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Conditional hitting time estimation in a nonlinear filtering
model by the Brownian bridge method

CHRISTOPHE PROFETA ∗ ABASS SAGNA †

Abstract

The model consists of a signal process X which is a general Brownian diffusion process and
an observation process Y , also a diffusion process, which is supposed to be correlated to the
signal process. We suppose that the process Y is observed from time 0 to s > 0 at discrete times
and aim to estimate, conditionally on these observations, the probability that the non-observed
process X crosses a fixed barrier after a given time t > s. We formulate this problem as a usual
nonlinear filtering problem and use optimal quantization and Monte Carlo simulations techniques
to estimate the involved quantities.

1 Introduction

We consider in this work a nonlinear filtering model where the signal process X and the observation
process Y evolve following the stochastic differential equations:

{
dXt = b(Xt, t)dt+ σ(Xt, t)dWt, X0 = x0,

dYt = h(Yt,Xt, t)dt+ ν(Yt, t)dWt + δ(Yt, t)dW̃t, Y0 = y0.
(1)

In these equations, W and W̃ are two independent standard real valued Brownian motions. We
suppose that the functions b, σ, h, ν, and δ are Lipschitz and that, for every (x, t) ∈]0,+∞)2,
δ(x, t) > 0, ν(x, t) > 0 and σ(x, t) > 0.
Let a be a real number such that 0 < a < x0 and let

τX
a

= inf{u ≥ 0,Xu ≤ a}

be the first hitting time of the barrier a by the signal process. As usually, we consider that inf ∅ = +∞.
Our aim is to estimate the distribution of the conditional hitting time

P
(
τX
a

> t| FY
s

)
(2)

for t ≥ s > 0 and where (FY
t )t≥0 is the filtration generated by the observation process Y :

FY
s = σ(Yu, u ≤ s).

More generally, we shall denote by (FZ
t )t≥0 the filtration generated by the process Z .

Such a problem arises for example in credit risk when modeling a credit event in a structural
model as the first hitting time of a barrier a by the firm value process X. Investors are supposed to
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have no access to the true value of the firm but only to the observation process Y , which is correlated
to the value of the firm (see e.g. [3, 4]). We will typically suppose that we observe the process Y
at regular discrete times t0 = 0 < t1 < . . . < tm = s over the time interval [0, s] and intend for
estimating the quantity

P
(
τX
a

> t|Yt0 , . . . , Ytm

)

for every t ≥ s. Note that, if t < s, then, applying the Markov property to the diffusion Y , the
computations boil down to the case s = t. In [2], the quantity

P

(
inf

u∈[s,t]
Xu > a|Yt0 , . . . , Ytm

)

has been estimated by a hybrid Monte Carlo-Optimal quantization method in the case where the
observation process dynamics is given by:

dYt = Yt

(
h(Xt)dt+ ν(t)dWt + δ(t)dW̃t

)
, Y0 = y0,

where ν and δ are deterministic functions. However, the approach used in the previous work does not
apply to our framework because we want to compute the conditional distribution of a function of the
whole trajectory of the signal process from 0 to t given the observations from 0 to s, with s ≤ t.

Example 1. A particular case of model (1) one may consider is the following “Black-Scholes” case:

{
dXt = Xt(µdt+ σdWt), X0 = x0,

dYt = Yt(rdt+ νdWt + δdW̃t), Y0 = y0,
(3)

so that
dYt

Yt
=

ν

σ

dXt

Xt
+
(
r − µ

ν

σ

)
dt+ δdW̃t, (4)

or

Yt =
y0

(x0)ν/σ
X

ν/σ
t exp

(
δW̃t +

(
r − ν2 + δ2

2
− µν

σ
+

νσ

2

)
t

)
. (5)

Observe that setting r = µ and σ = ν yields

dYt

Yt
=

dXt

Xt
+ δdW̃t,

meaning that the return on Y is the return on X affected by a noise (see e.g. [3]).
Of course, in this case, we may compute theoretically the expression (2) by noticing that:

τX
a

= inf{u ≥ 0,Xu ≤ a}

= inf

{
u ≥ 0, δW̃u − δ2

2
u ≥ ln(Yu) + ln

(
x0
y0

)
− ln(a)

}

and that, conditionally to FY
s , the process

(
W̃u, u ≤ s

)
has the same law as

(
σ√

σ2 + δ2
Bu +

δ

σ2 + δ2

(
ln(Yu) + ln

(
x0
y0

)
+

σ2 + δ2

2
u

)
, u ≤ s

)

where B is a standard Brownian motion independent from the process Y . This follows from the fact
that, since W and W̃ are two independent Brownian motion, so are

B =
σW + δW̃√

σ2 + δ2
and B̃ =

δW − σW̃√
σ2 + δ2

,
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and from the relations :

Bt =
1√

σ2 + δ2

(
ln(Yt) + ln

(
x0
y0

)
+

σ2 + δ2

2
t

)
and W̃t =

δBt − σB̃t√
σ2 + δ2

.

Therefore, in this particular setting, the problem boils down to the computation of the first passage
time of a Brownian motion to a curved boundary. We refer to [3] for some similar, and far more
general, considerations.

Example 2. Another particularly simple case is given when both the signal and the observation pro-
cess evolve following the Ornstein-Uhlenbeck dynamics:

{
dXt = λ(θ −Xt)dt+ σdWt, X0 = x0,

dYt = λ(θ − Yt)dt+ σdWt + δdW̃t, Y0 = y0.
(6)

In this case, we have :

Xt = Yt − (y0 − x0)e
−λt − δe−λt

∫ t

0
eλudW̃u,

so that

τX
a

= inf

{
u ≥ 0, Yu − a− (y0 − x0)e

−λu ≤ δe−λu

∫ u

0
eλvdW̃v

}

and, conditionally to FY
s , the process

(
e−λu

∫ u

0
eλvdW̃v, u ≤ s

)
has the same law as

(
σ√

σ2 + δ2
Uu +

δeλu

σ2 + δ2

(
Yu − y0e

−λu − θ(1− e−λu)
)
, u ≤ s

)

where U is an Ornstein-Uhlenbeck process with parameters λ and 0 started from 0, and independent
from Y . This follows from Knight’s representation theorem combined with the same ideas as above.

The rest of the paper is organized as follows: in Section 2, we state and prove the main theorems,
i.e. we give an approximation of the expectation (2) when X is replaced by its continuous Euler
scheme X̄ , see especially Subsection 2.3. Then, in Section 3, we introduce some numerical tools in
order to compute the quantities involved. We finally conclude the paper by a few simulations.

2 Estimation of the conditional survival probability

2.1 Preliminaries results

To deal with the computation of the conditional hitting time (2), we introduce the first hitting time
from time s:

τ (s) = inf{u ≥ s,Xu ≤ a}.
Define furthermore the filtration (Gt)t≥0 by, for every t ≥ 0,

Gt = σ{(Wu, W̃u), u ≤ t}. (7)

We have the following result.
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Lemma 2.1. For every t ≥ s,

P
(
τX
a

> t| FY
s

)
= E

[
11{τX

a
>s}F (s, t,Xs)| FY

s

]
(8)

with

F (s, t,Xs) = P

(
inf

u∈[s,t]
Xu > a|Xs

)
.

Proof. If t ≥ s, one has
{τX

a
> t} = {τX

a
> s} ∩ {τ (s) > t},

so that

P
(
τX
a

> t| FY
s

)
= P

(
{τX

a
> s} ∩ {τ (s) > t}|FY

s

)

= E

[
E

[
11{τX

a
>s}11{τ (s)>t}|Gs

]
|FY

s

]
,

where the σ-algebra Gs is defined in (7). Hence, using the fact that W̃ is independent from W and
the Markov property of the process X:

P
(
τX
a

> t| FY
s

)
= E

[
11{τX

a
>s}E

[
11{τ (s)>t}|Gs

]
|FY

s

]

= E

[
11{τX

a
>s}E

[
11{τ (s)>t}|FW

s

]
|FY

s

]

= E

[
11{τX

a
>s}P

(
τ (s) > t|FX

s

)
|FY

s

]

= E

[
11{τX

a
>s}P

(
inf

u∈[s,t]
Xu > a|Xs

)
|FY

s

]
.

