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F-94230 Cachan
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Abstract

This paper focuses on timed models which represent
closed-loop systems composed of a plant and a logic con-
troller. Both the plant and controller models are described
in a formalism where urgent transitions are possible, to
avoid non-realistic evolutions, and without deadlock when
they are separated.

It is first shown that deadlocks may occur in the plant
model as soon as both models are coupled. To solve this
issue, shared variables which model the changes of the in-
puts of the controller are defined and introduced in some
actions of the plant model as well as in some guards of
the controller model; the aim of these variables is to au-
thorize evolutions of the controller only when at least one
input has changed. This solution removes the previously
pinpointed deadlocks and guarantees the reactivity of the
controller.

1 Introduction

Building a controller model to check formal properties
is an important concern of the community which has been
widely studied [5, 4, 3]. However, as explained in [9], the
special need for a plant model to check liveness properties
has encouraged works on formal modeling of the plant
[17, 15, 13].

However, most of these works have considered un-
timed models only, whereas the present work use timed
models, for both the plant and controller models. In order
to build meaningful timed plant models, the need for an
urgency semantics has been presented in a previous work
[13] and will be re-used. It is also assumed that both the
plant and controller models have been built separately.
This is a possible result of an industrial design process in
which two experts —one in control theory, another one in
plant modeling— have been requested to build the closed-
loop system model.

Unfortunately, when coupling the timed controller and
plant models to build the model of the closed-loop system,
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unexpected deadlocks may appear. The aim of this paper
thus is to show the occurrence of these deadlocks on a
case study, and then to propose a solution to avoid such
a behavior, keeping in mind that both the controller and
plant models should be as less modified as possible, by
scheduling the evolutions of these models.

The formalism used to model both the plant and the
controller is presented in the next section. An example
that supports the analysis troughout this paper is intro-
duced in section 3. Sections 4 and 5 focus respectively on
the construction of the plant and the controller model. The
deadlock issue when coupling the two models is shown in
section 6, while a solution to this issue is proposed in sec-
tion 7 and exemplified in section 8 and 9. Prospects for
further works are given in the last section.

2 Formalism used

The models used in this paper will be described by us-
ing the formalism of Timed Automata with Discrete Data
(TADD) fully described in [8]. This formalism is an ex-
tension of the timed automata formalism presented in [1]
and is particularly suitable to model urgency and discrete
variable evolutions in time. Only the elements if the se-
mantics of TADD that have been used in this work are
described below for room saving.

A network of TADD is a set of automata ATAPD =
(Li,19,V,C,E;, I;) with i € 1,...,n,n € N*; the
sets of clocks (C) and variables (V) are shared be-
tween all automata. The network thus is { ATAPP } =
(L,1°,V,C, E, I) with the following definitions:

o L =(Ly x Ly--- x Ly,) is the set of locations.

e [ =(l3,la,...,1,) is the active locations vector.

o [0=(19,19,...,1%) is the initial locations vector.

e 1V is a set of common discrete variables; let v E %4
be a variable, v is the variable valuation and V is the
set of all the variables valuations.



e (' is a set of common clocks, let ¢ € C' pe a clock,
¢ € [0,+00) is the clock valuation and C' is the set
of all the clocks valuations.

e £ = J, E; is the set of the edges of the network.
Each edge ¢ = (I, 9,t,u,a,2°,1') is going from a
source location [ € L; to a target location I’ € L;,
with a guard g as a boolean expression over the set
of variables V', a timed constraint ¢ over the set of
clocks C, and an action a setting potential new values
for variables of V. The term 2 is introduced for
the reset of clocks: each clock may be reset or not.
r C C is defined as the set of the clocks to be reset
in a specific edge. u € {true, false} is the urgent
attribute that defines the edge as an urgent edge; no
time constraint is allowed (i.e. t = true, the always
satisfied time constraint) when the urgent attribute is
true.

e I(l) = A\; L;(l;) is defined as the common invariant
function over the set of clocks C.

