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Abstract

The aim of this study is to estimate as accurately as possible the effective response, as well as the
statistics of the fields (first and second moments), in elasto-(visco)plastic heterogeneous materials
with isotropic and/or kinematic hardening. After time-discretization, a new incremental variational
principle for the increments in strain and internal variables in materials governed by two potentials
is derived. This variational principle, together with the variational method of Ponte Castañeda
(1992) is used to introduce a linear comparison composite (LCC) at each time step, approximating
in a variational sense the original problem. The effective response of the LCC, as well as the
first and second moments of the stress and strain fields in each phase of the LCC are shown to
provide estimates for the same quantities in the actual nonlinear elasto-(visco)plastic composite.
The accuracy of the model is assessed by comparison with full-field simulations. The agreement
is found to be quite satisfactory, in particular the asymmetry between tension and compression
observed in elasto-plastic composites (Bauschinger effect) is well reproduced, unlike in other mean-
field models. The statistics of the stress and strain fields, and to a certain extent, that of the
back-stress field, are also in good agreement with full-field simulations.

Keywords: Homogenization, elasto-plasticity, elasto-viscoplasticity, two-phase composite,
kinematic hardening, isotropic hardening

1. Introduction

This study is devoted to the overall response of nonlinear composites comprised of phases
which, when deformed, have a partly reversible and partly irreversible behavior. This is the case
of most engineering materials including nonlinear viscoelastic materials, where both elastic and
nonlinear viscous effects are always present and coupled, and of elasto-viscoplastic or elasto-plastic
constituents, where dissipative effects are observed beyond a certain stress threshold. A typical
example of such a coupling between elastic and dissipative deformations is provided by metals at
high temperature which exhibit a rate-dependent elasto-viscoplastic behavior with a combination
of kinematic and isotropic hardening. A commonly used model for describing this behavior at
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infinitesimal strains reads as (Lemâıtre and Chaboche, 1988):

ε̇ = M : σ̇ + ε̇p, ε̇p =
3

2
ṗ
s−X

(σ −X)eq
,

X = H : εp, ṗ = ε̇0

(
[(σ −X)eq − σY −R(p)]

+

η

)n
.





(1)

where ε is the linearized strain, σ is the Cauchy stress and s is the stress deviator, M is the elastic
compliance of the material, X is the back stress, a (traceless) second-order tensor associated with

kinematic hardening, (σ −X)eq =
(

3
2 (s−X) : (s−X)

)1/2
is the von Mises norm of σ −X, p is

the accumulated plastic strain defined as

ṗ = ε̇peq =

(
2

3
ε̇p : ε̇p

)1/2

,

R(p) is a nonnegative scalar parameter associated with isotropic hardening, n is the rate-sensitivity
exponent and [.]+ denotes the Macaulay bracket (positive part of a function):

[f ]+ = 0 if f ≤ 0, [f ]+ = f if f ≥ 0.

Rate-independent plasticity (with isotropic and kinematic hardening) is obtained in the limit as
n tends to +∞. The aim of this study is to derive effective properties of heterogeneous ma-
terials (metal-matrix composites, alloys, polycrystalline aggregates) when one or several of the
constituents obey the constitutive relations (1), or more general ones with a similar structure. The
tools which will be developed apply to a class of constitutive relations which is indeed more general
than (1).

Predicting the effective response of heterogeneous materials from the constitutive relations of
the individual phases is a long-standing problem which has attracted a huge body literature. At the
first place, the relations between the microstructure of a composite material and its effective linear
properties has been extensively studied (see Milton, 2002, for a review). The last two decades have
witnessed an increasing interest in nonlinear composites. Most of the recent efforts in this area have
concentrated on nonlinear behaviors governed by a single potential, i.e. either purely hyperelastic
materials (in which case the potential is the free-energy density), or purely viscous or rigid-plastic
materials (in which case the potential is a dissipation potential). The recent developments in
these theories are based on variational principles, used in association with linearization schemes
(to linearize nonlinear constitutive relations) and with linear homogenization schemes. The proper
definition of a linear comparison composite, approaching in a specific sense the actual nonlinear
composite, has naturally emerged as a central question (Willis, 1989; Ponte Castañeda, 1991, 1992,
1996; Suquet, 1993). The importance of accounting for higher-order moments in the linearization
schemes has also progressively been evidenced. First, the use of second moments of fields per
phase, instead of their first moments (averages) which was the usual basis of former mean-field
approaches, has been proved by variational arguments to improve the predictions of the models
(Ponte Castañeda, 1991; Suquet, 1995; Ponte Castañeda and Suquet, 1998; Moulinec and Suquet,
2003). Second, Ponte Castañeda (2002a) has shown that taking into account both the first and
the second moment per phase of the fields in the definition of the linear comparison composite, or
equivalently their average and their intraphase fluctuations instead of just one of these quantities,
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leads to more accurate predictions, as confirmed by several theoretical or computational studies
(Idiart et al., 2006b; Idiart and Ponte Castañeda, 2007).