This shows assertion (8).

Note that in general, there is no closed-form expression for computing P
(

inf
u∈[s,t]

Xu > a|Xs

)
, except

in some very special cases, such as Brownian motion or Bessel processes... We shall therefore need
an approximation of this expression, which is the purpose of the next subsection.

2.2 The continuous Euler scheme

Let us denote by X̄ the continuous Euler scheme process associated to the signal process X and
defined by

X̄s = X̄s + b(X̄s, s)(s− s) + σ(X̄s, s)(Ws −Ws), X̄0 = x0,

with s = tk if s ∈ [tk, tk+1). To estimate the distribution of the conditional hitting time given in (2),
consider that we observe the process Y at discrete and regularly spaced times: t0, t1, . . . , tm, with
0 = t0 < · · · < tm = s < tm+1 < · · · < tn = t. In our general model (see Equation (1)), the
discrete time observation processes {X̄tk , k = 0, . . . , n} and {Ytk , k = 0, . . . ,m} are obtained from
Euler scheme as:
{
X̄tk+1

= X̄tk + b(X̄tk , tk)∆k + σ(X̄tk , tk)(Wtk+1
−Wtk)

Ytk+1
= Ytk + h(Ytk , X̄tk , tk)∆k + ν(Ytk , tk)(Wtk+1

−Wtk) + δ(Ytk , tk)(W̃tk+1
− W̃tk)

(9)

where k = 0, . . . ,m − 1 for the observation process, k going till n − 1 for the signal process and
∆k = tk+1 − tk. Note that if t > s, the number of discretization steps over [0, s] may differ from the
number of discretization steps over [s, t] so that we choose





tk = ks
m for k = 0, . . . ,m

tk = s+ k(t−s)
n for k = m+ 1, . . . , n.
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Supposing that we have observed the trajectory (Yt0 , . . . , Ytm) of the observation process Y we aim
to estimate

P(τX
a

> tn|Yt0 , . . . , Ytm)

by
P
(
τ X̄
a

> tn|Yt0 , . . . , Ytm

)
, (10)

where
τ X̄
a

= inf{u ≥ 0, X̄u ≤ a}.
To this end, we will use a useful result called the regular Brownian bridge method. This result recalled
below allows us to compute the distribution of the minimum (or the maximum) of the continuous
Euler scheme X̄ of the process X over the time interval [0, t], given its values at discrete and regular
time observation points 0 = t0 < t1 < · · · < tn = t (see, e.g. [6, 7]).

Lemma 2.2. Let (Xt)t≥0 be a diffusion process with dynamics given by

Xt = x+

∫ t

0
b(Xu, u)du+

∫ t

0
σ(Xu, u)dWu

and let (X̄t)t≥0 be its associated continuous Euler process. Then, the following equality in law holds:

L
(

min
u∈[0,t]

X̄u|X̄tk = xk, k = 0, · · · , n
)
= L

(
min

k=0,··· ,n−1

(
H

xk,xk+1

∆kσ2(xk,tk)

)−1
(Λk)

)
, (11)

where (Λk)k=0,··· ,n−1 are i.i.d. random variables uniformly distributed over the unit interval and(
H

xk,xk+1

∆kσ2(xk,tk)

)−1
is the inverse function of the conditional cumulative function H

xk,xk+1

∆kσ2(xk,tk)
, defined

by

H
xk,xk+1

∆kσ2(xk,tk)
(u) :=

{
exp

(
− 2

∆kσ2(xk ,tk)
(u− xk)(u− xk+1)

)
if u ≤ min(xk, xk+1)

1 otherwise.
(12)

In the following, we shall replace the expression σ(xk, tk) in the expression of H by σk and rather
write: H

xk,xk+1

∆kσ
2
k

.

Short proof. Observe first that, conditionally to {X̄tk = xk; k = 0, · · · , n}, the random variables{
min

u∈[tk,tk+1]
X̄u; k = 0, . . . , n− 1

}
are mutually independent, thanks to the independent increments

property of Brownian motion. Then, it suffices to notice that computing the law of min
u∈[tk,tk+1]

X̄u

conditionally to {X̄tk = xk, X̄tk+1
= xk+1} amounts to computing the law of the hitting times of the

bridge of a Brownian motion with drift. This law is well-known to be independent from the drift (i.e.
from the function b here) and to be given by an expression such as (12).

In the rest of the paper, the function 1 − H
xk,xk+1

∆kσ
2
k

(a) will be often used. We shall denote it by

G
xk,xk+1

∆kσ
2
k

(a), so that

G
xk,xk+1

∆kσ
2
k

(a) =

(
1− exp

(
−2(xk − a)(xk+1 − a)

∆kσ2(xk, tk)

))
11{xk≥a; xk+1≥a}. (13)

Now, in our set-up, we shall apply the Brownian bridge method to obtain the following lemma, which
is taken from [2]:
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Lemma 2.3. We have

P

(
inf

u∈[tm,tn]
X̄u > a

∣∣(X̄tk)k=0,...,m

)
=

n−1∏

k=m

G
X̄tk

,X̄tk+1

∆kσ
2
k

(a). (14)

Proof. It follows from Lemma 2.2 that

P

(
inf

u∈[tm,tn]
X̄u > a

∣∣(X̄tk )k=0,...,m

)
= P

(
min

k=m,··· ,n−1

(
H

X̄tk
,X̄tk+1

∆kσ
2
k

)−1

(Λk) > a

)
.

Since the function H
zk,zk+1

∆kσ
2
k

(·) is non-decreasing and the Λk’s are i.i.d. uniformly distributed random

variables, this reduces to:

P

(
min

u∈[tm,tn]
X̄u > a

∣∣(X̄tk )k=0,...,m

)
=

n−1∏

k=m

P

(
Λk ≥ H

X̄tk
,X̄tk+1

∆kσ
2
k

(a)

)

=
n−1∏

k=m

(
1−H

X̄tk
,X̄tk+1

∆kσ
2
k

(a)

)
.

This completes the proof.

2.3 Main theorem

We now state and prove the main theorems of this section. We first show that the conditional hit-
ting time of the continuous Euler process X̄ given the discrete path observations Yt0 , . . . , Ytm may
be written as an expectation of an explicit functional of the discrete path X̄t0 , . . . , X̄tm of the signal
given the observations Yt0 , . . . , Ytm . Therefore, we reduce the initial problem to the characterization
of the conditional distribution of X̄t0 , . . . , X̄tm given Yt0 , . . . , Ytm .

Theorem 2.4. Set X̄m = (X̄t0 , . . . , X̄tm) and Y m = (Yt0 , . . . , Ytm). We have:

P
(
τ X̄
a

> tn|Yt0 , . . . , Ytm

)
= Ψ(Yt0 , . . . , Ytm), (15)

where for ym := (y0, . . . , ym),

Ψ(ym) = E
[
Φ
(
X̄m

)∣∣Y m = ym
]
. (16)

The function Φ is defined for every zm = (z0, . . . , zm) by

Φ(zm) = F̄ (tm, tn, zm)

m−1∏

k=0

G
zk ,zk+1

∆kσ
2
k

(a),

with

F̄ (tm, tn, x) = E

[
n−1∏

k=m

G
X̄tk

,X̄tk+1

∆kσ
2
k

(a)
∣∣ X̄tm = x

]
.

Proof. We may show similarly to Equation (8) in Lemma 2.1 that

P
(
τ X̄
a

> tn
∣∣Yt0 , . . . , Ytm

)
= E

[
11{τ X̄

a
>tm}F̄ (tm, tn, X̄tm)|Yt0 , . . . , Ytm

]
,

with

F̄ (tm, tn, X̄tm) = P

(
inf

u∈[tm,tn]
X̄u > a

∣∣X̄tm

)
.
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It follows from Lemma 2.3 that

F̄ (tm, tn, X̄tm) = E

[
P

(
min

u∈[tm,tn]
X̄u > a

∣∣(X̄tk)k=0,...,m

) ∣∣X̄tm

]
= E

[
n−1∏

k=m

G
X̄tk

,X̄tk+1

∆kσ
2
k

(a)
∣∣ X̄tm

]
.