A network of TADD may evolve according to two se-
mantics:

The edge firing semantics is possible for each edge if
the source location is active, the guard is validated
(i.e. the variables valuations of V' satisfy the guard),
the time constraint is satisfied (i.e. C satisfies the
time constraint) and the invariant of the target lo-
cation is validated by the new clocks valuations cr
including the clocks resets of the edge. The firing
changes the active location from the source location
to the target one, the set V' of the new variables val-
uations is deduced from the assignment action a of
the edge. Clocks valuations remain unchanged ex-
cept for clocks that belong to 7.

The time evolution semantics makes all the clocks valu-
ations increase by the same amount. The active loca-
tion of every automaton of the network is unchanged
and C becomes C" iff:

e The valuations C and C" satisfy the invariant of
the current active locations.

e No urgent edge may be fired from the current
active locations.

These two semantics are exemplified on the network of
TADD given in figure 1. This figure depicts a network of
two TADD using one clock T, one Boolean variable a, one
integer variable X, and composed of:

e Locations ({4, B,C} x {0,1,2}), which are repre-
sented by circles, location names being in bold font.

e The initial locations (here, locations A and 0), which
are represented with a source edge with the initial-
ization of variables (clocks are always initialized to
ZEr0).

e Locations invariants (T <= 2 for location 0 in this
example), in bold font.

e Edges, which are represented by arrows, urgent ones
using double line arrows.

e Guards and time constraints, in normal font. The
guard and time constraint of an edge may be com-
bined by a disjunction or conjunction operator, re-
spectively noted || and && (true && T >= 2, for

example). The Boolean operator NOT will be noted
.

e Actions on variables, which will be represented by
the assignment operator := in bold font; actions are
separated by comas when several actions are asso-
ciated to an edge. Clock resets will follow the same
pattern, the assignment being limited to reset (assign-
ment to zero), like in the edge from location 0 to lo-
cation 1.

Figure 1: A Network of Timed Automata with Discrete
Data (TADD).

The initial state (locations A and O are active, variables
and clocks have their initial valuations), two evolutions
are possible:

(A,0) — (B,0), as the source locations vector is active and
the guard (true) is always satisfied. The next active
locations vector will be (B,0), and the valuations of
both variables and clocks remain unchanged (no as-
signment and no clock reset).

(A,0) — (C,0), as the source locations vector is active and
the guard is satisfied. The next active locations vector
will be (C,0), and the valuations of X and T remain
unchanged but the Boolean variable a will become
true.

No evolution of the right-hand side model is possible
because the guard of the edge 0 — 2 is not satisfied and the
time constraint of the edge 0 — 1 cannot be satisfied as the
edge A — B may be fired and is urgent (thus preventing
any evolution based on the time semantics. If the edge A
— Cis fired, two other evolutions are thus possible:

(C,0) — (C,1), by using the time evolution semantics to
rise the valuation of the clock T from O to 2. The
next active locations vector will be (C,1), and the val-
uation of a remains unchanged (true), the variable X
is set to 4 and the clock T is reset.



(C,0) — (C,2), as ais true and the guard is hence satisfied.
The new active locations vector will be (C,2) and all
the valuations remain unchanged (neither variable as-
signment nor clock reset on the fired edge).

It matters to highlight that urgent edges have no prior-
ity over non-urgent edges whose firing does not depend on
time evolution. Similarly, these latter edges have no pri-
ority over non-urgent edges whose firing depends on time
evolution.

In the remainder of this paper, neither the guards and
time constraints which are always true, nor the initializa-
tion of variables to O or false will be represented for read-
ability reasons.

3 Example used

The issue of this paper will be exemplified on an au-
tomatic door system for an oven presented in figure 2. A
PLC! executing a code specified in Grafcet [6] is control-
ling, through its outputs, a plant composed of:

e A man-machine interface with:

— A start push-button to set/reset the input vari-
able START.

— A warning light controlled by the output vari-
able LIGHT.

— A security buzzer controlled by the output vari-
able BUZZER.

e An hydraulic cylinder coupled with its dedicated 5/3
preactuator, used to move the door.

e A set of two sensors detecting two positions of the
door (door open and door closed) and sending the
input variables FREE and SEAL.

e Hydraulic locking devices used to ensure the seal-
ing of the door, and controlled by the output variable
LOCK.