By contrast, less effort has been directed toward situations where both reversible and irreversible
effects are present. When the phases are elasto-plastic, Hill’s incremental approach (Hill, 1965)
which reduces the problem to the homogenization of the linear tangent moduli of the phases, is
one of the first rational approach to the problem. It was later extended by Hutchinson (1976)
to creeping polycrystals. In the self-consistent vision of a polycrystal, the strain in each grain
is uniform in that grain and no intragranular field fluctuation is accounted for in this type of
approach. Twenty years after its proposition, the incremental approach was recognized to give
yield predictions which are too stiff and to violate rigorous upper bounds (Gilormini, 1995; Suquet,
1996, for polycrystals and two-phase composite respectively). The Transformation Field Analysis
of Dvorak (1992) is another noteworthy approach based on the resolution of thermoelastic problems
with piecewise uniform transformation eigenstrains. The evolution of each eigenstrain is governed
by the first moment of the stress (average stress) in the corresponding phase. It was found that
the TFA’s predictions are again too stiff (Suquet, 1997, for instance) due to the use of the initial
elastic operators in the thermoelastic analysis. To soften the predictions of the above models,
Masson and Zaoui (1999) introduced the so-called affine method, which is based on the solution
of a linear viscoelastic problem with eigenstrains. Accounting for the viscous character of the
phases softens the predictions of earlier models based on elastic accommodation. In the affine
approach, the eigenstrain used at each time step is estimated by means of the first moment of
the fields in each phase. This method has been used by several authors, Chaboche et al. (2005)
and Doghri et al. (2010) for elasto-viscoplastic phases (with a threshold). However, in order to
obtain satisfactory results, an isotropic approximation of the tangent moduli had to be considered
and this approximation has not yet received a proper theoretical justification. An improvement
was brought in Doghri et al. (2011) by considering the second moment of the stress in the yield
function, but still using the isotropic projection of the tangent operators in the phases. Mercier
et al. (2005); Mercier and Molinari (2009) have proposed an alternative approach based on the
interaction law in an infinite medium between elastic and viscous strains. This method, which has
been applied to polycrystals and two-phase composites, reproduces the exact result for two-phase
Maxwellian phases (Mercier et al., 2005). In the nonlinear case, these linearization procedures
follow the affine method and therefore make use of only the first moment of the fields. This leads
to an overestimate of the overall yield stress when the phases exhibit a threshold between elastic
and viscous effects. One objective of the present study is precisely to incorporate higher-order
statistics of the fields in the analysis.

To this aim, Lahellec and Suquet (2007a,b) have recently proposed a variational approach to
couple elastic and dissipative effects in composite materials. This approach applies when these
two aspects of the behavior of materials can be described with two constitutive potentials (within
the class of standard generalized materials). The first potential is the free-energy density w(ε,α),
depending on the (infinitesimal) strain ε and on internal variables α describing irreversible phe-
nomena. w is the energy available in the system to trigger its evolution. The second potential is the
dissipation potential ϕ(α̇) which describes the evolution of the irreversible mechanisms. Using a
discretization in time of the evolution equations, Lahellec and Suquet have derived an incremental
variational principle governing the state of the composite at the end of a time step, assuming that
the state at the beginning of the time step is known. This variational principle allowed them to
extend to phases governed by two potentials some of the approaches used in nonlinear homoge-
nization for phases governed by a single potential (Lahellec and Suquet, 2007b,c). The method
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has been applied successfully to elasto-viscoplastic phases (without threshold, sometimes called
nonlinear viscoelasticity) subjected to loading-unloading conditions along radial paths. However
limitations of the method have appeared for non radial loading conditions, involving rotation of
the principal axes of the loading.

Brassart et al. (2011, 2012) have proposed another variational method based on the same
incremental potential as Lahellec and Suquet (2007a) but optimized in a different way. This
method has been applied to elasto-viscoplastic phases with a threshold. Its structure is similar to
that of radial return algorithms. The approximation used by these authors in the resolution of the
thermoelastic problem with nonuniform plastic strains amounts to replacing the plastic strain field
by its average over the whole volume element. Satisfactory results were obtained for phases with
isotropic hardening, but a dependence to the time step was noticed in the case of ideally-plastic
phases (Brassart et al., 2011).

Of particular relevance to the present study is the Bauschinger effect exhibited by heteroge-
neous materials under loading-unloading cycles (Corbin et al., 1996) which manifests itself by an
asymmetric response to loading and unloading: after a loading period the composite is unloaded,
immediately after unloading the response of the composite is elastic but it soon becomes plastic
again for a stress which is much lower (in absolute value) than the stress reached at the end of the
loading regime. This asymmetry (Bauschinger effect), suggests the presence of a macroscopic kine-
matic hardening, even when there is no kinematic hardening at the level of the individual phases.
This apparent kinematic hardening at the macroscopic level is a consequence of the nonuniformity
of the microscopic stress field in individual phases which, therefore, must be taken into account.
Predicting accurately the Bauschinger effect is a difficult challenge for most micromechanical mod-
els and none of the above mentioned models (Doghri et al., 2010; Brassart et al., 2011; Mercier and
Molinari, 2009, e.g.) has the capability of reproducing it accurately. As will be seen in sections 5
and 6 of the present study, the model proposed here is a step in this direction. This improvement
is mainly due to the fact that the present model is capable of estimating accurately the second
moment of the stress field in each individual phase for most common types of hardening of the
individual phases (isotropic and/or kinematic hardening).

The paper is organized as follows. The orientation of the paper is exposed in section 2. A
new incremental variational principle for the rate of internal variables in generalized standard
materials is derived in section 3. This variational principle is used in section 4 in the spirit of
the variational method of Ponte Castañeda (1992) to define a linear thermoelastic comparison
composite (LCC). The definition of this LCC makes use of the first and second moments of the
stress field in each phase of the LCC. The model is applied in section 5 to phases exhibiting
isotropic hardening only (with a threshold) and in section 6 to constituents with both isotropic and
linear kinematic hardening. Comparison with full-field simulations show that the proposed model
captures accurately the effective behavior of the composite (including the Bauschinger effect). The
statistics of the stress (first and second moments) are also accurately predicted.

2. Motivation and orientation

This section aims at motivating the variational principles of section 3. It is intentionally
nontechnical and does not pretend to be fully rigorous.