On the other hand, combining a successive conditioning rule with the independence between W and
W̃ gives :

P
(
τ X̄
a

> tn|Yt0 , . . . , Ytm

)
= E

[
E

[
11{τ X̄

a
>tm}F̄ (tm, tn, X̄tm)|(Wtk , W̃tk)k=0,...,m

]
|Y m

]

= E

[
E

[
11{τ X̄

a
>tm}F̄ (tn, tm, X̄tm)|(Wtk )k=0,...,m

]
|Y m

]

= E

[
F̄ (tm, tn, X̄tm)P

(
τ X̄
a

> tm|(Wtk)k=0,...,m

)
|Y m

]

= E

[
F̄ (tm, tn, X̄tm)P

(
τ X̄
a

> tm|(X̄tk )k=0,...,m

)
|Y m

]
.

Now, using Lemma 2.3 once again, we have

P

(
τ X̄
a

> tm|(X̄tk )k=0,...,m

)
=

m−1∏

k=0

G
X̄tk

,X̄tk+1

∆kσ
2
k

(a)

so that
P
(
τ X̄
a

> tn|Yt0 , . . . , Ytm

)
= E

[
Φ(X̄m) |Yt0 , . . . , Ytm

]

where for every xm := (x0, . . . , xm),

Φ(xm) = F̄ (tm, tn, xm)

m−1∏

k=0

G
xk,xk+1

∆kσ
2
k

(a).

This completes the proof.

It remains now to characterize the law of X̄m|Y m = ym appearing in (16). This is the purpose
of the following theorem, in which we shall write the conditional survival probability in a usual form
with respect to standard nonlinear filtering problems.
We set from now on σk = σ(xk, tk), bk = b(xk, tk), δk = δ(yk, tk), hk = h(yk, xk, tk), and νk =
ν(yk, tk). We next give the main result of the paper.

Theorem 2.5. We have:

P
(
τ X̄
a

> tn|Yt0 , . . . , Ytm

)
= Ψ(Yt0 , . . . , Ytm), (17)

where for ym := (y0, . . . , ym),

Ψ(ym) =
E
[
F̄ (tm, tn, X̄tm)KmLm

y

]

E[Lm
y ]

, (18)

with

Km =

m−1∏

k=0

G
X̄tk

,X̄tk+1

∆kσ
2
k

(a) and Lm
y =

m−1∏

k=0

gk(X̄tk , yk; X̄tk+1
, yk+1).

The function gk is defined by

gk(xk, yk;xk+1, yk+1) =
1

(2π∆k)3/2σ
2
kδk

exp

(
− ν2k

2δ2k∆k

(xk+1 −m1
k

σk
− yk+1 −m2

k

νk

)2
)

(19)

with m1
k := xk + bk∆k and m2

k := yk + hk∆k.

7



Proof. It follows from Theorem 2.4 that

P
(
τ X̄
a

> tn|Yt0 , . . . , Ytm

)
= E

[
Φ(X̄m) |Yt0 , . . . , Ytm

]

where for every xm := (x0, . . . , xm),

Φ(xm) = F̄ (tm, tn, xm)

m−1∏

k=0

G
xk,xk+1

∆kσ
2
k

(a).

It remains to characterize the conditional distribution of X̄m given Y m. Recall that the dynamics of
the processes (X̄tk) and (Ytk) are given for k = 0, . . . ,m by
{
X̄tk+1

= X̄tk + b(X̄tk , tk)∆k + σ(X̄tk , tk)(Wtk+1
−Wtk)

Ytk+1
= Ytk + h(Ytk , X̄tk , tk)∆k + ν(Ytk , tk)(Wtk+1

−Wtk) + δ(Ytk , tk)(W̃tk+1
− W̃tk)

(20)

Let Pxk,yk(X̄tk+1
∈ dxk+1, Ytk+1

∈ dyk+1) denote the density function of the couple (X̄tk+1
, Ytk+1

)
given (X̄tk , Ytk) = (xk, yk). Using Bayes formula and the Markov property of the process (X̄tk , Ytk)k
we get:

Px0,y0(X̄t1 ∈ dx1, . . . , X̄tm ∈ dxm|Yt1 ∈ dy1, . . . , Ytm ∈ dym)

=
Px0,y0

(
(X̄t1 ∈ dx1, Yt1 ∈ dy1); . . . ; (X̄tm ∈ dxm, Ytm ∈ dym)

)

Px0,y0(Yt1 ∈ dy1, . . . , Ytm ∈ dym)

=
Px0,y0

(
X̄t1 ∈ dx1, Yt1 ∈ dy1)× · · · × Pxm−1,ym−1(X̄tm ∈ dxm, Ytm ∈ dym)

Px0,y0(Yt1 ∈ dy1, . . . , Ytm ∈ dym)
.

For every xm = (x0, . . . , xm) and ym = (y0, . . . , ym), set :

Nk(x
m; ym) := Px0,y0

(
X̄t1 ∈ dx1, Yt1 ∈ dy1)× · · · × Pxm−1,ym−1(X̄tm ∈ dxm, Ytm ∈ dym).

With this notation, the denominator reads:

Px0,y0(Yt1 ∈ dy1, . . . , Ytm ∈ dym) =

∫
Nk(x

m; ym)dx1 . . . dxm.

On the other hand, the random vector (X̄tk+1
, Ytk+1

)
∣∣(X̄tk , Ytk) = (xk, yk) has a Gaussian distribu-

tion with mean mk and covariance matrix Σk given for every k = 0, . . . ,m− 1 by

mk =

(
xk + bk∆k

yk + hk∆k

)
, Σk = ∆k

(
σ2
k σkνk

σkνk ν2k + δ2k

)
. (21)

Then, for every k = 0, . . . ,m− 1, the density fk(xk, yk;xk+1, yk+1) of (X̄tk+1
, Ytk+1

)
∣∣(X̄tk , Ytk) =

(xk, yk) reads

fk(xk, yk;xk+1, yk+1) =
1

2πσkδk∆k
exp

(
− ν2k + δ2k

2δ2k∆k

{(xk+1 −m1
k)

2

σ2
k

+
(yk+1 −m2

k)
2

ν2k + δ2k

− 2νk
σk(ν

2
k + δ2k)

(xk+1 −m1
k)(yk+1 −m2

k)
})

, (22)

where m1
k := xk + bk∆k and m2

k := yk + hk∆k. As a consequence,

P

(
τ X̄
a

> tn| (Yt0 , . . . , Ytm) = ym
)
= E

[
Φ(X̄m) | (Yt0 , . . . , Ytm) = ym

]

=

∫
Φ(xm)Nk(x

m; ym)dx1 . . . dxm∫
Nk(xm; ym)dx1 . . . dxm

. (23)
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Now, we know that the random variable X̄tk+1
|X̄tk = xk has a Gaussian distribution with mean m1

k

and variance σ2
k∆k. Its density Pk(xk, xk+1)dxk+1 is therefore given by :

Pk(xk, xk+1)dxk+1 =
1√

2π∆k σk
exp

(
− (xk+1 −m1

k)
2

2σ2
k∆k

)
dxk+1.

Then, by definition of Nk, we may write:
∫

Nk(x
m; ym)dx1 . . . dxm

=

∫ m−1∏

k=0

fk(xk, yk;xk+1, yk+1)dxk+1

=

∫ m−1∏

k=0

fk(xk, yk;xk+1, yk+1)

Pk(xk, xk+1)
Pk(xk, xk+1)dxk+1

=

∫ (m−1∏

k=0

fk(xk, yk;xk+1, yk+1)

Pk(xk, xk+1)

)
m−1∏

k=0

Pk(xk, xk+1)dxk+1

=

∫ (m−1∏

k=0

gk(xk, yk;xk+1, yk+1)

)
Px0,y0(X̄t1 ∈ dx1, . . . , X̄tm ∈ dxm) = E[Lm

y ],

where gk is defined by (19) and the next-to-last equality follows from the Markov property of the
process (X̄tk , k = 0, . . . ,m). Now, looking at the numerator of (23), similar computations lead to:

∫
Φ(xm)Nk(x

m; ym)dx1 . . . dxm

=

∫
F̄ (tm, tn, xm)

m−1∏

k=0

G
xk,xk+1

∆kσ
2
k

(a)fk(xk, yk;xk+1, yk+1)dxk+1,

=

∫
F̄ (tm, tn, xm)

(
m−1∏

k=0

G
xk,xk+1

∆kσ
2
k

(a)

)

×
(

m−1∏

k=0

gk(xk, yk;xk+1, yk+1)

)
Px0,y0(X̄t1 ∈ dx1, . . . , X̄tm ∈ dxm)

=E
[
F̄ (tm, tn, X̄tm)KmLm

y

]
.