CLOSE FREE SEAL
OPEN OVEN

0

| —

.
o5 ) &r

START LIGHT  BUZZER

Figure 2: Plant of the example with the I/O of the con-
troller.

Programmable Logic Controller

The desired behavior is fully described in the Grafcet
specification of the controller presented in section 5; it is
yet sketched here: the user pushes the start button, which
launches the automatic cycle, and the light turns on as an
acknowledgment. Depending on the door position (FREE
or SEAL), the door is moved (CLOSE or OPEN). If the
door was in the SEAL position before being moved, the
locking is removed (LOCK becomes false); if not, the
locking is set at the end of the movement (door in the
SEAL position). During the whole cycle, the buzzer and
the light are active for security purposes.

4 Plant model

Several methods have been proposed to build untimed
[10, 17] or timed [15, 13] plant models. The timed plant
model presented in this paper has been built according to
[13]; in this approach, a plant model is a network of TADD
where every automaton describes the behavior of a com-
ponent of the real plant (actuator, sensor). Moreover, this
modular method permits to build plant models whose all
evolutions are realistic, i.e. where no evolution describes
a behavior that cannot be observed on the real plant, as-
suming that it is faultless.

To meet this objective, two kinds of evolutions of the
real plant are to be defined, according to a time consump-
tion criterion:

e [nstantaneous evolutions, such as the detection of a
part by a sensor, are evolutions whose duration is as-
sumed to be negligible.

e Timed evolutions, such as the movement of a me-
chanical part, consume time.

Instantaneous evolutions will be modeled by urgent
edges whilst non-urgent edges will be selected to model
timed evolutions. It has been shown in [13] that this mod-
eling choice ensures that all evolutions of the plant model
are realistic.

The application of this method to the example provides
the following models of plant components:

e The model of the hydraulic actuator is given in figure
3. The initial location models a stop state; location 1,
resp. 2, models the outgoing, resp. ingoing, move-
ment of the actuator rod. The self-loop edge on loca-
tion 1, resp. 2, models the increase, resp. decrease, of
the variable X (position of the extremity of the rod),
until the physical limit (X = 50, resp. X = 0, in this
example) is reached; the active location becomes the
initial one once any of these limits is reached. The
urgent edges represent the modifications of the ac-
tuator state when the orders OPEN and CLOSE are
set/reset.

e The model of the set of two sensors that compute the
input variables FREE and SEAL is given in figure 4.
In the initial location, only the first variable is true



(the door is detected open); the other locations cor-
respond to a door detected between its left and right
positions (location 1) or totally closed (location 2).
Only urgent edges have been selected because any
change of the state of a sensor has been assumed in-
stantaneous.

The plant model is then a network of TADD that in-
cludes these two automata as well as other automata which
model the behavior of the other components of the plant
(locking devices, buzzer,etc.). These latter models have
been built in a similar manner but will not be presented in
this paper for room reasons.

OPEN && t==1 && X-2<=0

OPEN && CLOSE && X < 50

t==188& CLOSE &&

t==18&&

=1

X-2>0 X+2<50
t:=0, t:=0,
X:=X-2 X:=X+2

CLOSE && t==1 && X + 2 >=50

Figure 3: Model of the hydraulic actuator.

FREE := true
X<48 X<=2

° SEAL := false o FREE := true
FREE := false

SEAL := true

X>=48 X>2

Figure 4: Model of the set of sensors related to the posi-
tion of the door.

5 Controller model

The plant is assumed to be controlled by a PLC that ex-
ecutes cyclically a code whose specification is described
in the standardized language termed Grafcet [6]. This
specification (Figure 5) includes timers launched by the
activation of some steps (see the transition conditions of
t40 and t42 in figure 5).

Several methods have been proposed to translate a con-
trol model in a standardized language into a formal model.
Some of them ([2] and [19] for example) start from a
model in SFC? language [7]; however this language is
an implementation and not a specification language (the
interested reader is referred to [16] for further details on
the semantic differences between Grafcet and SFC); this
explains why these approaches were not selected for this
work. On the opposite, [11] presents a method to translate
an untimed Grafcet specification into three sets of alge-
braic equations:

e The first set is termed firing conditions computation.
For each transition, the value of a Boolean variable,

2Sequential Function Chart

named firing condition, is calculated from the values
of the activity variables of the steps that precede this
transition and the value of the transition condition. If
this variable is true, the transition must be fired.

e The second set is aiming at computing the values of
the step activity variables once the transitions that
must be fired have been fired. A step activity variable
is a Boolean variable noted X_i, i being the number
of the step, in what follows.

e The third set computes the new values of the out-
put variables from the values of the step activity vari-
ables.

This method is the starting point to construct the con-
troller model. However, to be able to deal with timed spec-
ifications, formal models of timers are to be introduced,

t0 &~ START
1 —LIGHT
tl — START
|
4 +—BUZZER |LIGHT 2
t2a + FREE t2b + SEAL
A
10 —{CLOSE 20
t10 4~ SEAL 20 + X43
11 21 — OPEN
tll 4+ X41 t21 =~ FREE
3
41 1
40 —— LOCK
42
t40 + 5s/X40
t42 4 5s/X42
41 —{LOCK
A
A 4l 4+ X20
43 + XI11

Figure 5: Grafcet specification of the automatic door.



as proposed in [12] and [18]. Figure 6 shows the formal
model of the timer launched by the activation of step 40 of
the Grafcet of figure 5. The communication between this
model and the Grafcet is ensured by two variables:

T_X40_5s is a Boolean variable set by the Grafcet in or-
der to launch the timer. When it is reset, the timer
model comes back to its initial location.

T_X40_5s_Q is a Boolean variable set by the timer model
when the waiting time is elapsed. It is used in the
transition condition of t40. Once set, it is reset only
when T_X40_5s is reset.

IT_X40_5s
T_X40_5s_Q := false

T_X40_5s && t>=5
T_X40_5s_Q :=true

Figure 6: Timer model launched by the activation of the
step 40.

The model of the controller can then be stated on the
basis of the PLC cycle (Figure 7). This cycle includes
three phases: inputs reading, execution of the control code
and outputs updating. The execution of the control code
is itself decomposed in three phases where the three sets
of algebraic equations are computed sequentially. It is not
necessary to represent the first and third phases of the PLC
cycle (inputs reading and outputs updating) in the formal
model of the controller because the inputs/outputs of the
Grafcet are modeled as Boolean variables that are shared
by the controller and plant models.

1
Inouts readin Computation of 1
pu ing firing conditions
Implemented code Computation of )
execution steps activities
“— Outputs updating Computation of 3
outputs values

Figure 7: A PLC cycle.

The possibility of transient evolutions ([6], [16]) in the
Grafcet, due for instance to the always satisfied transition
condition of transition t4, imposes that the output values
must not be updated as long as the Grafcet has not reached
a stable situation. The computation of the output val-
ues must then be skipped if the situation is not stable. A
Boolean variable noted stable is thus introduced and eval-
uated once all firing conditions have been computed; it is

reset if at least one firing condition is true, and set other-
wise. If stable is true, no more transitions may be fired;
the situation is detected stable and the outputs can be up-
dated. If stable is false, at least one transition can be fired;
the computation of the output values has to be skipped,
i.e. the output values remain unchanged.

The figure 8 presents the model of the controller built
to describe this behavior:

e Three locations are used.

e For each set of equations of the Grafcet algebraic
model, an edge is created with this set of equations
as its actions.

e The computation of the stable variable is added to the
actions of the second edge.

e The edge which corresponds to the output values
computation has a guard stable to prevent these val-
ues be updated when the situation of the Grafcet is
not stable.

e An edge with no action allows to skip the output val-
ues computation as long as stable is false.

e This model is initialized with only the activity vari-
ables of the initial steps true, only the values of the
outputs set by the actions associated with the initial
steps true and stable false because the initial situation
may be transient for some values of the inputs.

e All edges are urgent because the time cycle of the
PLC is supposed to be negligible compared to the
duration of the movements of the components of the
plant.

Initial steps and
o outputs values assignation

Firing conditions computation
®

()
Istable

stable
Output values computation

Evaluation of stable and
step activity computation

Figure 8: Generic model of controller.

Figure 9 represents the particular model of the con-
troller for the example.

6 Deadlock issue when coupling the two
models

A simple approach to build the model of the closed-
loop system consists in putting in parallel the plant model



stable T_X40_5s :=X_40,
T_X42_5s:=X_42,

X_0:=true,
X_43 :=true OPEN :=X 21,
Istable CLOSE:=X_10,
o 2 LOCK:=X_40 || X_41,
LIGHT:=X_1|| X_4,
C\ BUZZER :=X_4
FC_TO0 := X_0 && START, N X_0:=(FC_T4)|| (X_0&&!(FC_TO0)),
FC_T1:=X_1 && ISTART, X_1:=(FC_TO)|| (X_1&&!(FC_T1)),
FC_T2A := X_2 && FREE, X_2:=(FC_T1)|| (X_2 && !(FC_T2A || FC_T2B)),
FC_T2B:=X_2 && SEAL, X_3:=(FC_T11 || FC_T21)|| (X_3 && !(FC_T4)),
FC_T10:=X_10 && SEAL, X_4:=(FC_T1)|| (X_4&&!(FC_T4)),
FC_T11:=X_11&&X_41, X_10:=(FC_T2A)|| (X_10 && !(FC_T10)),
FC_T20:=X_20 && X_43, X_11:=(FC_T10)|| (X_11 && !(FC_T11)),
FC_T21:=X_21 && FREE, X_20:=(FC_T2B)|| (X_20 && !(FC_T20)),
FC_T4:=X_3&&X_4, X_21:=(FC_T20)|| (X_21 && !(FC_T21)),
FC_T40:=X_40 && T_X40_5s_Q, X_40:=(FC_T43)|| (X_40 && !(FC_T40)),
FC_T41:=X_41 &&X_20, X_41:=(FC_T40)|| (X_41 && !(FC_T41)),

FC_T42:=X_42 && T_XA42_5s_Q, X_42:=(FC_T41)|| (X_42 && |(FC_T42)),

FC_T43 := X_43 && X_11 X_43:= (FC_T42)|| (X_43 && |( FC_T43)),
stable := IFC_TO && IFC_T1 && IFC_T2A && IFC_T2B &&
IFC_T10 && IFC_T11 && !FC_T20 && IFC_T21 && IFC_T4
&8 IFC_T40 && IFC_T41 && IFC_T42 && IFC_T43

Figure 9: Controller model of the example

and the controller model in a network of TADD. The ob-
tained model can then be simulated to check its behavior.
A part of the evolutions of this simulation is described in
figures 10, 11, 12 and 13, the oven door is supposed to be
initially open (the FREE variable is true, SEAL is false).
Only a reduced version of the controller model, a partial
representation of the Grafcet specification, and the actu-
ator model are represented. The active locations and the
active steps of the Grafcet are grayed, the output which
are set are also grayed and the fired edges are dotted for
readability purposes.

Figure 10 shows the state once the operator has pushed
the start button; step 1 of the Grafcet is active. The con-
troller model is supposed to have reacted (setting LIGHT
to true) and returned to its initial location, the actuator
model has not evolved yet and is in its initial location.

Istable
stable

Outputs

OPEN && t==1 && X-2<=0

CLOSE && X < 50

?f_E': gg =1 __ CLOSE 8&

2o IOPEN t==18&

> ° X:=2 X+2<50
t:=0, % <= t:=0,
X=Xx-2 ' Xi=X+2

CLOSE && t==1 && X + 2 >= 50

Figure 10: State once the operator has pushed the start
button.

Figure 11 represents the state once the operator has re-
leased the button, resetting the variable START. The tran-
sition condition of t1 is satisfied; then this transition must
be fired and steps 2 and 4 activated. Then, the controller
model evolves three times:

e The firing conditions are computed; FC_T1 becomes
true.

e The step activity variables are computed; X_1 be-
comes false, X_2 and X_4 true. The variable stable is
computed false as FC_T1 is true.

e As stable is false, the output variables values are not
updated and the controller model comes back to its
initial location.

Moreover, as both output variables CLOSE and OPEN
have not become true, the actuator model cannot evolve
and remains in its initial location. As FREE is true, the
situation in which the steps 2 and 4 are active is not sta-
ble. The controller evolves until the stable situation (steps
10 and 4 active) is reached (Figure 12). The outputs
BUZZER, LIGHT and CLOSE are set.

TR To

" u Stable
&& SA

Istable

stable
Outputs

OPEN && t==1 && X-2<=0

CLOSE && X < 50
OPEN && t<=1  CLOSE &&
t==18&& /_\ t--188&
X=2>0 ° X+2<50
t:=0, t:=0,
X:=X-2 X:=X+2

CLOSE && t==1 && X + 2 >= 50

Figure 11: The operator releases the start button, the con-
troller reacts.

Figure 13 shows the last evolution. As CLOSE is true,
the model of the actuator can evolve from location 0 to
location 1. More precisely, two urgent transitions may be
fired, one in the controller model and one in the actuator
model. It is assumed that this latter is fired; then the clock
tis reset.

This state is a deadlock for the plant model. Two edges
are starting from the active location of the actuator model
but none can be fired. The self-loop on location 1 requires
an evolution of the clock, which is not possible because at



tl START n " EC
n
| n
BUZZER | LIGHT || 2 | ::
n
| n
n n Stable
i && SA
n
n
" Istable
" ,, Stable
2:::::::':OUtpUts
OPEN && t==1 && X -2 <=0
CLOSE && X < 50
ravss /7 XT0 N s cosas
== I0PEN 7 t=0 SN\ t==18&

X-2>0 X+2<50

t:=0,
X:i=X+2

‘e X o 2 °$
t<= :

=1
OPEN && X >0
CLOSE && t==1 && X + 2 >= 50

Figure 12: The controller model evolves again until stable
is set and outputs updated.

least one urgent edge can be fired in the controller model.
The urgent edge from location 1 to location 0 cannot be
fired either, because CLOSE is true, and will remain true
because the Grafcet will not change the value of this vari-
able -step 10 will stay active- if SEAL remains false (the
door remains open).

- LIGHT

tl START

|
BUZZER | LIGHT || 2 |
|

©2b SEAL

&& SA

stable
Outputs

CLOSE && X < 50

—z==z==. = LOSE
t==188& Leeriiisesist ctislgg
X=2>0 X+2<50

t:=0, t:=0,
X:i=X-2 Xi=X+2

CLOSE && t==1 && X + 2 >= 50

Figure 13: Last evolution: the actuator model evolves.

7 Analysis and solution proposed

All the edges of the controller model are urgent be-
cause the time cycle of the PLC (a few milliseconds) was
considered to be negligible compared to the typical times
of the plant (a few seconds or at least tenths of seconds).
However, this modeling provokes deadlocks in the plant
model when an edge whose firing depends on time evolu-
tion has to be fired.

As it is not possible to remove time-constrained edges
in the plant model if a realistic timed model is expected, a
solution to this issue might be to introduce such edges in
the controller to model the processing time. Nevertheless,
as the time step of all clocks is the same in the modeling
formalism, this solution would imply that a lot of clocks
steps of the controller clock would occur before two suc-
cessive input changes and would surely lead to combina-
tory explosion during the formal analysis of non-trivial
models. This is the reason why this solution was not se-
lected.

The urgent edges of the controller model are then to be
kept but the evolutions of this model must be limited to
only three cases:

e The value of an input variable has changed.

e The variable that represents the end of a timer has
been set.

e The situation of the Grafcet is not yet stable.

8 Application of the solution

To model the first two cases, two Boolean variables
EVOL_PL (evolution of the plant) and EVOL_TT (evolu-
tion of a timer) which act as flags must be introduced:

EVOL_PL is set in every edge of the plant model where
an input variable of the controller is assigned. As
the input variables are assigned in edges of sensors
models, EVOL_PL is set in such edges. It is reset by
the controller model once the firing conditions have
been computed.

EVOL._TI is set in every timer model edge where the
variable that represents the end of this timer is set.
It is reset by the controller model once the firing con-
ditions have been computed.

The modified versions of the models of the set of sen-
sors of figure 4 and of the timer of figure 6 are given in
figures 14 and 15.

The controller model is modified as follows (Figure
16):

e The guard of the edge from location 0 to location 1
becomes !stable || EVOL_PL || EVOL_TI; hence a
cycle of this model is possible only when at least one
of these three conditions is true, which is expected.



FREE := true
FREE := true

SEAL := true,
[EvoL_PL := true |

FREE := false,
[EvoL_PL := true |

Figure 14: Modified version of the model of the set of

SEnsors.
m T_X40_5s
t:=0
IT_X40_5s
T_X40_5s_Q := false

T_X40_5s && t>=5
T _X40 5s_Q :=true,
EVOL_TI := true

Figure 15: Modified version of the timer model related to
the activity of the step 40.

e Two actions that reset both variables EVOL_PL and
EVOL_TT are added to this edge; then, two succes-
sive cycles are possible iff one of these variables be-
comes true during the current cycle.

This modeling guarantees that every input change and
end of timer will be detected while avoiding deadlocks of
the plant model, as shown in the next section.

Initial steps and
outputs values assignation

[|istable || EVOL_PL || EVOL_TI
Firing conditions computation
f |and EVOL_PL/TI reset

©
k)

stable
Output values computation

Evaluation of stable and
step activity computation

Figure 16: Final version of the model of the controller.

9 Evolutions with the modified models

Figure 17 shows the state once the operator has re-
leased the start button (previously described in Figure 11).
As the input variable START has been reset, EVOL_PL
becomes true and a cycle of the controller is possible. The
new situation of the Grafcet (steps 2 and 4 are active) is
not stable; hence a new cycle is possible.

Figure 18 shows the last evolution of the controller
model and the following evolutions of the actuator model
(evolutions previously described in figures 12 and 13). As
the new situation (steps 4 and 10 are active) is stable, the
cycle of the controller stops in location 0 (EVOL_PL and
EVOL_TI are false and stable is true). Then the actuator
model evolves to its location 1. It matters to underline that
only this evolution is possible; there is no concurrency be-
tween the evolutions of the plant and the controller. As
no more urgent edges can be fired, the time semantics is
used and the actuator evolves again by using the timed-
constrained self-loop edge.

The previous deadlock is then removed and the plant
model will evolve normally (several time-constrained self-
loops on location 1 before coming back to location 0 when
the door is closed) until one of the inputs of the controller,
e.g. the variable SEAL that models the end of the move-
ment of the door, has changed.

- LIGHT
tl

START Istable ||
EVOL_PL||
EVOL_TI

FC &&
EVOL reset

u Stable

2 g
al

OPEN && t==1 && X-2<=0

OPEN && CLOSE &&
t==18&& t==18&
X-2>0 X+2<50
t:=0, t:=0,
X:i=X-2 X:=X+2

CLOSE && t==1 && X + 2 >= 50

Figure 17: The operator releases the start button, the con-
troller reacts.

10 Conclusion

This paper has shown that coupling timed plant and
controller models, that have been built independently and
that include urgent transitions, may lead to a deadlock
state. To solve this issue, the evolutions of the two mod-
els need to be scheduled by means of two variables that
model the changes of the input variables of the controller
and the end of timers.

As the TADD formalism is not tool-supported, the
models presented in this paper have been translated into
the formalism of the UPPAAL suite, according to the
translation rules presented in [14]. Formal verification of
these models by the model-checker of this suite has per-



LIGHT

EVOL reset

tl START Istable ||
EVOL_PL ||
I EVOL_TI
BUZZER | LIGHT || 2 | FC &&
|

©2b SEAL

CLOSE && X < 50
------- t<=1 _ CLOSE &&
.. o <,

SN t==18&

1 X+2<50
1
t:=0, ’ t:=0,
X:i=X-2 Xi=X+2

CLOSE && t==1 && X + 2 >=50

Figure 18: The controller model has reached a stable situ-
ation and stops, the actuator model evolves twice.

mitted to validate this proposal; no deadlock state was de-
tected.

Future work is aiming at introducing faulty behaviors
in the plant model and fault detection mechanisms in the
controller model in order to analyze more complex models
of closed-loop systems.
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