The problem of finding the effective response of composites with nonlinear elasto-(visco)plastic
constituents has connections with two different classes of problems.
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1. Effective properties of nonlinear composites governed by one potential. When the elastic
deformations are negligible and when there is no hardening (therefore no stored energy) the con-
stituents are purely viscous. Considering again (1) as a typical example of the situations that we
have in mind, these relations reduce to

ε̇(x) =
3

2
ṗ(x)

s(x)

σeq(x)
, ṗ(x) = ε̇0




[
σeq − σ(r)

Y

]+

η(r)




n(r)

in phase r, (2)

where r refers to the r-th phase, whereas x is the position in the phase. The variational method
of Ponte Castañeda (1992) for predicting the effective response of nonlinearly viscous composites
is based on the replacement of the actual nonlinear composite by a linear comparison composite
(LCC) whose properties are defined in an optimal way using a variational principle. This substi-
tution has been interpreted by Suquet (1995) as the replacement of the constitutive relations (2)
by:

ε̇(x) =
1

2η
(r)
0

s(x) in phase r,

where the viscosity η
(r)
0 of phase r depends on the second moment σ

(r)
eq of the stress field in phase

r through:

η
(r)
0 =

1

3

σ
(r)
eq

ε̇0


 η(r)

[
σ

(r)
eq − σ

(r)
Y

]+




n(r)

, σ
(r)
eq =

√〈
3

2
s : s

〉

r

, (3)

where 〈.〉
r

denote spatial averaging over phase r and σ is the stress field in the LCC. It should
be noted that, although the constitutive relations (2) are local, the constitutive equations (3) are

nonlocal in the sense that the viscosity η
(r)
0 at any point x in phase r depends on σ

(r)
eq which is

an integral over the entire phase r and not only on the value of the stress at point x. Another
equivalent writing of (3) highlights this feature:

ε̇(x) =
3

2
ṗ(r) s(x)

σ
(r)
eq

, ṗ(r) = ε̇0




[
σ

(r)
eq − σ

(r)
Y

]+

η(r)




n(r)

in phase r. (4)

Equation (4) has a form which is very similar to (2) except that the multiplier ṗ(r) is now uniform

over phase r and defined by means of the second moment σ
(r)
eq of the stress field over the entire

phase.

In the elasto-viscoplastic context considered in this paper, it is expected to arrive at relations
such as (4) for the plastic strain-rate ε̇p in each phase (instead of the full strain-rate ε̇), involving
the second moment of the stress field in an appropriately defined linear comparison composite.

2. Effective properties of linear viscoelastic composites. Linear viscoelastic composites ap-
pear naturally in the problem for two reasons. First, they correspond to a particular case of the
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constitutive relations (1) (no hardening, rate-sensitivity exponent n = 1). Second, the lineariza-
tion of elasto-viscoplastic constitutive relations leads naturally to linear viscoelastic composites.
Although the effective response of linear viscoelastic composites is relatively well understood, es-
sentially thanks to the Laplace transform which permits to translate the problem for a linear
viscoelastic composite into a problem for a linear elastic composite, the question of determining
the second moments of the stress field in the individual phases of a viscoelastic composite has not
yet received a satisfactory answer. Without these second moments, the linearization outlined in
the preceding paragraph cannot be made.

A way around this problem is, instead of using the Laplace transform, to discretize in time the
evolution equations for a viscoelastic composite which read as

ε̇(x, t) = M (r) : σ̇(x, t) +M v(r)
: σ(x, t) in phase r,

where M v(r)
is the viscosity tensor of phase r. After time-discretization, using a backward differ-

entiation scheme ḟ(tn+1) ' fn+1−fn
∆t (where fn denotes f(tn)), the constitutive equations read

as

ε̇n+1(x) =

(
1

∆t
M (r) +M v(r)

)
: σn+1(x)− 1

∆t
M (r) : σn(x) in phase r. (5)

The constitutive relations for a viscoelastic composite correspond, after time-discretization, to

nonclassical thermoelastic problem with piecewise uniform elastic compliance 1
∆tM

(r) + M v(r)

but with a nonuniform eigenstrain − 1
∆tM

(r) : σn(x). Second moments of the stress field in such
nonclassical thermoelastic composites are not known. However, when the nonuniform field σn(x)

can be approximated by a uniform stress σ
(r)
n in each individual phase r, these second moments

are known. The aim of the present work is precisely to approximate (in a variational sense) the
problem (5) by a problem where the eigenstrain is piecewise uniform. A similar problem was
addressed in Lahellec et al. (2011).

In a first attempt, the stress field σn(x) can be replaced in each phase by its average over this
phase:

σn(x) ' σ(r)
n = 〈σn〉r in phase r. (6)

This approximation is a first moment approximation. Unfortunately this simple model is rather
inaccurate, as discussed in Lahellec and Suquet (2012) for linear viscoelastic composites and shown
in the sequel for nonlinear elasto-viscoplastic composites. In order to get satisfactory results, it is
indeed necessary to account for the second moment of σn in each phase (in addition to the first

moment) in the definition of σ
(r)
n (Lahellec and Suquet, 2012).

The similarity with the two above problems motivates the orientation of the rest of this paper:

1. First, establish variational principles governing the evolution of nonlinear elasto-viscoplastic
composites.

2. Second, adapt the variational method of Ponte Castañeda (1992) to these variational princi-
ples, both for the linearization of the constitutive relations and for the approximation of the
stress field from the previous time step by a piecewise uniform stress.
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3. Rate Variational Principles for a single constituent

3.1. Individual constituents

The constitutive relations (1) can be formulated in the framework of Generalized Standard
Materials with two convex potentials. The first potential is the free-energy density w(ε,α) which
depends on the (infinitesimal) strain ε and on internal variables α describing irreversible phenom-
ena. The stress σ and the driving forces A triggering the evolution of the internal variables α
derive from the free-energy density:

σ =
∂w

∂ε
(ε,α), A = −∂w

∂α
(ε,α). (7)

Then the evolution of the internal variables α is governed by the driving forces according to

A =
∂ϕ

∂α̇
(α̇), or equivalently α̇ =

∂ϕ∗

∂A (A), (8)

where the dissipation potential ϕ(α̇) is the second potential defining the model and ϕ∗ is its
Legendre transform. When the two potentials w and ϕ are convex functions of their arguments
(ε,α) and α̇ respectively, the material governed by (7) and (8) is said to be a generalized standard
material (Halphen and Nguyen, 1975; Germain et al., 1983).

In the model (1), the internal variables are α = (εp, p). The free-energy w is the sum of two
terms, the elastic energy (recoverable under unloading) and the energy stored in the hardening of
the material which itself consists of two contributions due to isotropic and kinematic hardening
respectively:

w(ε,α) =
1

2
(ε− εp) : L : (ε− εp) + wst(p) +

1

2
εp : H : εp, (9)

where

wst(p) =

∫ p

0

R(q)dq.

The driving forces associated with εp and p read respectively:

− ∂w
∂εp

(ε,α) = L : (ε− εp)−H : εp = σ −X

−∂w
∂p

(ε,α) = −∂wst
∂p

(p) = −R(p).





(10)

Finally the evolution equations for εp and p in (1) derive from the dissipation potential:

ϕ(α̇) = σY ε̇
p
eq +

ηε̇0

m+ 1

(
ε̇peq
ε̇0

)m+1

+ I{ṗ = ε̇peq}(α̇),

where m = 1/n, ε̇peq =
√

2
3 ε̇

p : ε̇p and I is the indicator function enforcing the constraint ṗ = ε̇peq:

I{ṗ = ε̇peq}(α̇) =

{
0 if ṗ = ε̇peq≥ 0,
+∞ otherwise.
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The indicator function I, and therefore ϕ, are not differentiable but are convex functions1. An
alternative expression for I will be useful. Introducing a Lagrange multiplier Λ, we note that

I{ṗ = ε̇peq}(α̇) = Sup
Λ

{Λ(ṗ− ε̇peq)},

and the following alternative expression for ϕ is obtained:

ϕ(α̇) = Sup
Λ

ϕΛ(α̇), ϕΛ(α̇) = σY ε̇
p
eq +

ηε̇0

m+ 1

(
ṗ

ε̇0

)m+1

+ Λ(ε̇peq − ṗ). (11)

As a check, a derivation of the constitutive equations (1) from the potential (11) is given in
Appendix A.

3.2. Rate-potential

Upon elimination of A between (7) and (8), the constitutive relations of the materials un-
der consideration can be re-written as a system of two coupled equations, one of them being a
differential equation in time :

σ =
∂w

∂ε
(ε,α),

∂w

∂α
(ε,α) +

∂ϕ

∂α̇
(α̇) = 0. (12)

The time derivative α̇ in (12) can be approximated by a difference quotient after use of an implicit
(backward) Euler-scheme known for its stability and consistence. The time interval of study [0, T ]
is discretized into time intervals t0 = 0, t1, ...., tn, tn+1, ..., tN = T . For simplicity the time step
tn+1− tn is denoted by ∆t (its dependence on n is omitted for simplicity) and the value f(tn) of a
function f evaluated at time tn is denoted by fn. Assuming that (εn,αn) are known at time tn,
the time-discretization procedure applied to (12) leads to the discretized system for the unknowns
(εn+1,αn+1) :

σn+1 =
∂w

∂ε
(εn+1,αn+1),

∂w

∂α
(εn+1,αn+1) +

∂ϕ

∂α̇
(α̇) = 0. (13)

where

α̇ =
αn+1 −αn

∆t
. (14)

Lahellec and Suquet (2007b) have developed a variational principle for (εn+1,αn+1) at the end of
the time step. Here we develop a variational principle for the rates (ε̇, α̇) between tn and tn+1.
Consistent with the backward scheme (14), the following relations are used in (13):

εn+1 = εn + ∆t ε̇, αn+1 = αn + ∆t α̇,

leading to the following two equations for (ε̇, α̇)

σn+1 =
∂w

∂ε
(εn + ∆t ε̇,αn + ∆t α̇),

∂w

∂α
(εn + ∆t ε̇,αn + ∆t α̇) +

∂ϕ

∂α̇
(α̇) = 0. (15)

1In full rigor, the first equation in (8) is to be understood in the sense of subdifferentials.
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Introducing the rate-potential D, function of the two variables ε̇, α̇

D(ε̇, α̇) =
1

∆t
[w(εn + ∆t ε̇,αn + ∆t α̇)− w(εn,αn)] + ϕ (α̇) ,

it is readily seen that:

∂D
∂ε̇

(ε̇, α̇) =
∂w

∂ε
(εn + ∆t ε̇,αn + ∆t α̇) = σn+1,

∂D
∂α̇

(ε̇, α̇) =
∂w

∂α
(εn + ∆t ε̇,αn + ∆t α̇) +

∂ϕ

∂α̇
(α̇) = 0.





Therefore the second equation in (15) is the Euler-Lagrange equation for the variational problem :

Inf
α̇
D(ε̇, α̇).

Defining the condensed rate-potential as

d(ε̇) = Inf
α̇
D(ε̇, α̇), (16)

we obtain the following remarkable result which gives the stress as the derivative of a single potential
with respect to the strain-rate :

σn+1 =
∂d

∂ε̇
(ε̇). (17)

The proof of relation (17) relies classically on the stationarity of D with respect to α̇:

∂d

∂ε̇
(ε̇) =

∂D
∂ε̇

(ε̇, α̇) +
∂D
∂α̇

(ε̇, α̇) :
∂α̇

∂ε̇
, (18)

where α̇(ε̇) denotes the solution of the infimum problem in (16). The last term in (18) vanishes
by virtue of the stationarity of D with respect to α̇, and we are left with :

∂d

∂ε̇
(ε̇) =

∂D
∂ε̇

(ε̇, α̇) = σn+1. (19)

Remark 1. Under the assumption that w and ϕ are convex functions of their arguments, the rate-
potential D is a convex function of (ε̇, α̇) and the condensed incremental potential d is a convex
function of ε̇. The latter property follows from a general result given in Ekeland and Temam (1976)
and already used in Lahellec and Suquet (2007b).

3.3. Rate-potential for elasto-(visco)plastic constituents

With the definitions (9) and (11), the rate-potential D for the constitutive model (1) reads as:

D (ε̇, α̇) = Sup
Λ

D (ε̇, α̇,Λ) ,

D (ε̇, α̇,Λ) =
∆t

2
[(ε̇− ε̇p) : L : (ε̇− ε̇p) + ε̇p : H : ε̇p] +

1

∆t
[wst(pn + ∆tṗ)− wst(pn)]

+σn : (ε̇− ε̇p) +Xn : ε̇p + σY ε̇
p
eq +

ηε̇0

m+ 1

(
ṗ

ε̇0

)m+1

+ Λ(ṗ− ε̇peq ).





(20)
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4. Composite materials

A representative volume element (r.v.e.) V of the composite is composed of N phases occupying
domains V (r) with characteristic functions χ(r) and volume fraction c(r). Each individual phase is
governed by the differential equations (12) with potentials w(r) and ϕ(r). The free-energy w and
the dissipation potential ϕ at position x are given by:

w(x, ε,α) =

N∑

r=1

χ(r)(x)w(r)(ε,α), ϕ(x, α̇) =

N∑

r=1

χ(r)(x)ϕ(r)(α̇). (21)

The r.v.e. V is subjected to a path of macroscopic strain2 ε(t) and the local problem which is solved
by the local fields σ(x, t), ε(x, t) and α(x, t) consisting in the constitutive relations, equilibrium
and compatibility conditions and imposed loading path, reads as :

σ =
∂w

∂ε
(ε,α),

∂w

∂α
(ε,α) +

∂ϕ

∂α̇
(α̇) = 0, div σ = 0, 〈ε(t)〉 = ε(t), (22)

complemented, as usual, by appropriate boundary conditions on ∂V (uniform stress, uniform strain
or periodicity conditions are the most common types of B.C. used in practice). For definiteness,
it is implicitly assumed in the sequel that periodicity conditions are imposed on the boundary of
V . All fields σ, ε,α depend on x and t. Spatial averaging over V and V (r) are denoted by 〈.〉 and
〈.〉r respectively.

The homogenized or effective response of the composite along the path of prescribed strain
{ε(t), t ∈ [0, T ]} is the history of average stress {σ(t), t ∈ [0, T ]} where σ(t) = 〈σ(x, t)〉.

4.1. Effective rate-potential

Upon discretization of the time interval [0, T ], the local problem (22) can be written with the
help of (17) as :

σn+1 =
∂d

∂ε̇
(ε̇), div σn+1 = 0, 〈ε̇〉 = ε̇, (23)

where ε̇ = (εn+1 − εn)/∆t, and where the rate-potentials d and D read as :

D(ε̇, α̇,x) =

N∑

r=1

D(r)(ε̇, α̇,x)χ(r)(x), d(ε̇,x) = Inf
α̇

D(ε̇, α̇,x), (24)

D(r)(ε̇, α̇,x) =
1

∆t

[
w(r)(εn(x) + ∆t ε̇,αn(x) + ∆t α̇)− w(r)(εn(x),αn(x))

]
+ ϕ(r) (α̇) (25)

The average stress σn+1 = 〈σn+1〉 satisfies :

σn+1 =
∂d̃

∂ε̇

(
ε̇
)
, (26)

where
d̃
(
ε̇
)

= Inf
〈ε̇〉=ε̇

〈d(ε̇)〉 = Inf
〈ε̇〉=ε̇

〈
Inf
α̇
D(ε̇, α̇)

〉
. (27)

2Imposing a stress-controlled path requires only small modifications of the present procedure.
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The proof of (26) proceeds classically by using the stationarity of D with respect to α̇ and Hill’s
lemma.

The homogenization of the evolution problem (22) is therefore reduced to the variational prob-
lem (27). The latter problem amounts to finding the effective potential d̃ of a composite material
with a single potential d. However, two important features of this potential, making the problem
slightly more general than the problems usually addressed with the one-potential homogenization
approaches, are worth noting :

1. The condensed potential d is not explicitly known and is certainly nonquadratic in general
(except when w and ϕ are both quadratic).

2. The condensed potential d depends on x not only through the characteristic functions χ(r)(x)
but also through the fields εn(x) and αn(x). In other words d(ε̇) cannot be put under the
familiar form (21) of a function of ε̇ depending only on the constituent.

The first point makes the variational problem (27) strongly reminiscent of the problem of nonlinear
composites composed of N different phases governed by a single potential. However the second
point shows that the problem at hand is more complicated than the latter one. Even the full
rate-potential d does not depend only on the phase r but also depends on εn(x) and αn(x) which
may have strong fluctuations, even within each single phase.

4.2. Linear comparison composite

The idea of the method, inspired from the variational method of Ponte Castañeda (1992), is
to replace the variational problem (26) by a simpler one for a potential d0 which remains to be
specified, and estimate the error made in this substitution. Since the exact expression of the
condensed potential d is not known, it is easier to do this substitution on the full incremental
potential D. D is written as:

D(ε̇, α̇) = D0(ε̇, α̇) + (D −D0)(ε̇, α̇), (28)

where D0(ε̇, α̇) is the rate-potential for a (fictitious) comparison composite which will be chosen in
such a way that the comparison composite is indeed a linear comparison composite (LCC). Using
this translation, the following inequalities are obtained:

D(ε̇, α̇) ≤ D0(ε̇, α̇) + Sup
ε̇,α̇

(D −D0)(ε̇, α̇),

D(ε̇, α̇) ≥ D0(ε̇, α̇) + Inf
ε̇,α̇

(D −D0)(ε̇, α̇).



 (29)

Then, averaging over V and taking the infimum with respect to α̇ and ε̇, bounds for d̃ are obtained

d̃
(
ε̇
)
≤ Inf

〈ε̇〉=ε̇

[〈
Inf
α̇
D0(ε̇, α̇)

〉
+

〈
Sup
ε̇,α̇

∆D(ε̇, α̇)

〉]
, (30)

d̃
(
ε̇
)
≥ Inf

〈ε̇〉=ε̇

[〈
Inf
α̇
D0(ε̇, α̇)

〉
+

〈
Inf
ε̇,α̇

∆D(ε̇, α̇)

〉]
, (31)
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where ∆D = D−D0. These bounds are valid for any choice of D0. Refined bounds can be obtained
by optimizing the right hand-side of (30) and (31) over D0 :

d̃
(
ε̇
)
≤ Inf

D0

Inf
〈ε̇〉=ε̇

[〈
Inf
α̇
D0(ε̇, α̇)

〉
+

〈
Sup
ε̇,α̇

∆D(ε̇, α̇)

〉]
,

d̃
(
ε̇
)
≥ Sup

D0

Inf
〈ε̇〉=ε̇

[〈
Inf
α̇
D0(ε̇, α̇)

〉
+

〈
Inf
ε̇,α̇

∆D(ε̇, α̇)

〉]
,





(32)

It has been recognized in other situations (Ponte Castañeda, 2002a) that a sharper estimate can
be obtained by replacing the infimum and supremum requirements in (32) by stationarity require-
ments. The resulting expression has no bounding character and is only an estimate (hopefully
accurate) for d̃:

d̃(ε̇) ' Stat
D0

Inf
〈ε̇〉=ε̇

[〈
Inf
α̇
D0(ε̇, α̇)

〉
+

〈
Stat
α̇,ε̇

∆D(ε̇, α̇)

〉]
. (33)

5. Elasto-(visco)plastic composites with isotropic hardening only

In this section only isotropic hardening is considered (H = 0, X = 0, R(p) arbitrary). Having
in mind the form (20) of the rate-potential for elasto-viscoplastic constituents where D is obtained
as a supremum over a Lagrange multiplier Λ, we will fix Λ and work with D (ε̇, α̇,Λ) and then
take the supremum over Λ :

d̃
(
ε̇
)

= Inf
〈ε̇〉=ε̇

〈
Inf
α̇

Sup
Λ

D(ε̇, α̇,Λ)

〉
= Sup

Λ
Inf
〈ε̇〉=ε̇

〈
Inf
α̇

D(ε̇, α̇,Λ)
〉
.

5.1. Linear comparison composite

The reference potential D0 is chosen in phase (r) as:

D(r)
0 (ε̇, α̇,Λ) = ∆t

2 (ε̇− ε̇p) : L
(r)
0 : (ε̇− ε̇p) + 1

∆t

[
w

(r)
st (pn + ∆tṗ)− w(r)

st (pn)
]

+ σ(r)
n : (ε̇− ε̇p) +

η(r)ε̇0

m(r) + 1

(
ṗ

ε̇0

)m(r)+1

+ Λṗ+ η
(r)
0 ε̇p : ε̇p





(34)

This choice for D0 is motivated by the following considerations:

– Ideally, D0 should be uniform per phase as a function of ε̇, α̇ (as in (21)). This explains why

the field σn(x) in (20) has been replaced by the second-order tensor σ
(r)
n which is uniform

in phase r.

– A first, natural, choice for D0 would be to assign to the linear elastic composite the actual
elastic properties of the composite and to average the stress field from the previous time step:

L
(r)
0 = L(r), σ(r)

n = 〈σn〉. (35)

This choice corresponds to a first-moment model (see section 2), called the RVP1st model in
the sequel. As will be seen later, this model is not as accurate as the model which will be

proposed here having the flexibility of optimizing over L
(r)
0 and σ

(r)
n .
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– Choosing D0 quadratic3 in ε̇, α̇ would simplify the stationarity problem in (33) and would
lead to a reduced potential d0 being quadratic in ε̇. This is only partially achieved by the
expression (34) which is quadratic with respect to ε̇ and ε̇p but not with respect to ṗ. It
will turn out in the course of the calculations that ṗ (and therefore p) can be chosen to be
uniform per phase which is another way of simplifying the stationarity problem in (33).

The estimate (33) involves an optimization step with respect to D0. The optimization is

performed on the parameters σ
(r)
n ,L

(r)
0 , η

(r)
0 and (33) takes the form:

d̃
(
ε̇
)
' Stat

σ
(r)
n , L

(r)
0 , η

(r)
0

Sup
Λ

[
Inf
〈ε̇〉=ε̇

〈
Inf
α̇
D0(ε̇, α̇,Λ)

〉
+

〈
Stat
ε̇,α̇

∆D(ε̇, α̇,Λ)

〉]
. (36)

The general procedure outlined in section 4.2 can now be followed and implemented in several
steps, each step corresponding to a stationarity problem.

5.2. Stationarity problems

5.2.1. 1st step: Stat
ε̇,α̇

∆D

Making use of the relations (20) and (34), the error function ∆D can be expressed as :

∆D (ε̇, α̇,Λ) =
∆t

2
(ε̇− ε̇p) : ∆L(r) : (ε̇− ε̇p) + ∆σ(r)

n : (ε̇− ε̇p) +
(
σ

(r)
Y − Λ

)
ε̇peq − η

(r)
0 ε̇p : ε̇p,

where
∆σ(r)

n (x) = σn(x)− σ(r)
n in phase r, ∆L(r) = L(r) −L(r)

0 .

The optimality conditions for ∆D with respect to ε̇ and ε̇p (note that there is no dependence of
∆D on ṗ) yield respectively:

Stat
ε̇

⇒ ∆t∆L(r) : (ε̇− ε̇p) + ∆σ(r)
n = 0, (37)

Stat
ε̇p

⇒ −∆t∆L(r) : (ε̇− ε̇p)−∆σ(r)
n +

(
σ

(r)
Y − Λ

) 2ε̇p

3ε̇peq
− 2η

(r)
0 ε̇p+ξi = 0, (38)

where i is the identity for second-order tensors, and ξ is a multiplier associated with the incom-
pressibility constraint ε̇p.i = 0. Finally:

〈
Stat
ε̇,α̇

∆D
〉

=

〈
−1

2
∆σ(r)

n :
(

∆t∆L(r)
)−1

: ∆σ(r)
n +

1

6η
(r)
0

(
σ

(r)
Y − Λ

)2
〉

(39)

5.2.2. 2nd step: Inf
α̇
D0

The conditions for an infimum with respect to α̇ = (ε̇p, ṗ) are:

Inf
ε̇p

⇒ −∆t : L
(r)
0 : (ε̇− ε̇p)− σ(r)

n + 2η
(r)
0 ε̇p+ξ0i = 0, (40)

3quadratic is to be understood here in the sense of the sum of quadratic, linear and constant terms.
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where, again, ξ0 is a multiplier associated with the incompressibility constraint ε̇p.i = 0.

Inf
ṗ

⇒ R(r)(pn + ∆tṗ) + η(r)

(
ṗ

ε̇0

)m
+ Λ = 0, (41)

where R(r)(p) = ∂w
(r)
st (p)/∂p. Thanks to (40), ε̇p can be expressed in terms of ε̇ as:

ε̇p =
(

∆tL
(r)
0 + 2η

(r)
0 K

)−1

: K : (∆tL
(r)
0 : ε̇+ σ(r)

n ) (42)

where K is the projector on purely deviatoric second-order tensors. Using this relation to simplify
the stationary value of D0, it is found that

Inf
α̇
D0 = d

(r)
0 (ε̇) in phase r, (43)

where

d
(r)
0 (ε̇) =

1

2
ε̇ : L(r)

0 : ε̇+ τ
(r)
0 : ε̇+ f0(x), (44)

with:

L(r)
0 = ∆tL

(r)
0 −∆tL

(r)
0 : K :

(
∆tL

(r)
0 + 2η

(r)
0 K

)−1

: K : ∆tL
(r)
0 ,

τ
(r)
0 = −∆tL

(r)
0 : K :

(
∆tL

(r)
0 + 2η

(r)
0 K

)−1

: K : σ(r)
n + σ(r)

n ,

f0(x) = −1

2
σ(r)
n : K :

(
∆tL

(r)
0 + 2η

(r)
0 K

)−1

: K : σ(r)
n + g(Λ(x)),





(45)

where

g(Λ) =
1

∆t

(
w

(r)
st (pn + ∆tṗ)− w(r)

st (pn)
)

+
η(r)ε̇0

m+ 1

(
ṗ

ε̇0

)m+1

+ Λṗ (46)

with ṗ solution of (41).

5.2.3. 3rd step: d̃0

(
ε̇,Λ

)
= Inf
〈ε̇〉=ε̇

〈
Inf
α̇
D0

〉

The linear comparison composite is a linear thermoelastic solid with piecewise uniform elastic
moduli and eigenstress. The local problem for the LCC reads as:

σ = L(r)
0 : ε̇+ τ

(r)
0 , div σ = 0, 〈ε̇〉 = ε̇, (47)

The effective constitutive relation for the LCC takes the form

σ = L̃0 : ε̇+ τ̃ 0,

where the effective elastic moduli L̃0 and the effective eigenstress τ̃ 0 can be evaluated using a
linear homogenization scheme appropriate for the composite microstructure. An example will be
given in section 5.5 with the Hashin-Shtrikman estimate. The effective rate-potential d̃0 takes the
general form (see Lahellec and Suquet, 2007b, appendix B, for more details):

d̃0(ε̇) =
1

2
ε̇ : L̃0 : ε̇+ τ̃ 0 : ε̇+ f̃ . (48)
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Remark 2. An equivalent form of (47) helps understanding the true meaning of the LCC. After
some algebra on (45) it is seen that

(L(r)
0 )−1 =

1

∆t

(
M

(r)
0 +

1

2η
(r)
0

K

)
, (L(r)

0 )−1 : τ
(r)
0 = −M (r)

0 : σ(r)
n .

so that the constitutive relations in the LCC can alternatively be written as:

ε̇ = M
(r)
0 :

(
σ − σ(r)

n

∆t

)
+ ε̇p, ε̇p =

1

2η
(r)
0

K : σ. (49)

Therefore the local problem for the LCC, which is a linear thermoelastic problem, can be consid-
ered as a discretized (in time) evolution problem for a linear viscoelastic composite with elastic

complianceM
(r)
0 = (L

(r)
0 )−1, initial stress σ

(r)
n at time tn (beginning of the time step) and viscosity

η
(r)
0 . The LCC changes from one time step to the other) .

5.2.4. 4th step: Sup
Λ

[....]

The condition for a supremum with respect to Λ of the bracketed term in (36) takes a simple
form, thanks to the stationarity of all terms between the brackets in (36) :

∂D0

∂Λ
+
∂∆D
∂Λ

= 0, (50)

where the two derivatives are evaluated at the stationary points of D0 and ∆D respectively. Making
use of (34) and (39), the condition for a supremum over Λ is:

ṗ− 1

3η
(r)
0

(
σ

(r)
Y − Λ

)
= 0. (51)

Eliminating Λ between (41) and (51), it is found that ṗ solves the nonlinear equation:

R(r)(pn + ∆tṗ) + η(r)

(
ṗ

ε̇0

)m(r)

+ σ
(r)
Y − 3η

(r)
0 ṗ = 0 (52)

The material parameters σ
(r)
Y , η(r), m(r) and η

(r)
0 are uniform in each phase. Therefore, whenever

the field pn is uniform per phase, the equation (52) is a scalar equation which admits a single
solution over each phase, ṗ = ṗ(r) in phase r. Assuming that the initial field p0 is uniform per
phase, it follows (by recursion) that p(t) is, for all t, uniform in each phase. Furthermore, equation
(51) shows that, since ṗ is uniform over phase r, Λ is uniform too:

Λ(r) = σ
(r)
Y − 3η

(r)
0 ṗ(r). (53)

Coming back to (45) it is seen that f0 is now uniform per phase.
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5.2.5. 5th step: Stat
σ

(r)
n ,L

(r)
0 ,η

(r)
0

The last step of the procedure consists in optimizing the choice of the linear comparison com-

posite (LCC), or in other words in optimizing the right-hand side of (36) with respect to σ
(r)
n ,L

(r)
0

and η
(r)
0 . For definiteness, the fields in the LCC are denoted by ε̇, ε̇p, σ, and determined as

solutions of (40) and (47) in the third step of the procedure. By contrast, the analogous fields
determined in the first step (evaluation of the error function ∆D) and solution of (37)–(38) are
denoted with an upperscript ∗. Then:

Stat
σ

(r)
n

⇒ 〈(ε̇− ε̇p)〉r = 〈(ε̇∗ − ε̇p∗)〉r , (54)

Stat
L

(r)
0

⇒ 〈(ε̇− ε̇p)⊗ (ε̇− ε̇p)〉r = 〈(ε̇∗ − ε̇p∗)⊗ (ε̇∗ − ε̇p∗)〉r . (55)

In other words, the first and second moments in each individual phase of the elastic strain-rate in
the optimal LCC coincide with the elastic strain-rate determined by minimizing the error function
∆D. These conditions (54) and (55) can be rewritten in terms of the first and second moment of
the stress field at time t and tn. It follows from (37) and (54) that :

ε̇∗ − ε̇p∗ = −
(

∆t∆L(r)
)−1

: ∆σ(r)
n , ε̇− ε̇p = (∆tL0)

−1
: ∆σ,

where ∆σ = σ − σ(r)
n . Then the relations (54) and (55) can be transformed into :

−
(
∆L(r)

)−1

:
〈
∆σ(r)

n

〉
r

=
(
L

(r)
0

)−1

: 〈∆σ〉r , (56)

and
〈

∆σ(r)
n :

(
∆L(r)

)−1

⊗
(
∆L(r)

)−1

: ∆σn

〉

r

=

〈
∆σ :

(
L

(r)
0

)−1

⊗
(
L

(r)
0

)−1

: ∆σ

〉

r

. (57)

The optimal elastic moduli L
(r)
0 and eigenstress σ

(r)
n in the LCC are determined by solving the

coupled equations (56) and (57).

Finally, the last stationarity condition with respect to η
(r)
0 reads as :

Stat
η
(r)
0

⇒ 〈ε̇p : ε̇p〉r =
1

6(η
(r)
0 )2

〈(
σ

(r)
Y − Λ

)2
〉

r

=
3

2
(ṗ(r))2, (58)

where the last equality results from (51). Relation (58) shows that the piecewise uniform equivalent
plastic strain-rate ṗ(r) in the LCC is given by the second moment of the plastic strain-rate in the
LCC:

ṗ(r) =

√
2

3
〈ε̇p : ε̇p〉r. (59)

Remark 3. Defining

H(r) = I −L(r) : (L
(r)
0 )−1 and σ̂n(x) =H(r)σ(x) + (I −H(r)) : σ(r)

n , (60)
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it can readily been checked that the condition (56) is equivalent to

〈σn〉r = 〈σ̂n〉r. (61)

Similarly, the condition (57) is equivalent to

〈σn ⊗ σn〉r = 〈σ̂n ⊗ σ̂n〉r. (62)

Following Idiart and Ponte Castañeda (2007) the (quadratic) fluctuations of a field σ in phase r
are defined as

C(r)(σ) =
〈(
σ − 〈σ〉

r

)
⊗
(
σ − 〈σ〉

r

)〉
r
.

The equality between the first and second moments of σn and σ̂n in phase r can be equivalently
expressed as the equality between the first moment and the fluctuations of these fields. According
to (60), σ is the only field contributing to the fluctuations of σ̂n and therefore (62) can be replaced
by a relation between the fluctuations of σn and the fluctuations of σ:

C(r)(σn) = C(r)(H(r) : σ). (63)

5.2.6. Field statistics in the linear comparison composite

The first and second moments of the strain-rate field in each individual phase of the LCC
defined as

〈ε̇〉
r

=
1∣∣V (r)
∣∣
∫

V (r)

ε̇ dx, 〈ε̇⊗ ε̇〉
r

=
1∣∣V (r)
∣∣
∫

V (r)

ε̇⊗ ε̇ dx.

These moments are obtained using classical relations in linear thermoelastic composites (Ponte
Castañeda and Suquet, 1998; Buryachenko, 2001; