] which is crucial in this context for getting a priori estimates on the divergence and the rotational of the velocity; the second reason to choose such coefficient concerns the possibility to obtain L ∞ T (L p (T 2 )) estimates for any p > 1 on the density and any T > 0. Indeed the viscosity coefficient λ(ρ) offers enough weight in order to derivate such estimates on the density (see the p1115 "Second a priori estimate for the density" in [START_REF] Vaigant | On existence of global solutions to the twodimensional Navier-Stokes equations for a compressible viscous fluid[END_REF]). In the first part of this paper we wish to improve this result by assuming only λ(ρ) = λρ β with β > 2 and λ > 0. The key point will consist in using commutator estimates for dealing with term of the form [R ij , u j ](ρu i ) (we refer to [START_REF] Coifman | Compensated-compactness and Hardy spaces[END_REF] for such estimates but also to ?? where Lions prove global existence of weak solution for compressible Navier-Stokes equations by introducing this kind of ingredient). In the second case we are interested in proving global existence of strong solution for the Korteweg system with friction term when the physical coefficients verify:

κ(ρ) = κ h , κ = µ 2 and b = aµ, (1.3) 
with µ > 0. This system without friction has been widely studied this last year in particular concerning the existence of global weak solution and global strong solution with small initial data. We refer in particular to the following works [START_REF] Bresch | On some compressible fluid models: Korteweg,lubrication and shallow water systems[END_REF][START_REF] Danchin | Existence of solutions for compressible fluid models of Korteweg type[END_REF][START_REF] Haspot | Blow-up criterion, ill-posedness and existence of strong solution for Korteweg system with infinite energy[END_REF][START_REF] Haspot | New entropy for Korteweg's system, existence of global weak solution and Prodi-Serrin theorem[END_REF][START_REF] Haspot | Existence of solutions for compressible fluid models of Korteweg type[END_REF][START_REF] Haspot | Existence of weak solution for compressible fluid models of Korteweg type[END_REF][START_REF] Haspot | Cauchy problem for viscous shallow water equations with a term of capillarity , accepted in Hyperbolic Problems: Theory, Numerics and Application PSAPM[END_REF][START_REF] Jüngel | Global weak solutions to compressible Navier-Stokes equations for quantum fluids[END_REF]. Let us start with explaining a other notion of effective velocity used in particular in [START_REF] Haspot | Blow-up criterion, ill-posedness and existence of strong solution for Korteweg system with infinite energy[END_REF] which allows us to simplify the system (1.6). Indeed by computation (see [START_REF] Haspot | Blow-up criterion, ill-posedness and existence of strong solution for Korteweg system with infinite energy[END_REF]), we obtain the simplified system:

∂ t ρ + div(ρv) -µ∆ρ = 0, ρ∂ t v + ρu • ∇v -div(µρ ∇v) + a ρ v = 0, (1.4) 
with v = u + µ∇ ln ρ the effective velocity. For more details on the computation, we refer to [START_REF] Haspot | New entropy for Korteweg's system, existence of global weak solution and Prodi-Serrin theorem[END_REF]. When we write the system (1.4) in function of the momentum m = ρv, the system reads as follows:

   ∂ t ρ + divm -µ∆ρ = 0, ∂ t m + div( m ρ ⊗ m) -µ∆m + r m = 0, (1.5) 
In particular we observe that (ρ, -µ∇ ln ρ) when:

∂ t ρ -µ∆ρ = 0,
is a particular global solution of the system (1.6).

Remark 1

Let us mention that we can choose initial density which admits vacuum that we wish. In general it is not always possible to obtain global strong solution with initial density close from the vacuum.

In the sequel we will be interested in working around this global particular solution (see remark 1) in order to prove the existence of global strong solution with large initial data on the irrotational part.More precisely we shall wish obtain global strong solution in critical space for the scaling of the equations. Let us briefly recall the notion of invariance by scaling of the equation and by what we mean by supercritical smallness on the data. By critical, we mean that we want to solve the system (1.6) in functional spaces with invariant norm by the natural changes of scales which leave (1.6) invariant. More precisely in our case, the following transformation:

(ρ(t, x), u(t, x)) -→ (ρ(l 2 t, lx), lu(l 2 t, lx)), l ∈ R, (1.6) 
verify this property, provided that the pressure term has been changed accordingly. In particular we can observe that Ḣ N 2 × Ḣ N 2 -1 is a space invariant for the scaling of the equation, more generally such Besov spaces:

(ρ 0 -ρ) ∈ B N p p,1 , u 0 ∈ B N p 1 -1 p 1 ,1 ,
with (p, p 1 ) ∈ [1, +∞[ are also available.

Results

Let us state the two main result of this paper. The first one is an improvement of the results of Vaigant and Kazhikhov [START_REF] Vaigant | On existence of global solutions to the twodimensional Navier-Stokes equations for a compressible viscous fluid[END_REF].

Theorem 1.1 Let us assume the following hypothesis on the viscosity coefficients:

µ(ρ) = 1 and λ(ρ) = λρ β with β > 2.
Let u 0 ∈ H 2 (T 2 ), ρ 0 ∈ W 1,q (T 2 ) with q > 2 and:

0 < c ≤ ρ 0 (x) ≤ m < +∞ ∀x ∈ T 2 ,
then it exists a unique global strong solution to (1.6) such that:

u ∈ W 2,1 2 (Q T ) and ρ ∈ W 1,1 q,∞ (Q T ) ∀T > 0, with Q T = (0, T ) × T 2 .
Remark 2 As mentioned above, the main point compared with the result of [START_REF] Vaigant | On existence of global solutions to the twodimensional Navier-Stokes equations for a compressible viscous fluid[END_REF] concerns the fact that we can improve the range of β by assuming only β > 2. It would be possible also to improve the regularity condition on the initial data by working in Besov space invariant for the scaling of the system, but it is not the object of this paper.

We are going to give your second result on Korteweg system with supercritical smallness condition on the initial data; before let us give the following definition:

Definition 1.1 We set q = ρ -1, m = ρu and ρ = h.
In the following we are dealing with the euclidian space R N with N ≥ 2. Let us give our main result on the Korteweg system where we prove the existence of global strong solution with large initial data on the irrotational part.

Theorem 1.2 Suppose that we are under the conditions (1.3). Assume that

m 0 ∈ B N 2 -1 2,1
and

q 0 ∈ B N 2
2,1 with h 0 ≥ c > 0. Then there exists a constant ε 0 depending on 1 h 0 such that if:

m 0 B N 2 -1 2,1 ≤ ε 0 ,
then there exists a unique global solution (q, m) for system (1.5) with h bounded away from zero and,

h ∈ C(R + , B N 2 2,1 ) ∩ L 1 (R + , B N 2 +2 2,1 ) and m ∈ C(R + ; B N 2 -1 2,1 ) ∩ L 1 (R+, B N 2 -1 2,1 ∩ B N 2 +1
2,1 ).

Let us give the plane of this paper, we shall remind in section 2 some auxiliary results of Gagliardo-Nirenberg's inequality and in section 3 the Litllewood-Paley theory. In section 4 and section 5, we will prove different a priori estimates on the density and the velocity which show the theorem 1.1. We will conclude in section 6 by the proof of theorem 1.2.

Notation

In all the paper, C will stand for a harmless constant, and we will sometimes use the notation A B equivalently to A ≤ CB.

Auxiliary Assertions

We are going to recall some lemma which are also present in [START_REF] Vaigant | On existence of global solutions to the twodimensional Navier-Stokes equations for a compressible viscous fluid[END_REF] and that we prefer to state for the sake of the completnes.

Lemma 1

Let Ω ∈ R N be an arbitrary bounded domain satisfying the cone condition.