Finally, going back to (23), we obtain

P

(
τ X̄
a

> tn| (Yt0 , . . . , Ytm) = ym
)
=
E
[
F̄ (tm, tn, X̄tm)KmLm

y

]

E[Lm
y ]

which is the announced result.

Remark 2.1. Remark that more generally we have for every real valued bounded function f ,

E[f(X̄tm)|Yt0 = y0, . . . , Ytm = ym] =
E
[
f(X̄tm)L

m
y

]

E[Lm
y ]

. (24)

In this case we can estimate the right hand side quantity of (24) using recursive algorithms. In our
setting, we can adapt these algorithms by noting that the expression (18) may be read in the similar
form of (24) as:

P

(
τ X̄
a

> tn| (Yt0 , . . . , Ytm) = ym
)
=
E
[
F̄ (tm, tn, X̄tm)L

′m
y

]

E[Lm
y ]

9



where

L
′m
y =

m−1∏

k=0

gk(X̄tk , yk; X̄tk+1
, yk+1)G

X̄tk
,X̄tk+1

∆kσ
2
k

(a)

and where the involved functions are defined in Theorem 2.5.

Considering the model given in Example 1, one may apply the result of Theorem 2.5 using the
continuous Euler process X̄ of the signal. However since in this framework the solutions of the
stochastic differential equations are explicit, we refrain from using the Euler scheme to avoid adding
additional error. In the next result we deduce a similar representation of the conditional survival
probability using the explicit solutions of the stochastic differential equations of the model (3).

Corollary 2.6. Consider that the signal process X and the observation process Y evolve following

the stochastic differential equations given in (3):

{
dXt = Xt(µdt+ σdWt), X0 = x0,

dYt = Yt(rdt+ νdWt + δdW̃t), Y0 = y0.
(25)

Then,

Ψ(ym) =
E
[
F (tm, tn,Xtm)KmLm

y

]

E[Lm
y ]

, (26)

with

Km =

m−1∏

k=0

G
Xtk

,Xtk+1

∆kσ
2
k

(a) and Lm
y =

m−1∏

k=0

gk(Xtk , yk;Xtk+1
, yk+1).

The function gk is defined by

gk(xk, yk;xk+1, yk+1) =
1

(2π∆k)3/2πk
exp

(
− ν2

2δ2∆k

( log xk+1 −m1
k

σ
− log yk+1 −m2

k

ν

)2
)

(27)
with

πk := σ2δx2k+1yk+1, m1
k := log xk + (µ− 1

2
σ2)∆k and m2

k := log yk + (r− 1

2
ν2 − 1

2
δ2)∆k.

Proof. It follows from Itô formula that for every s ≤ t,
{
Xt = Xs exp

(
(µ − 1

2σ
2)(t− s) + σ(Wt −Ws)

)

Yt = Ys exp
(
(r − 1

2ν
2 − 1

2δ
2)(t− s) + ν(Wt −Ws) + δ(W̃t − W̃s)

)
.

(28)

Then, for every k = 0, . . . ,m − 1 the random vector (Xtk+1
, Ytk+1

)|(Xtk , Ytk) = (xk, yk) has a
bivariate lognormal distribution with mean mk and covariance matrix Σ given by

mk =

(
log xk + (µ− 1

2σ
2)∆k

log yk + (r − 1
2ν

2 − 1
2δ

2)∆k

)
, Σ = ∆k

(
σ2 σν
σν ν2 + δ2

)
.

Hence, its density reads (setting µk = σδxk+1yk+1)

fk(xk, yk;xk+1, yk+1) =
1

2π∆kµk
exp

(
− ν2 + δ2

2δ2∆k

{(log xk+1 −m1
k)

2

σ2

− 2ν

σ(ν2 + δ2)
(log xk+1 −m1

k)(log yk+1 −m2
k)

+
(log yk+1 −m2

k)
2

ν2 + δ2

})
,
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where m1
k = log xk +(µ− 1

2σ
2)∆k and m2

k := log yk +(r− 1
2ν

2− 1
2δ

2)∆k. Furthermore, for every
k = 0, . . . ,m− 1, the random variable Xtk+1

|Xtk = xk has a lognormal distribution with mean m1
k

and variance σ2 so that its density distribution Pk(xk, xk+1) is given by

Pk(xk, xk+1) =
1√

2π∆k σxk+1
exp

(
− (log xk+1 −m1

k)
2

2σ2∆k

)
.

We then conclude the proof by using the same arguments than those of the proof of Theorem 2.5.

There exist several methods to estimate the above representation of the conditional survival prob-
ability. These methods involve, amount others, Monte Carlo simulations and optimal quantization
methods. Owing to the numerical performance of the optimal quantization method due for example
to its fast performability as soon as the optimal grids are obtained, we will use optimal quantization
methods to estimate the conditional survival probability.

The use of optimal quantization methods to estimate the filter supposes to have numerical access
to optimal (or stationary) quantizers of the marginals of the signal process. One may use the opti-
mal vector quantization method (as done in the seminal work [11] and used in [2]) to estimate these
marginals. This method requires the use of some algorithms, like stochastic algorithms or Lloyd’s
algorithm, to obtain numerically the optimal (or stationary) quantizers of the marginals of the sig-
nal process. Given these optimal quantizers, the filter estimation is obtained quite instantaneously.
However, the step of search of stationary quantizers is very time consuming.

We propose here an alternative method, the (quadratic) marginal functional quantization method
(introduce in [14] to price barrier options), to quantize the marginals of the signal process. The
marginal functional quantization method consists first in considering the ordinary differential equa-
tion (ODE) resulting to the substitution of the Brownian motion appearing in the dynamics of the
signal process by a quadratic quantization of the Brownian motion. Then, by constructing some
“good” marginal quantization of the signal process based on the solution of the previous ODE’s, we
will show how to estimate the nonlinear filter. Since this procedure is based on the quantization of the
Brownian motion and skips the use of algorithms to perform the stationary quantizers, the computa-
tion of the marginal quantizers is quite instantaneous. This reduce drastically the time computation of
the procedure with respect to the vector quantization method since we skip the step of the use of al-
gorithms search of marginal quantizers by using instead, the marginals of the functional quantization
of the signal process.

In the rest of the paper we deal with the estimations methods of the conditional survival probabil-
ity.

3 Numerical tools

Our aim in this section is to derive a way to compute numerically the conditional survival probability
using Equation (18). To this end, we have to estimate three quantities: the quantity F̄ (tm, tn, X̄tm),
the expectation E[F̄ (tm, tn, X̄tm)KmLm

y ] as soon as F̄ (tm, tn, X̄tm) is estimated, and finally, the ex-
pectation E[Lm

y ]. Both expectations will be estimated using marginal functional quantization method.
The probability F̄ (tm, tn, X̄tm) will be estimated by Monte Carlo simulations.

Before dealing with the estimation tools, we shall recall first some basic results about both optimal
vector quantization and functional quantization. Then, we will show how to construct the marginal
functional quantization process which will be used to estimate the quantities of interest.

3.1 Overview on optimal quantization methods

The optimal vector quantization on a grid Γ = {x1, · · · , xN} (which will be called a quantizer) of
an R

d-valued random vector X defined on a probability space (Ω,A,P) with finite r-th moment and

11



probability distribution PX consists in finding the best approximation of X by a Borel function of X
taking at most N values. This turns out to find the solution of the following minimization problem:

eN,r(X) = inf {‖X − X̂Γ‖r,Γ ⊂ R
d, |Γ| ≤ N}, (29)

where ‖X‖r := (E[|X|r])1/r and where X̂Γ :=
∑N

i=1 xi11{X∈Ci(Γ)} is the quantization of X (we

will write X̂N instead of X̂Γ) on the grid Γ and (Ci(Γ))i=1,...,N corresponds to a Voronoi tessellation
of Rd (with respect to a norm | · | on R

d), that is, a Borel partition of Rd satisfying for every i,

Ci(Γ) ⊂ {x ∈ R
d : |x− xi| = min

j=1,...,N
|x− xj|}.

We know that for every N ≥ 1, the infimum in (29) is reached at one grid Γ⋆ at least, called a
Lr-optimal N -quantizer. It is also known that if card(supp(PX)) ≥ N then |Γ| = N (see e.g. [8]
or [10]). Moreover, the Lr-mean quantization error eN,r(X) decreases to zero at an N−1/d-rate as
the size N of the grid Γ goes to infinity. This convergence rate has been investigated in [1] and [15]
for absolutely continuous probability measures under the quadratic norm on R

d, and studied in great
details in [8] under an arbitrary norm on R

d for absolutely continuous measures and some singular
measures.

From the numerical integration viewpoint, finding an optimal quantization grid Γ⋆ may be a
challenging task. In practice (we will only consider the quadratic case, i.e. when r = 2) we are
sometimes led to find some “good” quantizations ProjΓ(X) (with Γ = {x1, . . . , xN}) which are
close to X in distribution, so that for every Borel function F : R

d 7→ R, we can approximate
E[F (X)] by

E

[
F
(
X̂N

)]
=

N∑

i=1

F (xi) pi, (30)

where pi = P
(
ProjΓ(X) = xi

)
. Amount “good” quantizations of X we have stationary quantizers.

A grid Γ inducing the quantization X̂N of X is said stationary if

∀ i 6= j, xi 6= xj and P (X ∈ ∪i∂Ci(Γ)) = 0 (31)

and
E

[
X|X̂N

]
= X̂N .

The stationary quantizers search is based on zero search recursive procedures like Newton algorithm
in the one dimensional framework and some algorithms as Lloyd’s I algorithms (see e.g. [5]), the
Competitive Learning Vector Quantization (CLVQ) algorithm (see [5]) or stochastic algorithms (see
[12]) in the multidimensional framework. Note that optimal quantizers estimates of the multivariate
Gaussian random vector are available in the website www.quantize.math-fi.com.

We next recall some error bounds induced from approximating E[F (X)] by (30). Let Γ be a
stationary quantizer and F be a Borel function on R

d.

(i) If F is convex then
E
[
F (X̂N )

]
≤ E[F (X)].

(ii) Lipschitz functions:

– If F is Lipschitz continuous then (this error bound doesn’t require the quantizer Γ to be
stationary) ∣∣E[F (X)] − E[F (X̂N )]

∣∣ ≤ [F ]Lip‖X − X̂N‖2,
where

[F ]Lip := sup
x 6=y

|F (x)− F (y)|
|x− y| .

12



– Let θ : Rd → R+ be a nonnegative convex function such that θ(X) ∈ L2(P). If F is lo-
cally Lipschitz with at most θ-growth, i.e. |F (x)− F (y)| ≤ [F ]Lip|x− y| (θ(x) + θ(y))
then F (X) ∈ L1(P) and

∣∣E[F (X)] − E[F (X̂N )]
∣∣ ≤ 2[F ]Lip‖X − X̂N‖2‖θ(X)‖2.

(iii) Differentiable functionals:
If F is differentiable on R

d with an α-Hölder differential DF (α ∈ [0, 1]), then

∣∣E[F (X)] − E[F (X̂N )]
∣∣ ≤ [DF ]α‖X − X̂N‖1+α

2 .

Other error bounds related to the regularity of F may be found in [13]).
The optimal vector quantization may be extended to random vectors with values in a set of in-

finite dimension, in particular to stochastic processes viewed as random variables with values in
L2([0, T ], dt) endowed with the norm

E

[
|X|2L2

T

]
=

∫ T

0
E[X2

s ]ds < +∞.

The functional quantization of the stochastic process (Xt)t∈[0,T ] with dynamics

dXt = b(Xt, t)dt+ σ(Xt, t)dWt, X0 = x ∈ R,

is based on the functional quantization of the Brownian motion W . One way to quantize the Brownian
motion is to use the optimal product quantization using its Karhunen-Loève expansion which reads :

W
L2
T=
∑

n≥1

√
λnξnen,

where ξn := 〈W, en〉 /
√
λn, n ≥ 1, is a sequence of i.i.d. random variables with standard normal

distribution and

en(t) =

√
2

T
sin

(
π

(
n− 1

2

)
t

T

)
, λn =

(
T

π
(
n− 1

2

)
)2

, n ≥ 1.

In fact, from the previous expansion, a functional quantization Ŵ of the process W of size at most N
is defined by

ŴN
t =

∑

n≥1

√
λnξ̂

xNn

n en(t) (32)

where ξ̂x
Nn

n (with xNn = {xNn

1 , . . . , xNn

Nn
}) is the optimal Nn-quantization of ξn and N1×· · ·×Nn ≤

N , with Ni ≥ 2 for i ≤ n, and Nk = 1 for k ≥ n+1, so that the expansion defined in (32) is a finite
sum. The product quantizer χ that produces the above Voronoi quantization Ŵ is defined by

χi(t) =
∑

n≥1

√
λnx

Nn

in
en(t), i = (i1, · · · , in, · · · ) ∈

∏

n≥1

{1, · · · , Nn} .

and for every multi-index i ∈∏n≥1 {1, · · · , Nn}, the associated Voronoi cell of χ is

Ci(χ) =
∏

n≥1

√
λnCin(x

Nn).
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The optimal product quantizer of size at most N , denoted ŴN , of the Brownian motion is defined as
the solution of the following optimization problem:

min
{
‖W − ŴN‖2, N1, · · · , Nn ≥ 1, N1 × · · · ×Nn ≤ N, N ≥ 1

}
. (33)

Moreover this optimal product quantizer induces a rate-optimal sequence of quantizers (see e.g. [9]
for more details), i.e.

‖W − ŴN‖2 ≤ KW
T

(logN)
1
2

for some real constant KW > 0. To define a functional quantization of the stochastic process (Xt)t≥0

consider (χN )N≥1 a sequence of rate-optimal product quantizers of the Brownian motion and, for
every multi-index i ∈∏n≥1 {1, · · · , Nn}, with N1 × · · · ×Nn ≤ N , consider xi the solution of the
following integral equation

dxi(t) =
(
b(xi(t), t) −

1

2
σσ′(xi(t), t)

)
dt+ σ(xi(t), t)dχi(t), (34)

where σ′ is the derivative of σ. We define the functional (non-Voronoi) quantization X̃ process of the
stochastic process X of size at most N by

X̃N =
N∑

i=1

xi1Ci(χ)(W ), N ≥ 1.

We have the following result.

Proposition 3.1 (See [9]). Under some suitable conditions on the coefficients of the diffusion, which

in the homogeneous case are equivalent to: b is differentiable, σ is positive twice differentiable and

b′ − bσ
′

σ − 1
2σσ

′′ is bounded, we have

‖X − X̃N‖2 = O
(
(logN)−

1
2
)
.

We observe that for any initial value x of the quantized process X̂, the marginals X̂t are of size
dN = N1 × · · · × Nn where (N1, . . . , Nn) is the solution of (33). To define the marginal func-
tional quantization process (still be denoted by (X̂t)) of the process (Xt) we order the values of the
marginals and define the marginal quantizer xdN (t) for every t > 0 by xdN (t) = {xdN1 (t), . . . , xdNdN (t)}
and xdN (0) = x and define likewise the marginal quantizers of Wt by χdN (t) = {χdN

1 (t), . . . , χdN
dN

(t)}.
The marginal functional quantization process of size at most N is then defined by

X̂N
t =

dN∑

i=1

xdNi (t)1{Wt∈Ci(χ
dN (t))}.

Remark that the use of the marginal functional quantization method can not be justified from the
theoretical point of view since we do not know yet the rate of convergence of the marginals of the
quantized process to the marginals of the initial process. However, this method has proved its effi-
ciency from the numerical viewpoint when used to estimate barrier option by optimal quantization,
see [14] (not that the considered marginal quantization in [14] is a little bit different from the one con-
sidered in this paper, nevertheless the numerical results are the same, up to at least a 10−3 absolute
error order).

Let us come back to the problem of interest and let the functionals πy,m and ̟y,m be defined for
every bounded measurable function f by

πy,mf = E
[
f(X̄tm)Lm

y Km
]

and ̟y,mf = E
[
f(X̄tm)Lm

y

]
.
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Then,

Πy,mF̄ (tm, tn, ·) := P
(
τ X̄
a

> tn|Yt0 = y0, . . . , Ytm = ym
)
=

πy,mF̄ (tm, tn, ·)
̟y,m1

,

where 1(x) = 1, for every real x. Then, it will be enough to show how to estimate πy,mF̄ (tm, tn, ·)
since ̟y,m1 is estimated similarly. We discuss in the section below the estimation of πy,m.

3.2 Estimation of πy,m by marginal functional quantization

Our aim is to estimate

πy,mF̄ (tm, tn, ·) = E

[
F̄ (tm, tn, X̄tm)

m−1∏

k=0

gak(X̄tk , yk; X̄tk+1
, yk+1)

]

by marginal functional quantization (with X̄ ≡ X in the model (3)), where

gak(X̄tk , yk; X̄tk+1
, yk+1) = gk(X̄tk , yk; X̄tk+1

, yk+1)×G
X̄tk

,X̄tk+1

∆kσ
2
k

(a).

We deal with a general setting: the estimation of πy,mf for any bounded and measurable function
f . Our main reference is [11] where πy,mf has been estimated using marginal vector quantization
methods. Let us define for every k = 1, . . . ,m the transition kernel Hy,k by

Hy,kf(x) = E
[
f(X̄tk)g

a

k−1(x, yk−1; X̄tk , yk)|X̄tk−1
= x

]

=

∫
f(z)gak−1(x, yk−1; z, yk)Pk(x, dz)

where Pk(x, dz) is the density of the random variable X̄tk |X̄tk−1
= x. We set

Hy,0f = E[f(X̄0)] =

∫
f(z)µ(dz). (35)

Then, we have (setting for every k, FX̄
tk

= σ({X̄ti , i = 0, . . . , k}))

πy,kf = E

[
E

[
f(X̄tk)

k−1∏

i=0

gai (X̄ti , yi; X̄ti+1 , yi+1)
∣∣FX̄

tk−1

]]

= E

[
E

[
f(X̄tk)g

a

k−1(X̄tk−1
, yk−1; X̄tk , yk)|FX̄

tk−1

] k−2∏

i=0

gai (X̄ti , yi; X̄ti+1 , yi+1)
]

= E

[
E

[
f(X̄tk)g

a

k−1(X̄tk−1
, yk−1; X̄tk , yk)|X̄tk−1

] k−2∏

i=0

gai (X̄ti , yi; X̄ti+1 , yi+1)
]
,

where the last equality is a consequence of the Markov property of the process (X̄tk). Thus, we
deduce that for every k = 1, . . . ,m,

πy,kf = E

[
Hy,kf(X̄tk−1

)

k−2∏

i=0

gai (X̄ti , yi; X̄ti+1 , yi+1)
]

= πy,k−1Hy,kf.

It follows that πy,mf can be computed by the following recursive formula:

πy,mf = (Hy,0 ◦Hy,1 ◦ · · · ◦Hy,m)f. (36)
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Therefore, to achieve the estimation of πy,m, it remains to estimate the kernels Hy,k. This will be
done by marginal functional quantization.

Consider time discretization steps tk, k = 0, . . . ,m and let χNk := {χ1
k, . . . , χ

Nk

k } be a Nk-
quantizer of Wtk (we will consider the marginal functional quantization of Brownian motion so that
Nk = dN for every k). Suppose that we have also access to the marginal functional quantization
process (X̂tk )k of the process (X̄t)t≥0 over the time steps tk, k = m, . . . , n: {x1k, . . . , xNk

k }, of sizes
Nk (keep in mind that Nk = dN for every k).

It follows that the transition kernels Hy,k may be estimated for every k = 1, . . . ,m by

Ĥy,k =

Nk∑

j=1

Ĥ ij
y,kδxi

k−1
,

where
Ĥ ij

y,k = gak−1(x
i
k−1, yk−1;x

j
k, yk) p̂

ij
k , i = 1, . . . , Nk−1; j = 1, . . . , Nk (37)

and where the p̂ijk ’s correspond to the estimation of the transition probabilities from X̂tk−1
= xik−1 to

X̂tk = xjk:

p̂ijk = P(X̂tk = xjk|X̂tk−1
= xik−1), i = 1, . . . , Nk−1; j = 1, . . . , Nk. (38)

Finally, one will perform the estimation π̂y,m = Ĥy,0◦Ĥy,1◦· · ·◦Ĥy,m of πy,m as soon as we will

be able to compute p̂ijk . In the proposition below we show how to compute these probabilities from
the cumulative distribution function of the random variable Wtk |Wtk−1

= x, which has a Gaussian
distribution with mean x and variance ∆k (we refer to [14] for a similar result).

Proposition 3.2. The transition probabilities can be estimated for every k = 1, . . . ,m by

p̂ijk ≈ N
(
χj+
k ;χi

k−1

)
−N

(
χj−
k ;χi

k−1

)
, (39)

where N (· ;χi
k−1) is the cumulative distribution function of the normal distribution with mean χi

k−1

and variance ∆k and where for every k = 1, . . . ,m,





χj+
k =

χj+1
k

+χj

k

2 ; χj−
k =

χj−1
k

+χj

k

2 j = 1, . . . , Nk

χ1−
k = −∞; χ

N+
k

k = +∞.

Proof. One has for every k = 1, . . . ,m,

p̂ijk = P
(
Wtk ∈ Cj(χ

Nk)
∣∣Wtk−1

∈ Ci(χ
Nk−1)

)

= P
(
Wtk ≤ χj+

k

∣∣Wtk−1
∈ Ci(χ

Nk−1)
)
− P

(
Wtk ≤ χj−

k

∣∣Wtk−1
∈ Ci(χ

Nk−1)
)
.

On the other hand, we have for every x ∈ R,

P
(
Wtk ≤ x

∣∣Wtk−1
∈ Ci(χ

Nk−1)
)
=
P
(
Wtk ≤ x;Wtk−1

∈ Ci(χ
Nk−1)

)

P
(
Wtk−1

∈ Ci(χNk−1)
) .

Set Ci = Ci(χ
Nk−1). Then the numerator on the right hand side of the previous equation may be

expressed as

P
(
Wtk ≤ x;Wtk−1

∈ Ci

)
=

∫ x

−∞

( ∫

Ci

P(Wtk ∈ dx|Wtk−1
= y)P(Wtk−1

∈ dy)
)
dx

=

∫

Ci

N (x; y)P(Wtk−1
∈ dy) (40)

≈N (x;χi
k−1)P

(
Wtk−1

∈ Ci

)
,
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where N (·; y) is the cumulative distribution function of Wtk |Wtk−1
= y. The last quantity is the

approximation of (40) by optimal quantization with one grid point, considering that {χi
k−1} is the

quantizer of size one of the random variable Wtk−1
over the cell Ci(χ

Nk−1).

Following the previous approach, the estimations π̂y,m and ̟̂ y,m of πy,m and ̟y,m are computed
from the following recursive formulae:





π̂y,0 = Ĥy,0

π̂y,k = π̂y,k−1Ĥy,k :=
[∑Nk−1

i=1 Ĥ i,j
y,kπ̂

i
y,k−1

]
j=1,...,Nk

, k = 1, . . . ,m
(41)

where
Ĥ ij

y,k = gak−1(x
i
k−1, yk−1;x

j
k, yk) p̂

ij
k , i = 1, . . . , dN ; j = 1, . . . , dN ;

and 


̟̂ y,0 = Υ̂y,0

̟̂ y,k = ̟̂ y,k−1Υ̂y,k :=
[∑Nk−1

i=1 Υ̂i,j
y,k ̟̂ i

y,k−1

]
j=1,...,Nk

, k = 1, . . . ,m
(42)

where
Υ̂ij

y,k = gk−1(x
i
k−1, yk−1;x

j
k, yk) p̂

ij
k , i = 1, . . . , Nk−1; j = 1, . . . , Nk.

Then we approximate Πy,m by Π̂y,m given by

Π̂y,m =

Nm∑

i=1

Π̂i
y,mδxi

m

with

Π̂i
y,m =

π̂i
y,m∑Nm

j=1 ̟̂ i
y,k−1

, i = 1, . . . , Nm.

Recall that our aim is to estimate

Πy,mF̄ (tm, tn, ·) =
πy,mF̄ (tm, tn, ·)

̟y,m1
,

where the function F̄ (tm, tn, ·) is defined for every x ≥ 0 by

F̄ (tm, tn, x) = E

[
n−1∏

k=m

G
X̄tk

,X̄tk+1

∆kσ
2
k

(a)
∣∣ X̄tm = x

]
.

We shall take the estimation:

Π̂y,mF̄ (tm, tn, ·) =
Nm∑

i=1

Π̂i
y,mF̄ (tm, tn, x

i
m). (43)

Remark that the initial function F (s, t,Xs) = P

(
inf

s≤u≤t
Xu > a|Xs

)
(which has been estimated by

F̄ (s, t, X̄s)) has semi-closed expression in some specific models, like in the model (3) in which case
it is given by

P

(
inf

s≤u≤t
Xu > a|Xs

)
= N(h1(Xs, t− s))−

(
a

Xs

)σ−2(µ−σ2/2)

N(h2(Xs, t− s)) (44)
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where

h1(x, u) =
1

σ
√
u

(
log(x/a) +

(
µ− 1

2
σ2
)
u
)
,

h2(x, u) =
1

σ
√
u

(
log(a/x) +

(
µ− 1

2
σ2
)
u
)

and where N(·) is the cumulative distribution function of the standard Gaussian distribution.
Except in these specific cases, the function F̄ (tm, tn, ·) has to be estimated, and we shall do it by

Monte Carlo methods.

3.3 Estimation of F̄ (tm, tn, ·) by Monte Carlo

It remains to estimate the function F̄ (tm, tn, x) defined by

F̄ (tm, tn, x) = E

[
n−1∏

k=m

G
X̄tk

,X̄tk+1

∆kσ
2
k

(a)
∣∣ X̄tm = x

]

by Monte Carlo simulations. The steps of the Monte Carlo procedure are the following.

1. Let us consider regular time discretization steps {tm, tm+1, . . . , tn} over [tm, tn] and let M be
the number of trials. We simulate for every j = 1, . . . ,M the sample path (X̄j

tk
)k=m,...,n, with

X̄j
tm = x for every j.

2. Setting

pjm,n(x,a) :=

n−1∏

k=m

G
X̄j

tk
,X̄j

tk+1

∆kσ
2
k

(a),

we estimate F̄ (tm, tn, x) by

F̄M (tm, tn, x) =
1

M

M∑

j=1

pjm,n(x,a). (45)

Consequently, integrating both formulae (43) and (45), the conditional survival probability

Πy,mF̄ (tm, tn, ·)

will be estimated (for a fixed trajectory (y0, . . . , ym) of the observation process (Yt0 , . . . , Ytm)) by

Π̂y,mF̄M (tm, tn, ·) =
1

M

Nm∑

i=1

M∑

j=1

Π̂i
y,mpjm,n(x

i
m,a). (46)

Remark 3.1. It follows from Monte Carlo error analysis that for every x ≥ 0,

∥∥F̄ (tm, tn, x)− F̄M (tm, tn, x)
∥∥
2
= O

( 1√
M

)
. (47)

18



3.4 Error analysis

We target to give in this section the error bound resulting from the estimation of

P(τX
a

> t|Yt0 , . . . , Ytm)

by

Π̂y,mF̄M (tm, tn, ·) =
1

M

Nm∑

i=1

M∑

j=1

Π̂i
y,mpjm,n(x

i
m,a).

We shall first give the error bound due to the fact that we compute the survival function of the random
variable τ X̄

a
instead of τX

a
, and then the error bound due to the simulations procedures. To this end,

the following definitions and assumptions are needed.

Definition 3.1. A probability transition P on E is C-Lipschitz (with C > 0) if for any Lipschitz
function f on E with ratio [f ]Lip, Pf is Lipschitz with ratio [Pf ]Lip ≤ C[f ]Lip. Then, one may
define the Lipschitz ratio [P ]Lip by

[P ]Lip = sup
{ [Pf ]Lip

[f ]Lip
, f a nonzero Lipschitz function

}
< +∞.

Remark that that in our framework, the transition operators Pk(x, dy), k = 1, · · · ,m are Lips-
chitz, so that we set

[P ]Lip := max
k=1,··· ,m

[Pk]Lip < +∞.

We furthermore define some useful quantities which appear in the error bound in the following.

(i) For every k = 1, · · · ,m, we set

Km
g := max

k=1,··· ,m
‖gk‖∞,

where ‖gk‖∞ is the supremum norm of the functions gk defined by (19).

(ii) For every k = 1, · · · ,m, let [g1k]Lip and [g2k]Lip be so that for every x, x′, x̂, x̂′ ∈ R and
y, y′ ∈ R,

|gak (x, y, x′, y′)− gak (x̂, y, x̂
′, y′)| ≤ [g1k]Lip(y, y

′) |x− x̂|+ [g2k]Lip(y, y
′) |x′ − x̂′|.

Let us make now some assumptions which will be used to compute (see [7]) the convergence rate
of the quantity E

∣∣11{τ X̄>t} − 11{τ>t}

∣∣ towards 0.

(H1) b is a C∞
b (R,R) function and σ is in C∞

b (R,R).

(H2) there exists σ0 > 0 such that ∀x ∈ R, σ(x)2 ≥ σ2
0 (uniform ellipticity).

Before giving the error bound associated to our estimation we recall the following useful results.
Consider in this scope that

τX = inf{u ≥ 0,Xu 6∈ D}
where D = (a,+∞) and X is the signal process. Let (X̄tk )k=0,...,m the continuous Euler process
taken at discrete times tk, k = 0, . . . ,m and

τ X̄ = inf{u ≥ 0, X̄u 6∈ D}.

We have the following result.
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Proposition 3.3 (see [7]). Let t > 0. Suppose that Assumptions (H1) and (H2) are fulfilled. Then,

for every η ∈ (0, 12 [ there exists an increasing function K(T ) such that for every t ∈ [0, T ] and for

every x ∈ R,

Ex

[∣∣11{τX>t} − 11{τ X̄>t}

∣∣
]
≤ 1

n
1
2
−η

K(T )√
t

,

where n is the number of time discretization steps over [0, t].

The convergence rate of the filter approximation is given by the following theorem. Since we do
not know the convergence rate and some properties as the stationary property of the marginals of the
functional quantization we consider here that for every k, X̂Nk

tk
denotes the marginal quantization of

(Xtk) of size Nk, obtained from the marginal vector quantization method (see [11]).

Theorem 3.4. (see [11] for a similar result). We have for every p ≥ 1,

|Πy,mF̄ (s, t, ·)− Π̂y,mF̄ (s, t, ·)| ≤
Km

g

φm(y) ∨ φ̂m(y)

m∑

k=0

Bm
k (F̄ (s, t, ·), y, p) ‖X̄tk − X̂Nk

tk
‖p

where

φm(y) := πy,m1, φ̂m(y) := π̂y,m1

and where

Bm
k (f, y, p) := (2− δ2,p)[P ]m−k

Lip [f ]Lip + 2

(‖f‖∞
Km

g

(
[g1k+1]Lip(yk, yk+1) + [g2k]Lip(yk−1, yk)

)

+ (2− δ2,p)
‖f‖∞
Km

g

m∑

j=k+1

[P ]j−k−1
Lip

(
[g1j ]Lip(yj−1, yj) + [P ]Lip[g

2
j ]Lip(yj−1, yj)

))

(with the convention that g0 = gm+1 ≡ 0 and δn,p is the usual Kronecker symbol).

Proof. The proof is similar to the proof of Theorem 3.1 in [11].

Remark 3.2. One may remark that the function Bm
k (f, y, p) involves the norm ‖f‖∞ which for

f = F̄ (s, t, ·) is bounded by 1.

Let us give now the error bounds induced from the approximation of P(τX
a

> tn|Yt0 , . . . , Ytm)
by Π̂y,mF̄M (tm, tn, ·).

Theorem 3.5. (See [2] for a similar result) Suppose that the coefficients b and σ of the continuous

signal process X are such that Assumptions (H1) and (H2) are satisfied and let η ∈ (0, 12 ]. Then,

∣∣∣P(τX
a

> tn|Yt0 , . . . , Ytm) − 1

M

Nm∑

i=1

M∑

j=1

Π̂i
y,mpjm,n(x

i
m,a)

∣∣∣ ≤ O
(
n− 1

2
+η
)
+O

(
M− 1

2

)

+
Km

g

φm(y) ∨ φ̂m(y)

m∑

k=0

Bm
k (F̄ (s, t, ·), y, p) ‖X̄tk − X̂xNk

tk
‖p,

where the functions φm, φ̂m,Bm
k (·, y, p) are introduced in Theorem 3.4.
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Proof. We have

∣∣∣P(τX
a

> tn|Yt0 , . . . , Ytm) − 1

M

Nm∑

i=1

M∑

j=1

Π̂i
y,mpjm,n(x

i
m,a)

∣∣∣

≤
∣∣P(τX

a
> tn|Yt0 , . . . , Ytm)− P(τ X̄a > tn|Yt0 , . . . , Ytm)

∣∣

+
∣∣Πy,mF̄ (tm, tn, ·)− Π̂y,mF̄ (tm, tn, ·)

∣∣

+
∣∣Π̂y,mF̄ (tm, tn, ·)− Π̂y,mF̄M (tm, tn, ·)

∣∣. (48)

Owing to Remark 3.1 and to the fact that
∑Nm

i=1 Π̂
i
y,m ≤ 1 we get

∣∣Π̂y,mF̄ (s, t, ·)− Π̂y,mF̄M (tm, tn, ·)
∣∣ =

∣∣
Nm∑

i=1

Π̂i
y,mF̄ (tm, tn, x

i
m)−

Nm∑

i=1

Π̂i
y,mF̄M (tm, tn, x

i
m)
∣∣

≤
Nm∑

i=1

Π̂i
y,m sup

x≥0
|F̄ (tm, tn, x)− F̄M (tm, tn, x)|

≤ sup
x≥0

|F̄ (tm, tn, x)− F̄M (tm, tn, x)|

= O
( 1√

M

)
.

On the other hand, the error bound of the term
∣∣Πy,mF̄ (tm, tn, ·) − Π̂y,mF̄ (tm, tn, ·)

∣∣ is given by
Theorem 3.4.
Now, let us consider the first term of the right hand side of Equation (48). We have:

E

[∣∣P(τX
a

> tn|Yt0 , . . . , Ytm) − P(τ X̄
a

> tn|Yt0 , . . . , Ytm)
∣∣
]

= E

[∣∣E
[
11{τX

a
>tn} − 11{τ X̄

a
>tn}

|Yt0 , . . . , Ytm

] ∣∣
]

≤ E

[∣∣11{τX
a
>tn} − 11{τ X̄

a
>tn}

∣∣
]

= O(n− 1
2
+η),

the last statement following from Proposition 3.3.

3.5 Numerical examples

We deal with numerical simulations in this section by considering two example of models.
In both examples we fix tm = 1 and, given a (simulated) trajectory of the observation process Y from
0 to tm, we estimate the conditional cumulative function P(τ X̄

a
> tn|Yt0 , . . . , Ytm) using formula

(46), for tn varying 0.1 by 0.1 from 1.1 to 11 (where the time unit is expressed in years). Furthermore,
we set the number m of discretization points over [0, tm] equal to 50 and for every k = 1, · · · ,m,
the quantization grid size Nk is set to 966 (as a consequence of the numerical solution of the Problem
33 for N = 10000, with the optimal decomposition (23, 7, 3, 2), see [13] for more detail), with
N0 = 1. All the programs have been coded using the C language on a CPU 2.7 GHz and 4 Go
memory computer.

Example 3 (The “Black-Scholes” example).
The first model is the one considered in Example 1 and Corollary 2.6 where the dynamics of the
signal process X and the observation process Y are given by

{
dXt = Xt(µdt+ σdWt), X0 = x0,

dYt = Yt(µdt+ σdWt + δdW̃t), Y0 = y0
(49)
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or equivalently
dYt

Yt
=

dXt

Xt
+ δdW̃t.

We choose the following parameters (as in [3]) of the model: µ = 0.03, σ = 0.03, x0 = y0 =
86.3 and a = 76. The numerical results are depicted in Figure 1 and Figure 2. In Figure 1, we
draw three trajectories of the observation process Y for the same δ = 0.1 (left side graphic) and
the corresponding cumulative functions P(τ X̄

a
≤ tn|Yt0 , . . . , Ytm) on the right hand side graphics,

tm = 1 and tn ∈ [1.1, 11], in years. We remark that, for a fixed time tn, the lower the trajectory is,
the higher its probability is to hit the barrier.

The left hand side graphics of Figure 2 corresponds to three trajectories of the observation process
Y for δ ∈ {0.1, 0.3, 0.5} and the right hand side graphics, to (a zoom of) the corresponding cumula-
tive functions P(τ X̄

a
≤ tn|Yt0 , . . . , Ytm), with tm = 1 and tn ∈ [1.1, 11], in years. We observe in this

example that the noisier the observations are, the higher the probability is to hit the barrier a before a
fixed time tn.

Note that in both examples, the function F (tm, tn, ·) has been computed using formula (44) and
the computation time to get one cumulative function P(τ X̄

a
≤ tn|Yt0 , . . . , Ytm) for a given tn is about

of 24 seconds.

Figure 1: ("Black Scholes example") Three trajectories for the observation process Y and for δ = 0.1 (on the left), and

the corresponding cumulative functions P(τ X̄
a

≤ tn|Yt0 , . . . , Ytm) with tm = 1 and tn ∈ [1.1, 11] years (on the right).

Example 4 (The Ornstein-Uhlenbeck example).
In the second model, we suppose that both the signal and the observation process evolve following
the Ornstein-Uhlenbeck dynamics:

{
dXt = λ(θ −Xt)dt+ σdWt, X0 = x0,

dYt = λ(θ − Yt)dt+ σdWt + δdW̃t, Y0 = y0
(50)

or setting Zt = Yt −Xt

dZt = −λZtdt+ δdW̃t,

meaning that Z is still an Ornstein-Uhlenbeck process with mean value θ = 0 and with volatility δ.
The parameters are chosen as follows: λ = 0.18, θ = 0.35, σ = 0.12, x0 = y0 = 0.35 (as in [3])
and a = 0.2. The numerical results are represented in Figure 3 where we depict three trajectories
of the observation process Y for δ = 0.16 (left hand side graphics of Figure 3) and the associated
cumulative functions P(τ X̄

a
≤ tn|Yt0 , . . . , Ytm), with tm = 1 and tn ∈ [1.1, 6] in years (right hand
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Figure 2: ("Black Scholes example") Left graphics corresponds to three trajectories for the observation process Y , for
δ = 0.1 (Y UP), δ = 0.3 (Y MID), δ = 0.5 (Y DOWN), and the right hand side graphics correspond to a zoom of the
cumulative functions P(τ X̄

a
≤ tn|Yt0 , . . . , Ytm) with tm = 1 and tn ∈ [1.1, 11] years.

side graphics of Figure 3). Once again, we remark that, as in the "Black Scholes example", for a fixed
time tn, the lower the trajectory is, the higher its probability is to hit the barrier.

In this example, the function F̄ (tm, tn, ·) has been computed using Monte Carlo simulations of
size M = 105(see the formula (45)) with 50 discretization steps over [tm, tn]. The computation time
to get one cumulative function P(τ X̄

a
≤ tn|Yt0 , . . . , Ytm) for a given tn is about 6.5 minutes.

Figure 3: ("Ornstein-Uhlenbeck example") Left graphics correspond to three trajectories for the observation process Y ,

for δ = 0.16 and the right hand side graphics correspond to the cumulative functions P(τ X̄
a

≤ tn|Yt0 , . . . , Ytm) with
tm = 1 and tn ∈ [1.1, 6] years.
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