Then the following inequality is valid for every function u ∈ W 1,m (Ω), Ω udx = 0

u L q (Ω) ≤ C 1 ∇u α L m (Ω) u 1-α L r (Ω) , (2.7 
)

where α = 1 r -1 q 1 r -1 m + 1 n
, moreover if m < n then q ∈ [r, mn n-m ] for r ≤ mn n-m and q ∈ [ mn n-m , r] for r > mn n-m . If m ≥ n then q ∈ [r, +∞0 is arbitrary; moreover if m > n then equality (2.7) is also valid for q = +∞. Inequality (2.7) is a particular case of the more general inequalities proven in [START_REF] Gagliardo | Ulteriori proprieta di alcune classi di funzioni in piu variablil[END_REF][START_REF] Ilin | Some inequalities in function spaces and their application to studying convergence of variational methods[END_REF][START_REF] Golovkin | On embedding theorems[END_REF]. Let us mention that an inequality of the form (2.7) is valid for the function of class W 1,m (Ω) when M = 1

|Ω| Ω u dx is not null. It suffices to consider v = u -M and apply inequality (2.7) to the function v. We obtain then the inequality

u L q (Ω) ≤ C 2 ( ∇u α L m (Ω) u 1-α L r (Ω) + u L 1 (Ω) ), (2.8) 
Lemma 2 Let Ω ∈ R 2 be an arbitrary bounded domain satisfying the cone condition.

Then every function u ∈ W 1,m (Ω) with Ω udx = 0 satisfies the inequality

u L 2m 2-m (Ω) ≤ C 3 (2 -m) -1 2 ∇u L m (Ω) , 1 ≤ m < 2, (2.9)
where C 3 is a constant independent of m and the function u.

For a proof of this inequality see [START_REF] Yudovich | On some estimates connected with integral operators and solutions of elliptic equations[END_REF][START_REF] Talenti | Best constant in Sobolev inequality[END_REF]. The exact constant in inequality (2.9) is obtained in the article [START_REF] Talenti | Best constant in Sobolev inequality[END_REF].

Lemma 3 Let Ω ∈ R 2 be an arbitrary bounded domain satisfying the cone condition.

Then for an arbitrary number ε,

1 ≥ 2ε ≥ 0, every function h ∈ W 1, 2m m+δ (Ω), m ≥ 2, 1 ≥ δ ≥ 0, satisfies the inequality h L 2m (Ω) ≤ C 4 ( h L 1 (Ω) + m 1 2 ∇h 1-s L 2m m+δ (Ω) h s L 2(1-ε) (Ω) ), (2.10 
)

where s = (1 -ε) 1-δ m-δ(1-ε)
and C 4 is a positive constant independent of m, ε, δ and the function h.

Littlewood-Paley theory and Besov spaces

Throughout the paper, C stands for a constant whose exact meaning depends on the context. The notation A B means that A ≤ CB. For all Banach space X, we denote by C([0, T ], X) the set of continuous functions on [0, T ] with values in X. For p ∈ [1, +∞], the notation L p (0, T, X) or L p T (X) stands for the set of measurable functions on (0, T ) with values in X such that t → f (t) X belongs to L p (0, T ). Littlewood-Paley decomposition corresponds to a dyadic decomposition of the space in Fourier variables. We can use for instance any

ϕ ∈ C ∞ (R N ), supported in C = {ξ ∈ R N / 3 4 ≤ |ξ| ≤ 8 3 } such that: l∈Z ϕ(2 -l ξ) = 1 if ξ = 0.
Denoting h = F -1 ϕ, we then define the dyadic blocks by:

∆ l u = ϕ(2 -l D)u = 2 lN R N h(2 l y)u(x -y)dy and S l u = k≤l-1 ∆ k u .
Formally, one can write that:

u = k∈Z ∆ k u .
This decomposition is called homogeneous Littlewood-Paley decomposition. Let us observe that the above formal equality does not hold in S (R N ) for two reasons:

1. The right hand-side does not necessarily converge in S (R N ).

2. Even if it does, the equality is not always true in S (R N ) (consider the case of the polynomials).

Homogeneous Besov spaces and first properties

Definition 3.2 For s ∈ R, p ∈ [1, +∞], q ∈ [1, +∞],
and u ∈ S (R N ) we set:

u B s p,q = ( l∈Z (2 ls ∆ l u L p ) q ) 1 q .
The Besov space B s p,q is the set of temperate distribution u such that u B s p,q < +∞.

Remark 3

The above definition is a natural generalization of the nonhomogeneous Sobolev and Hölder spaces: one can show that B s ∞,∞ is the nonhomogeneous Hölder space C s and that B s 2,2 is the nonhomogeneous space H s .

Proposition 3.1 The following properties holds:

1. there exists a constant universal C such that:

C -1 u B s p,r ≤ ∇u B s-1 p,r ≤ C u B s p,r . 2. If p 1 < p 2 and r 1 ≤ r 2 then B s p 1 ,r 1 → B s-N (1/p 1 -1/p 2 ) p 2 ,r 2 . 3. B s p,r 1 → B s p,r if s > s or if s = s and r 1 ≤ r.
Let now recall a few product laws in Besov spaces coming directly from the paradifferential calculus of J-M. Bony (see [?]) and rewrite on a generalized form in [?].

Proposition 3.2 We have the following laws of product:

• For all s ∈ R, (p, r) ∈ [1, +∞] 2 we have: uv B s p,r ≤ C( u L ∞ v B s p,r + v L ∞ u B s p,r ) . (3.11) • Let (p, p 1 , p 2 , r, λ 1 , λ 2 ) ∈ [1, +∞] 2 such that: 1 p ≤ 1 p 1 + 1 p 2 , p 1 ≤ λ 2 , p 2 ≤ λ 1 , 1 p ≤ 1 p 1 + 1 λ 1 and 1 p ≤ 1 p 2 + 1 λ 2 .
We have then the following inequalities: if

s 1 + s 2 + N inf(0, 1 -1 p 1 -1 p 2 ) > 0, s 1 + N λ 2 < N p 1 and s 2 + N λ 1 < N p 2 then: uv B s 1 +s 2 -N ( 1 p 1 + 1 p 2 -1 p ) p,r u B s 1 p 1 ,r v B s 2 p 2 ,∞ , (3.12 
)

when s 1 + N λ 2 = N p 1 (resp s 2 + N λ 1 = N p 2 ) we replace u B s 1 p 1 ,r v B s 2 p 2 ,∞ (resp v B s 2 p 2 ,∞ ) by u B s 1 p 1 ,1 v B s 2 p 2 ,r (resp v B s 2 p 2 ,∞ ∩L ∞ ), if s 1 + N λ 2 = N p 1 and s 2 + N λ 1 = N p 2 we take r = 1. If s 1 + s 2 = 0, s 1 ∈ ( N λ 1 -N p 2 , N p 1 -N λ 2 ] and 1 p 1 + 1 p 2 ≤ 1 then: uv B -N ( 1 p 1 + 1 p 2 -1 p ) p,∞ u B s 1 p 1 ,1 v B s 2 p 2 ,∞ . (3.13)
If |s| < N p for p ≥ 2 and -N p < s < N p else, we have:

uv B s p,r ≤ C u B s p,r v B N p p,∞ ∩L ∞ . (3.14)
Remark 4 In the sequel p will be either p 1 or p 2 and in this case

1 λ = 1 p 1 -1 p 2 if p 1 ≤ p 2 , resp 1 λ = 1 p 2 -1 p 1 if p 2 ≤ p 1 . Corollary 1 Let r ∈ [1, +∞], 1 ≤ p ≤ p 1 ≤
+∞ and s such that:

• s ∈ (-N p 1 , N p 1 ) if 1 p + 1 p 1 ≤ 1, • s ∈ (-N p 1 + N ( 1 p + 1 p 1 -1), N p 1 ) if 1 p + 1 p 1 > 1, then we have if u ∈ B s p,r and v ∈ B N p 1 p 1 ,∞ ∩ L ∞ : uv B s p,r ≤ C u B s p,r v B N p 1 p 1 ,∞ ∩L ∞ .
The study of non stationary PDE's requires space of type L ρ (0, T, X) for appropriate Banach spaces X. In our case, we expect X to be a Besov space, so that it is natural to localize the equation through Littlewood-Payley decomposition. But, in doing so, we obtain bounds in spaces which are not type L ρ (0, T, X) (except if r = p). We are now going to define the spaces of Chemin-Lerner in which we will work, which are a refinement of the spaces L ρ T (B s p,r ). Definition 3.3 Let ρ ∈ [1, +∞], T ∈ [1, +∞] and s 1 ∈ R. We set:

u L ρ T (B s 1 p,r ) = l∈Z 2 lrs 1 ∆ l u(t) r L ρ (L p ) 1 r .
We then define the space L ρ T (B s 1 p,r ) as the set of temperate distribution u over (0,

T ) × R N such that u L ρ T (B s 1 p,r ) < +∞. We set C T ( B s 1 p,r ) = L ∞ T ( B s 1 p,r ) ∩ C([0, T ], B s 1 p,r
). Let us emphasize that, according to Minkowski inequality, we have:

u L ρ T (B s 1 p,r ) ≤ u L ρ T (B s 1 p,r ) if r ≥ ρ, u L ρ T (B s 1 p,r ) ≥ u L ρ T (B s 1 p,r ) if r ≤ ρ.
Remark 5 It is easy to generalize proposition 3.2, to L ρ T (B s 1 p,r ) spaces. The indices s 1 , p, r behave just as in the stationary case whereas the time exponent ρ behaves according to Hölder inequality.

In the sequel we will need of composition lemma in L ρ T (B s p,r ) spaces.

Lemma 4 Let s > 0, (p, r) ∈ [1, +∞] and u ∈ L ρ T (B s p,r ) ∩ L ∞ T (L ∞ ). 1. Let F ∈ W [s]+2,∞ loc (R N ) such that F (0) = 0. Then F (u) ∈ L ρ T (B s p,r
). More precisely there exists a function C depending only on s, p, r, N and F such that:

F (u) L ρ T (B s p,r ) ≤ C( u L ∞ T (L ∞ ) ) u L ρ T (B s p,r ) . 2. If v, u ∈ L ρ T (B s p,r ) ∩ L ∞ T (L ∞ ) and G ∈ W [s]+3,∞ loc (R N ) then G(u) -G(v) belongs to L ρ T (B s p )
and there exists a constant C depending only of s, p, N and G such that:

G(u) -G(v) L ρ T (B s p,r ) ≤ C( u L ∞ T (L ∞ ) , v L ∞ T (L ∞ ) ) v -u L ρ T (B s p,r ) (1 + u L ∞ T (L ∞ ) + v L ∞ T (L ∞ ) ) + v -u L ∞ T (L ∞ ) ( u L ρ T (B s p,r ) + v L ρ T (B s p,r ) ) .
Now we give some result on the behavior of the Besov spaces via some pseudodifferential operator (see [?]).

Definition 3.4 Let m ∈ R. A smooth function function f : R N → R is said to be a S m
multiplier if for all muti-index α, there exists a constant C α such that:

∀ξ ∈ R N , |∂ α f (ξ)| ≤ C α (1 + |ξ|) m-|α| .
Proposition 3.3 Let m ∈ R and f be a S m multiplier. Then for all s ∈ R and 1 ≤ p, r ≤ +∞ the operator f (D) is continuous from B s p,r to B s-m p,r .

Let us now give some estimates for the heat equation:

Proposition 3.4 Let s ∈ R, (p, r) ∈ [1, +∞] 2 and 1 ≤ ρ 2 ≤ ρ 1 ≤ +∞. Assume that u 0 ∈ B s p,r and f ∈ L ρ 2 T (B s-2+2/ρ 2 p,r
). Let u be a solution of:

∂ t u -µ∆u = f u t=0 = u 0 .
Then there exists C > 0 depending only on N, µ, ρ 1 and ρ 2 such that:

u L ρ 1 T ( B s+2/ρ 1 p,r ) ≤ C u 0 B s p,r + µ 1 ρ 2 -1 f L ρ 2 T (B s-2+2/ρ 2 p,r
) .

If in addition r is finite then u belongs to C([0, T ], B s p,r ).

4 Proof of theorem 1.1

In the sequel we shall work on the torus Ω = T 2 . Let us start with recalling the energy estimate, when we multiply the momentum equation we get:

Ω (ρ|u| 2 (t, x) + π(ρ)(t, x))dx + t 0 Ω |∇u| 2 (s, x)dsdx + t 0 Ω (1 + λ(ρ)(s, x))(divu) 2 (s, x)dsdx ≤ Ω (ρ 0 (x)|u 0 (x)| 2 + Π(ρ 0 )(x))dx (4.15)
with π defined as follows:

π(ρ) = a( 1 γ -1 (ρ γ -ρ) -ρ + 1) for γ > 1.
Let us recall that P (ρ) = ρπ (ρ) what implies by convexity that π(ρ) ≥ 0. Finally as we assume that:

C 1 = Ω 1 2 ρ 0 (x)|u 0 (x)| 2 + π(ρ 0 )(x) + ρ 0 (x) dx
is finite, we obtain at least formally (if ρ and u are enough regular for performing integration by parts) by energy estimate (4.15) and via the transport equation that:

Ω (ρ|u| 2 (t, x) + π(ρ)(t, x) + ρ(t, x))dx + t 0 Ω |∇u| 2 (s, x)dsdx + t 0 Ω (1 + λ(ρ)(s, x))(divu) 2 (s, x)dsdx ≤ C 1 (4.16)
Let us now explain how to get L 2 ((0, T ) × Ω) estimates on u, we are going to follow Lions in [START_REF] Lions | Mathematical Topics in Fluid Mechanics[END_REF] p4. Indeed by the momentum equation we have:

| Ω ρu(t, x)dx| = | Ω ρ 0 u 0 (x)dx| ≤ ρ 0 u 0 L 1 (Ω) .
Next we use the Poincaré-Wirtinger inequality and we have:

| Ω ρ(t, x)[u(t, x) - Ω u(t, y)dy]dx| ≤ C ρ(t, •) L γ ∇u L 2 (Ω) .
Hence for all t ≥ 0:

| Ω u(t, x)dx| ≤ 1 ( Ω ρ 0 dx) ( ρ 0 u 0 L 1 (Ω) + C ρ(t, •) L γ ∇u L 2 (Ω) ).
We conclude by Poincaré-Wirtinger inequality which implies that | Ω u(t, x)dx|+ ∇u L 2 (Ω) is an equivalent norm to the usual one in H 1 (Ω).

Now we are just going to explain where in the proof we can slightly improve the range of the coefficient β in [START_REF] Vaigant | On existence of global solutions to the twodimensional Navier-Stokes equations for a compressible viscous fluid[END_REF]. One of the main point of the proof in [START_REF] Vaigant | On existence of global solutions to the twodimensional Navier-Stokes equations for a compressible viscous fluid[END_REF] consists in getting a priori estimates on the density in L ∞ (L p (T 2 )) for any p > 1. This is possible due to the viscosity coefficient λ(ρ) = ρ β which provide such estimate at least if β is large enough. Let us follow the arguments of the proof of [START_REF] Vaigant | On existence of global solutions to the twodimensional Navier-Stokes equations for a compressible viscous fluid[END_REF] and explain where by commutators estimates we can weaken the hypothesis β > 3.

A priori estimates on the density and the velocity

First as in [START_REF] Vaigant | On existence of global solutions to the twodimensional Navier-Stokes equations for a compressible viscous fluid[END_REF], we are going to recall some estimates for solutions to the following two Neumann problems:

∆ξ = div(ρu), Ω ξdx = 0, ∂ x 1 ξ| x 1 =0,x 1 =1 = ∂ x 2 ξ| x 2 =0,x 2 =1 = 0.
(5.17) ∆η = div(div(ρu ⊗ u)),

Ω ηdx = 0, , ∂ x 1 η| x 1 =0,x 1 =1 = ∂ x 2 η| x 2 =0,x 2 =1 = 0. (5.18)
Therefore by [START_REF] Ladhyzhenskaya | Linear and quasilinear equations of parabolic type[END_REF] we have solution to the problems (5.17) and (5.18), whereas the estimates for singular integrals in [START_REF] Stein | Singular Integrals and differentiability properties of functions[END_REF] provide the following inequalities:

∇(∆) -1 div(ρu) L 2m m ρu L 2m , 1 ≤ m < +∞, ∇(∆) -1 div(ρu) L 2-r ρu L 2-r , 1 ≥ 2r ≥ 0, R i,j (ρu i u j ) L 2m m ρu ⊗ u L 2m , 1 ≤ m < +∞,
Here we have roughly written ξ = (∆) -1 div(ρu) and η = R i,j (ρu i u j ) (with the summation notation). By Hölder's inequalities we obtain:

∇(∆) -1 div(ρu) L 2m m ρ L 2mk k-1 u L 2mk , ∇(∆) -1 div(ρu) L 2-r ρ L 2-r r √ ρu 1 2 L 2 , R i,j (ρu i u j ) L 2m m ρ L 2mk k-1 u 2 L 4mk , (5.19) 
where k > 1, m ≥ 1 and r ≥ 1, 1 ≥ 2r ≥ 0.

From the estimate of lemma 1-3, we obtain:

u L 2m m 1 2 ∇u L 2 , m > 2, (∆) -1 div(ρu) L 2m m 1 2 ∇(∆) -1 div(ρu) 2m m+1 , m > 2, (5.20) 
We set now:

ϕ(t) = Ω curlu 2 (t, x) + (2 + λ(ρ))divu 2 (t, x) dx,
we obtain then by using (5.20), (5.19) with r = 2 m+1 and the energy inequality (4.16):

(∆) -1 div(ρu) L 2m m 1 2 ρ 1 2 L m , m > 2, ( 5.21) 
Similarly we have:

∇(∆) -1 div(ρu) L 2m m 3 2 k 1 2 (ϕ(t)) 1 2 ρ L 2mk k-1 , m > 2, k > 1, R i,j (ρu i u j ) L 2m m 2 kϕ(t) ρ L 2mk k-1 , m > 2, k > 1.
(5.22)

Gain of integrability for the density

Following [START_REF] Vaigant | On existence of global solutions to the twodimensional Navier-Stokes equations for a compressible viscous fluid[END_REF] the plan of the proof of [START_REF] Vaigant | On existence of global solutions to the twodimensional Navier-Stokes equations for a compressible viscous fluid[END_REF], we are interested in getting a gain of integrability on the density. We follow here the method of Lions in [START_REF] Lions | Mathematical Topics in Fluid Mechanics[END_REF] to get a gain of integrability on the pressure and the argument developed in [START_REF] Vaigant | On existence of global solutions to the twodimensional Navier-Stokes equations for a compressible viscous fluid[END_REF]. Apply the operator (∆) -1 div to the momentum equation, we obtain:

∂ ∂t (∆) -1 div(ρu) + [R ij , u j ](ρu i ) -(2 + λ(ρ))divu + P (ρ) - 1 |Ω| Ω (P (ρ)(t, x) -(2 + λ(ρ))divu)dx = 0.
(5.23)

We will set in the sequel:

B = (2 + λ(ρ))divu -P (ρ).
(5.24)

Next if we renormalize the mass equation we have:

∂ t θ(ρ) + u • ∇θ(ρ) + ρθ (ρ)divu = 0.
where we have set:

θ(ρ) = ρ 1 1 s (2 + λ(s))ds = 2 ln ρ + 1 β (ρ β -1).
Finally we get the following transport equation:

∂ ∂t (∆) -1 div(ρu) + θ(ρ) + u • ∇ (∆) -1 div(ρu) + θ(ρ) + [R ij , u j ](ρu i ) + P (ρ) - 1 |Ω| Ω P (ρ)(t, x) -(2 + λ(ρ))divu dx = 0, (5.25) 
Denote by f the function:

f (t, x) = max(0, (∆) -1 div(ρu) + θ(ρ))
and multiply the equation (5.25) by the function ρf 2m-1 with m ∈ N and m ≥ 4 and integrate over Ω , we obtain:

1 2m d dt Ω ρf 2m dx + Ω ρP (ρ)f 2m-1 dx + Ω [R ij , u j ](ρu i )ρf 2m-1 dx + Ω B dx Ω ρf 2m-1 dx = 0.
(5.26)

As in [START_REF] Vaigant | On existence of global solutions to the twodimensional Navier-Stokes equations for a compressible viscous fluid[END_REF] we set:

Z(t) = Ω ρf 2m (t, x) 1 2m 
(5.27) Using Hölder's inequality ( 2m-1 2m + 1 2m = 1,

β 2mβ+1 + 1 2m(2mβ+1) = 1 2m
), we begin with estimating the term | Ω [R ij , u j ](ρu i )ρf 2m-1 dx in (5.26) as follows:

Ω [R ij , u j ](ρu i )ρf 2m-1 dx| ≤ Ω |[R ij , u j ](ρu i )|ρ 1 2m ρ 2m-1 2m f 2m-1 dx ≤ |[R ij , u j ](ρu i )|ρ 1 2m L 2m (Ω) Z 2m-1 (t) ≤ ρ 1 2m L 2mβ+1 (Ω) [R ij , u j ](ρu i ) L 2m+ 1 β (Ω) Z 2m-1 (t) (5.28)
Next we recall a result of R. Coifman, P.-L. Lions, Y. Meyer and S. Semmes in [START_REF] Coifman | Compensated-compactness and Hardy spaces[END_REF], which says that the following map:

W 1,r 1 (T N ) N × L r 2 (T N ) N → W 1,r 3 (T N ) N (a, b) → [a j , R i,j ]b i is continuous for any N ≥ 2 as soon as 1 r 3 = 1 r 1 + 1 r 2 .
Hence we obtain that [R ij , u j ](ρu i ) belongs in W 1,p (where

1 p = 1 2 + 1 2(m+ 1 2β )k + k-1 2(m+ 1 2β )k with k > 1 and p = 2- 2 m+1+ 1 2β < 2)
with the following inequality:

[R ij , u j ](ρu i ) W 1,p (Ω) ≤ C ∇u L 2 (Ω) u L 2(m+ 1 2β )k (Ω) ρ L 2(m+ 1 2β )k k-1 (Ω) , ≤ C ∇u L 2 (Ω) u L 2(m+ 1 2β )k (Ω) ρ L 2mβ+1 (Ω) , (5.29) 
where we have choose k such that

2(m+ 1 2β )k k-1 = 2mβ + 1, let k = 2mβ+1 2m(β-1)+1-1 β . We verifies that 1 q = 1 p -1 2 = 1 2m+ 1 β .
Next by using lemma 2 and (5.29) we get:

[R ij , u j ](ρu i )(t, •) L 2m+ 1 β (Ω) m 1 2 ∇u(t, •) L 2 (Ω) u(t, •) L 2(m+ 1 2β )k (Ω) ρ(t, •) L 2mβ+1 (Ω) + | Ω [R ij , u j ](ρu i )(t, x)dx| .
We can easily bound the last term on the right hand side by using the continuity of the Riez transform in L p (ω) with 1 < p < +∞:

| Ω [R ij , u j ](ρu i )(t, x)dx| ρ(t, •) L γ (Ω) u(t, •) 2 H 1 (Ω) .
By (5.20) and the previous inequalites we obtain finally:

[R ij , u j ](ρu i )(t, •) L 2m+ 1 β (Ω) ≤ Cm ∇u 2 L 2 (Ω) ρ L 2mβ+1 (Ω) + ρ(t, •) L γ (Ω) u(t, •) 2 H 1 (Ω) .
(5.30) We have then from (5.28) and (5.30):

Ω [R ij , u j ](ρu i )ρf 2m-1 dx| (m ρ 1+ 1 2m L 2mβ+1 (Ω) ϕ(t) + ρ(t, •) L γ (Ω) u(t, •) 2 H 1 (Ω) )Z 2m-1 (t).
Next as in [START_REF] Vaigant | On existence of global solutions to the twodimensional Navier-Stokes equations for a compressible viscous fluid[END_REF] we get:

Ω Bdx Ω ρf 2m-1 dx Z 2m-1 (t) ρ 1 2m L 1 Ω (2 + λ)|divu| + P )dx Z 2m-1 (t) 1 + (ϕ(t)) 1 2 ( Ω (2 + λ(ρ))dx) 1 2 Z 2m-1 (t)(1 + ϕ(t) 1 2 + ρ β 2 L 2mβ+1 (Ω) ϕ(t) 1 2 
).

Collecting all the above inequalities, we obtain:

Z(t) 1 + t 0 ρ L γ (Ω) (τ ) u 2 H 1 (Ω) (τ )dτ + t 0 mϕ(τ ) ρ 1+ 1 2m L 2mβ+1 (Ω) (τ )dτ + t 0 ϕ(τ ) 1 2 ρ β 2 L 2mβ+1 (Ω) (τ )dτ.
(5.31)

As we have seen that u belongs in L 2 ((0, t), H 1 (Ω)) we have:

t 0 ρ L γ (Ω) (τ ) u 2 H 1 (Ω) (τ )dτ 1.
We obtain then:

Z(t) 1 + t 0 mϕ(τ ) ρ 1+ 1 2m L 2mβ+1 (Ω) (τ )dτ + t 0 ϕ(τ ) 1 2 ρ β 2 L 2mβ+1 (Ω) (τ )dτ.
(5.32)

Next following [START_REF] Vaigant | On existence of global solutions to the twodimensional Navier-Stokes equations for a compressible viscous fluid[END_REF] we introduce the measurable sets:

Ω 1 (t) = {x ∈ Ω/ρ ≥ 2m } and Ω 2 (t) = {x ∈ Ω 1 (t)/θ(ρ) + (∆) -1 div(ρu) > 0}.
We then have:

ρ β L 2mβ+1 (Ω) Ω 1 (t) ρ 2mβ+1 dx β 2mβ+1 + 1, (5.33)
Moreover by the definition of the function θ(ρ), we have:

Ω 1 (t) ρ 2mβ+1 dx β 2mβ+1 Ω 1 (t) ρθ(ρ) 2m dx β 2mβ+1 (5.34)
Using the fact that on Ω 1 (t) \ Ω 2 (t) we have 0 ≤ θ(ρ) ≤ |(∆) -1 div(ρu)|, we derive the following estimate:

Ω 1 (t) ρθ(ρ) 2m dx = Ω 2 (t) ρ(θ(ρ) + (∆) -1 div(ρu) -(∆) -1 div(ρu)) 2m dx + Ω 1 (t)\Ω 2 (t) ρθ(ρ) 2m dx ≤ 2 2m-1 Ω 2 (t) ρf (ρ) 2m dx + Ω 2 (t) ρ|(∆) -1 div(ρu)| 2m dx + Ω 1 (t)\Ω 2 (t) ρ|(∆) -1 div(ρu)| 2m dx ≤ 2 2m (Z 2m (t) + Ω ρ|(∆) -1 div(ρu)| 2m dx)
From estimates (5.33) and (5.34) we deduce:

ρ β L 2mβ+1 (Ω) ≤ C (m ) β + Z(t) 2mβ 2mβ+1 (t) + ( Ω ρ|(∆) -1 div(ρu)| 2m dx) β 2mβ+1
In view of estimate (5.21), (5.22), we have:

Ω ρ|(∆) -1 div(ρu)| 2m dx ≤ ρ L 2mβ+1 (Ω) (∆) -1 div(ρu) 2m L 2m+ 1 β (Ω) ≤ ρ L 2mβ+1 (Ω) (m + 1 2β ) 1 2 ρ 1 2 L m+ 1 β (Ω) 2m ≤ C m m m ρ m+1 L 2mβ+1 (Ω) .
Finaly:

ρ β L 2mβ+1 (Ω) Z(t) 2mβ 2mβ+1 (t) + m 1 2 ρ β(m+1) 2mβ+1
L 2mβ+1 (Ω) .

(5.35) By Young's inequality (with q = 2mβ+1 m+1 and p = 2β 2β-1 + 1 m(2β-1) ), we obtain:

ρ β L 2mβ+1 (Ω) Z(t) + 1 ε m β 2β-1 + 1 2m(2β-1) + ε ρ β L 2mβ+1 (Ω) .
By bootstrap, we get:

ρ β L 2mβ+1 (Ω) Z(t) + m β 2β-1 .
(5.36) Therefore (5.31) and (5.36)give the following inequality:

ρ β L 2mβ+1 (Ω) m β 2β-1 + t 0 mϕ(τ ) ρ 1+ 1 2m L 2mβ+1 (Ω) (τ )dτ + t 0 ϕ(τ ) 1 2 ρ β 2 L 2mβ+1 (Ω) (τ )dτ
Next by Young's inequality, we have:

ρ β L 2mβ+1 (Ω) 1 + m β 2β-1 + t 0 mϕ(τ ) ρ 1+ 1 2m L 2mβ+1 (Ω) (τ )dτ + t 0 ρ β L 2mβ+1 (Ω) (τ )dτ
Using the fact that ϕ(t) ∈ L 1 (0, T ) and applying Grönwall's inequality, wehave that:

ρ β L 2mβ+1 (Ω) ≤ C 1 + m β 2β-1 + t 0 mϕ(τ ) ρ 1+ 1 2m L 2mβ+1 (Ω) (τ )dτ,
where C depends on t. Denote:

y(t) = m -1 β-1 ρ L 2mβ+1 (Ω) , t ∈ [0, T ].
(5.37)

Then:

y β (t)m β β-1 ≤ C(1 + m β 2β-1 + m m (1+ 1 2m ) 1 β-1 t 0 ϕ(τ )y 1+ 1 2m (τ )dτ
and we have: mm 1) .

(1+ 1 2m ) 1 β-1 = m β β-1 + 1 2m(β-
We have then:

y β (t) ≤ C 1 + m -β 2 (β-1)(2β-1) + m 1 2m(β-1) t 0 ϕ(τ )y 1+ 1 2m (τ )dτ where β 2β-1 -β β-1 = -β 2
(β-1)(2β-1) < 0. Recalling that β > 1 and ϕ(t) ∈ L 1 (0, T ) we find that for m big enough:

y β (t) ≤ C C 1 + t 0 ϕ(τ )y β (τ )dτ
whence by Grönwall inequality:

y(t) ≤ C, t ∈ [0, T ],
where C depends on t. We thus have:

ρ L 2mβ+1 ≤ Cm 1 β-1 , t ∈ [0, T ].
Hence the inequality:

ρ L k (Ω) (t) ≤ Ck 1 β-1 , t ∈ [0, T ]. (5.38)
is valid for every k ≥ 1, with C a positive constant independent of k ≥ 1 but depending of the time.

Remark 6 Let us point out that the estimate (5.38) is the key point in order to improve the range on β. Indeed this last one is a refinement of the corresponding one in [START_REF] Vaigant | On existence of global solutions to the twodimensional Navier-Stokes equations for a compressible viscous fluid[END_REF]. In particular we will be able to obtain the energy estimates (5.66) only with assuming β > 2.

Second a priori estimate for the velocity

In this section, we are going to furnish estimates on the velocity by using the gain of integrability on the density proved in the previous section. We are going essentially to follow the proof of [START_REF] Vaigant | On existence of global solutions to the twodimensional Navier-Stokes equations for a compressible viscous fluid[END_REF] and to emphasize on the key point where we will only need the hypothesis β > 2. We begin with recalling some equation on the effective pressure defined in [START_REF] Lions | Mathematical Topics in Fluid Mechanics[END_REF] and the rotational curl. We set:

A = curlu and B = (2 + λ(ρ))divu -P (ρ), L = 1 ρ (∂ y A + ∂ x B) and H = 1 ρ (-∂ x A + ∂ y B).
We now want to obtain some estimates on the unknowns A and B, let us start with rewriting the momentum equation under the following eulerian form:

∂ t u + u • ∇u - 1 ρ ∆u - 1 ρ ∇((µ + λ(ρ))divu) + ∇( P (ρ) γρ ) = 0 (5.39)
Next if we apply the operator curl, we get:

∂ t A + u • ∇A + Adivu = ∂ y L -∂ x H. (5.40) 
Next we apply the operator div to the momentum equation (5.39):

∂ t divu + u • ∇u - 1 ρ ∆u - 1 ρ ∇((µ + λ(ρ))divu) + ∇( P (ρ) γρ ) = 0, (5.41) 
and via the mass equation we have:

∂ t B + U • ∇B -ρ(2 + λ) B( 1 2 + λ ) + ( P 2 + λ ) divu + (2 + λ)(U 2 x + 2U y V x + V 2 y ) = (2 + λ)(L x + H y ).
(5.42)

As in [START_REF] Vaigant | On existence of global solutions to the twodimensional Navier-Stokes equations for a compressible viscous fluid[END_REF] multiplying the equation(5.40) by A and integrate over Ω we obtain:

Ω 1 2 d dt [A 2 ]dx + 1 2 Ω divu A 2 dx + Ω (L∂ y A -H∂ x A)dx = 0. (5.43) 
Next we have:

Ω (A y + B x ) 2 + (-A x + B y ) 2 dx = Ω (A 2 x + A 2 y + B 2 x + B 2 y )dx.
Let us observe that for every r, 1 ≥ 4r > 0, from the result on elliptic system and by Hölder inequalities we get as in [START_REF] Vaigant | On existence of global solutions to the twodimensional Navier-Stokes equations for a compressible viscous fluid[END_REF]:

∇A L 2(1-r) (Ω) + ∇B L 2(1-r) (Ω) ≤ C Ω (A y + B x ) 2 + (-A x + B y ) 2 ρ dx 1 2 Ω ρ 1-r r dx r 2(1-r) .
From (5.38), we have:

∇A L 2(1-r) (Ω) + ∇B L 2(1-r) (Ω) ≤ C( 1 r ) 1 2(β-1) a(t) (5.48) 
Remark 7 Let us point out that the estimate (5.48) is better than the corresponding one in [START_REF] Vaigant | On existence of global solutions to the twodimensional Navier-Stokes equations for a compressible viscous fluid[END_REF] due to the better estimate (5.38).

Moreover via (5.38) we also obtain the following inequality:

∇u L 2 (Ω) + A L 2 (Ω) + √ 2 + λ divu L 2 (Ω) ≤ C(1 + Z(t)), t ∈ [0, T ]. (5.49) 
Now, are interested in providing other estimates for the non positive terms of the equality (5.46).

Estimates for the terms of (5.46)

Following [START_REF] Vaigant | On existence of global solutions to the twodimensional Navier-Stokes equations for a compressible viscous fluid[END_REF], using (??), the lemma 1 (with α = 1-ε 2(1-2ε) ) and Young's inequality (with

p = 2(1-2ε) 1-ε , q = 2(1-2ε) 1-3ε and p 1 = (1-2ε)(2+ε) 1-ε , q 1 = (1-2ε)(2+ε) 1-2ε-2ε
2 ) the , we obtain:

1 2 Ω divu A 2 ≤ 1 2 divu(t) L 2 A(t) 2 L 4 , ≤ C divu L 2 ( 1 2 A L 2 ) 1-3ε 1-2ε ( 1 2 ∇A L 2(1-ε) ) 1-ε 1-2ε ≤ C(1 + Z(t))Z(t) 1-3ε 1-2ε ( 1 ε ) 1 2(β-1) a(t) 1-ε 1-2ε ≤ δa 2 (t) + C(δ)(1 + Z(t)) 2(1-2ε) 1-3ε Z(t) 2 ( 1 ε ) 1 β-1 ≤ δa 2 (t) + C(δ)(1 + Z(t) 2 ) 2+ ε 1-3ε ( 1 ε ) 1 β-1 .
We now are interested in estimating the term in (5.46) corresponding to:

I 1 = 1 2 Ω B 2 divu 1 2 + λ -ρ( 1 2 + λ ) dx = 1 2 Ω B 2 ( B 2 + λ + P 2 + λ ) 1 2 + λ -ρ( 1 2 + λ ) dx
Easily there exist a positive constant C > 0 such that:

1 2 + λ -ρ( 1 2 + λ ) ≤ C,
for all ρ ∈ [0, +∞). We deduce that:

I 1 ≤ C(m ) β Ω |B| 3 2 + λ dx + Ω |B| 2 2 + λ |P |dx .
By Young's inequality we have:

Ω Bdivu P 2 + λ -ρ( P 2 + λ ) dx = Ω B( B 2 + λ + P 2 + λ ) P 2 + λ -ρ( P 2 + λ ) dx ≤ C(1 + Ω |B| 3 2 + λ dx).
Now, the last term in (5.46) can be treated as follows:

2

Ω B(U y V x -U x V y )dx ≤ Ω |B|(U 2 x + U 2 y + V 2 x + V 2 y )dx
Via the previous estimate, the notations (5.47), and using the equality (5.46), we get:

1 2 (Z 2 (t)) + a 2 (t) ≤ δa 2 (t) + C(δ)(1 + Z(t) 2 ) 1+ ε 1-3ε ( 1 ε ) 2 β-1 + C(1 + Ω |B| 3 2 + λ dx) + Ω |B|(U 2 x + U 2 y + V 2 x + V 2 y )dx.
(5.50)

It remains to estimate the two last terms on the right hand side of (5.50). In this goal, from (2.10) we have:

B L 2m (Ω) ≤ C( B L 1 (Ω) + m 1 2 ∇B 1-s L 2m m+ε (Ω) B s L 2(1-ε) (Ω) ) (5.51) 
where: s = (1-ε) 2 m-ε(1-ε) and C > 0 is a positive constant independent of m > 2. Now in inequalities (5.50) and (5.51) we fix ε = 2 -m with m > 2. Using estimate (5.38) for the density, we derive the inequalities:

B L 1 (Ω) = Ω |B|dx = Ω ( 1 2 + λ ) 1 2 |B|(2 + λ) 1 2 dx ≤ (2 + λ) 1 2 L 2 (Ω) Z(t) ≤ CZ(t). B s L 2(1-ε) (Ω) = Ω ( 1 2 + λ ) 1-ε |B| 2(1-ε) (2 + λ) 1-ε dx s 2(1-ε) ≤ Z(t) s 2 + λ s 2 L 1-ε ε (Ω) ≤ C( 1 ε ) βs 2(β-1) Z s (t) ≤ C2 2sm Z s (t), ≤ CZ s (t).
From inequalities (5.48) and (5.51) we finally obtain:

B L 2m (Ω) ≤ C Z(t) + m 1 2 ( m ε ) 1-s 2(β-1) (a(t)) 1-s Z s (t) , ≤ C Z(t) + m 1 2 ( m ε )
1-s 2(β-1) (a(t)) 1-s Z s (t) .

(5.52)

Now dealing with the integral with |B| 3 , we have:

Ω |B| 3 2 + λ dx = Ω |B| 2-1 m-1 (2 + λ) 1- 1 2(m-1) ( 1 2 + λ ) 1 2(m-1) |B| 1+ 1 m-1 dx ≤ Ω |B| 2-1 m-1 (2 + λ) 1- 1 2(m-1) |B| m m-1 dx ≤ Z(t) 2-1 m-1 B m m-1 L 2m (Ω) , ≤ ( Ω |B| 2 2 + λ dx) 1- 1 2(m-1) ( Ω |B| 2m dx) 1 2(m-1) ≤ -1+ 1 2(m-1) Z(t) 2-1 m-1 B m m-1 L 2m (Ω) ≤ CZ 2-1 m-1 (t) Z(t) m m-1 + m m 2(m-1) ( m ε ) m(1-s) 2(β-1)(m-1) (a(t)) m(1-s) m-1 Z ms m-1 (t) , ≤ C Z(t) 3 + m m 2(m-1) ( m ε ) m(1-s) 2(β-1)(m-1) (a(t)) m(1-s) m-1 Z 2+ ms-1 m-1 (t) ,
where C > 0 is a positive constant independent of m > 2 and ε = 2 -m . Finally applying applying Young's inequality with p = 2(m-1) m(1-s) and q = 2(m-1) m(s+1)-2 we have:

Ω |B| 3 2 + λ dx ≤ C Z 3 (t) + m 1 2 ( m ε ) 1 2(β-1) a m(1-s) m-1 (t)Z 2+ ms-1 m-1 (t) , ≤ δa 2 (t) + C(δ) Z 3 (t) + m m-1 m(s+1)-2 ( m ε ) m-1 (β-1)(m(s+1)-2) Z 4+ 2(1-ms) m(s+1)-2 (t)
(5.53) From (5.51), we verify that:

1 -ms = 1 - m(1 -ε) 2 m -ε(1 -ε) = ε m(2 -ε) + ε -1 m -ε(1 -ε) , (5.54) 
and then: lim

m→+∞ (2 m (1 -ms)) = 2,
hence via (5.53) and (5.54) we get:

Ω |B| 3 2 + λ dx ≤ δa 2 (t) + C(δ) (1 + Z 2 (t)) 2 + m( m ε ) 1 β-1 (1 + Z 2 (t)) 2+ 1-ms m(s+1)-2 . (5.55)
Now, consider the last term in (5.50):

I 2 = Ω |B|(U 2 x + U 2 y + V x + V 2 y ) ≤ B L 2m (Ω) ( Ω (|∇U | 2 + |∇V | 2 ) 2m 2m-1 dx) 1-1 2m .
Recalling the relation 3 > 4m 2m-1 > 2, m > 2, from the properties of elliptic system [?] we derive the inequality:

(

Ω (|∇U | 2 + |∇V | 2 ) 2m 2m-1 dx) 1-1 2m ≤ C( divu 2 L 4m 2m-1 (Ω) + A 2 L 4m 2m-1 (Ω)
).

Thus the previous inequality furnish the estimate:

I 2 ≤ C B L 2m (Ω) ( divu 2 L 4m 2m-1 (Ω) + A 2 L 4m 2m-1 (Ω)
).

(5.56)

Next we have as A vanishes on the boundary of the domain Ω, we applythe Gagliardo-Niremberg inequality:

A 2 L 4m 2m-1 (Ω) ≤ C A 2-1-ε m(1-2ε) L 2 (Ω) ∇A 1-ε m(1-2ε) L 2(1-ε) (Ω) , ≤ CZ 2-1-ε m(1-2ε) (t) ( 1 ε ) 1 2(β-1) a(t) 1-ε m(1-2ε) ≤ CZ 2-1-ε m(1-2ε) (t)(a(t)) 1-ε m(1-2ε) .
(5.57)

Since B = (2 + λ)divu -P , estimate (5.38) provides:

divu 2 L 4m 2m-1 (Ω) = B 2 + λ + P 2 + λ 2 L 4m 2m-1 (Ω) , ≤ C( B 2 + λ 2 L 4m 2m-1 (Ω) + 1).
(5.58)

We can now deal with the right-hand side of (5.58) as follows:

B 2 + λ + P 2 + λ 2 L 4m 2m-1 (Ω) ≤ Ω |B| 2m(2m-3) (m-1)(2m-1) 2 + λ |B| 2m (m-1)(2m-1) dx 1-1 2m , ≤ B 1 m-1 L 2m (Ω) Ω |B| 2 (2 + λ) (m-1)(2m-1) m(2m-3) dx 2m-3 2m-2 ≤ B 1 m-1 L 2m (Ω) Ω |B| 2 (2 + λ) dx 2m-3 2m-2 , ≤ B 1 m-1 L 2m (Ω) (Z(t)) 2m-3 2m-2 = B 1 m-1 L 2m (Ω) (Z(t)) 2-1 m-1 . Thus, divu 2 L 4m 2m-1 (Ω) ≤ C(1 + (Z(t)) 2-1 m-1 B 1 m-1 L 2m (Ω) ).
(5.59)

Using estimates (5.57) and (5.59), from (5.56) we have:

I 2 ≤ C B L 2m (Ω) (1 + Z 2-1-ε m(1-2ε) (t)(a(t)) 1-ε m(1-2ε) + Z 2-1 m-1 (t) B 1 m-1 L 2m (Ω) .
Using estimate (5.52) for B L 2m (Ω) , we finally get:

I 2 ≤ C (Z(t)) 3-1-ε m(1-2ε) (a(t)) 1-ε m(1-2ε) + Z(t) + Z 3 (t) + m 1 2 ( m ε ) 1-s 2(β-1) Z 2+s-1-ε m(1-2ε) (t)(a(t)) 1-s+ 1-ε m(1-2ε) + m 1 2 ( m ε ) m(1-s) 2(β-1)(m-1) Z 2+ ms-1 m-1 (t)(a(t)) m(1-s) m-1 + m 1 2 ( m ε ) 1-s 2(β-1) Z s (t)(a(t)) 1-s .
(5.60) Using Young's inequality, we treat the summand in (5.60) as follows:

C(Z(t)) 3-1-ε m(1-2ε) (a(t)) 1-ε m(1-2ε) ≤ δa 2 (t) + C(1 + Z 2 (t)) 2 , C(Z(t) + Z 3 (t)) ≤ C(1 + Z 2 (t)) 2 , Cm 1 2 ( m ε ) 1-s 2(β-1) Z 2+s-1-ε m(1-2ε) (t)(a(t)) 1-s+ 1-ε m(1-2ε) ≤ δa 2 (t) + Cm( m ε ) 1 β-1 (1 + Z 2 (t)) 2+ 1-ms+(2ms-1)ε (1+s)m(1-2ε)-1+ε , Cm 1 2 ( m ε ) 1-s 2(β-1) Z s (t)(a(t)) 1-s ≤ δa 2 (t) + Cm( m ε ) 1 β-1 (1 + Z 2 (t)), m 1 2 ( m ε ) m(1-s) 2(β-1)(m-1) Z 2+ ms-1 m-1 (t)(a(t)) m(1-s) m-1 ≤ δa 2 (t) + Cm( m ε ) 1 β-1 (1 + Z 2 (t)) 2+ 1-ms (1+s)m-2
Here δ is a small positive constant to be mentioned below. From inequality (5.60) we derive that:

I 2 ≤ δa 2 (t) + C m( m ε ) 1 β-1 (1 + Z 2 (t)) 2+ 1-ms+(2ms-1)ε (1+s)m(1-2ε)-1+ε + (1 + Z 2 (t)) 2 + m( m ε ) 1 β-1 (1 + Z 2 (t)) + m( m ε ) 1 β-1 (1 + Z 2 (t)) 2+ 1-ms (1+s)m-2 (5.61) 
From (5.55) and (5.61), and inequality (5.50) we have:

1 2 d dt (Z 2 (t) + a 2 (t)) ≤ δa 2 (t) + C(δ)(1 + Z 2 (t)) 2+ ε 3-ε ( 1 ε ) 1 β-1 + C(1 + δa 2 (t)) + CC(δ)(1 + Z 2 (t)) 2 + CC(δ) m( m ε ) 1 β-1 (1 + Z 2 (t)) 2+ 1-ms m(s+1)-2 + 4δa 2 (t) + C ((1 + Z 2 (t)) 2 + m( m ε ) 1 β-1 (1 + Z 2 (t)) 2+ 1-ms+(2ms-1)ε (1+s)m(1-2ε)-1+ε + m( m ε ) 1 β-1 (1 + Z 2 (t)) 2 + m( m ε ) 1 β-1 (1 + Z 2 (t)) 2+ 1-ms m(s+1)-2 .
(5.62)

Choose δ > 0 such that:

5δ + δC = 1 2 . Since s = (1-ε) 2 m-ε(1-ε) and ε = 2 -m , m > 2, we have: 1 -ms m(s + 1) -2 ≤ 4ε, 1 -ms + (2ms -1)ε (1 + s)m(1 -2ε) -1 + ε ≤ 4ε and ε 1 -3ε ≤ 4ε.
Then by (5.62) and the fact that Z 2 (t) ∈ L 1 (0, T ), we obtain the inequality with 0 < T < T 2 : 1 2

d dt (1 + Z 2 (t)) + a 2 (t) ≤ m( m ε ) 1 β-1 (1 + Z 2 (t)) 2+4ε , (5.63) 
From (5.63) we have for 0 ≤ t < T :

1 (1 + Z 2 (t)) 4ε - 1 (1 + Z 2 ( T )) 4ε + Cmε( m ε ) 1 β-1 ≥ 0.
Remark 8 Let us point out that the last inequality is better than in [START_REF] Vaigant | On existence of global solutions to the twodimensional Navier-Stokes equations for a compressible viscous fluid[END_REF] and allows us to assume only β > 2.

Now, take N > 2 such that:

1 -CN ε( N ε ) 1 β-1 (1 + Z 2 ( 0)) 4ε ≥ 1 2 , ε = 2 -N .
Here the fact that β > 2 allows to conclude and by this fact improve the results of [START_REF] Vaigant | On existence of global solutions to the twodimensional Navier-Stokes equations for a compressible viscous fluid[END_REF]. We get finally that for 0 ≤ t < T : (5.66)

Z 2 (t) ≤ 2
The rest of the proof follows exactly the same lines than in [START_REF] Vaigant | On existence of global solutions to the twodimensional Navier-Stokes equations for a compressible viscous fluid[END_REF] and then we refer to [START_REF] Vaigant | On existence of global solutions to the twodimensional Navier-Stokes equations for a compressible viscous fluid[END_REF].

6 Proof of theorem 1.2

The existence part of the theorem is proved by an iterative method. We define a sequence (q n , m n ) such that:      ∂ t q 0 -µ∆q 0 + divm 0 = 0, ∂ t m 0 -µ∆m 0 + rm 0 = 0, (q 0 , m 0 ) = (q 0 , m 0 ).

Assuming that (q n , m n ) is in E T with:

E T = C T (B N 2 2,1 ) ∩ L 1 T (B N 2 +2 2,1 ) × C T (B N 2 -1 2,1 ) ∩ L 1 T (B N 2 +1 2,1 ∩ B N 2 -1 2,1 ) N ,
we define then q n+1 = q 0 + qn+1 , m n+1 = m 0 + mn+1 such that (q n+1 , mn+1 ) be the solution of the following system:

    
∂ t qn+1 -µ∆q n+1 + div mn+1 = 0, ∂ t mn+1 -µ∆ mn+1 + r mn+1 = G n , (q n+1 , mn+1 ) /t=0 = (0, 0), with:

G n = -div( m n h n ⊗ m n ) We also set: h n = q n + 1.

1) First step, uniform bounds:

Let ε be a small parameter and by proposition 3.4, we have for any T > 0:

q 0 L ∞ T (B N 2 2,1 )∩L 1 T (B N 2 +2 2,1
)

≤ C q 0 B N 2 2,1 , m 0 L ∞ T (B N 2 -1 2,1
)∩L 1 T (B We are going to show by induction that for ε > 0 small enough:

(P n ) (q n , mn ) F T ≤ ε.

As (q 0 , m0 ) = (0, 0) the result is true for n = 0. We suppose now (P n ) true and we are going to show (P n+1 ).

To begin with we are going to show that 1 + q n is positive. Indeed we have: h 0 = h 0 1 + h 0 2 such that: ∂ t h 0 1 -µ∆h 0 1 = 0, (h 0 1 ) /t=0 = h 0 . and:

∂ t h 0 2 -µ∆h 0 2 = -divm 0 , (h 0 1 ) /t=0 = h 0 . By proposition (3.4) and (6.67) we have for any T > 0:

h 0 2 L ∞ T (B N 2 2,1 ) ≤ C m 0 B N 2 -1 2,1 . (6.68) 
By maximum principle, we have for any t > 0:

h 0 1 (t, x) ≥ min x∈R N h 0 (x) ≥ c > 0.
We deduce that for η = m 0

B N 2 -1 2,1
(at least inferior to c 4C with the C of (6.68)) small enough and any t > 0: h 0 (t, x)/geq 3c 4 > 0, and q 0 (t, x) ≥ 3c 4 -1.

and by definition of q n and the assumption ∩P n that:

q n (t, x) ≥ 3c 4 -1 -ε.
In particular for ε small enough at least ε ≤ c 4 , we deduce that: .69) 

h n = 1 + q n ≥ c 2 > 0. ( 6 

2 N - 2 ( 1 + 0 a 2

 22102 Z 2 (0)) -1, t ∈ [0, T ].(5.64) Now, from inequality (5.63) we get moreover that:T (t)dt ≤ C.(5.65)Now by estimate (5.38) for the density, there exists a positive constant C depending continuously on the data of the problem and such that:sup 0<t<T Ω (curlu) 2 + 1 2 + λ(ρ) (2 + λ(ρ))divu -P (ρ) 2 (t, x)dx ≤ C, sup 0<t<T Ω (curlu) 2 + (2 + λ(ρ))(divu) 2 (t, x)dx ≤ C, T 0 Ω (A y + B x ) 2 + (-A x + B y ) 2 ρ dxdy ≤ C.

Similarly multiplying the equation (5.42) by 1 2+λ B and integrate over Ω we have:

(5.44)

We recall now that:

By combining the previous equality and (5.44) we get:

(5.45) Summing (5.43) and (5.45) we have:

As:

we deduce:

(5.46)

Let us set:

(5.47

) , this implies (P) n+1 . We have shown by induction that (q n , m n ) is uniformly bounded in F T for any T > 0.

Second Step: Convergence of the sequence

We shall prove that (q n , m n ) is a Cauchy sequence in the Banach space F T , hence converges to some (q, m) ∈ F T . Let: δq n = q n+1 -q n and δm n = m n+1 -m n .

The system verified by (δq n , δm n ) reads:

δq n (0) = 0 , δu n (0) = 0.

Applying propositions 3.4 and using (P n ), we get for any T > 0:

2,1 ) . By using proposition 3.2 and lemma 4, we get:

So by taking ε enough small we have proved that (q n , m n ) is a Cauchy sequence in F T which is a Banach space. It implies that (q n , m n ) converge to a limit (q, m) in F T . It is easy to verify that (q, m) is a solution of the system (1.5).

3)Uniqueness of the solution:

The proof is similar to the proof of contraction, indeed we need the same type of estimates. Let us consider two solutions in E T : (q 1 , m 1 ) and (q 2 , m 2 ) of the system (1.5) with the same initial data. With no loss of generality, one can assume that (q 1 , m 1 ) is the solution found in the previous section. We thus have:

We note: δq = q 2 -q 1 , δm = m 2 -m 1 , which verifies the system:

By using proposition 3.2, 3.4 and lemma 4 on [0, T 1 ] with 0 < T we have:

(δq, δm) E T ≤ A(T ) (δq, δm) E T , such that for T small enough A(T ) ≤ 1 2 . We thus obtain: δq = 0, δm = 0 on [0, T ]. And we repeat the argument in order to prove that: δq = 0, δm = 0 on R + . This conclude the proof of theorem 1.1.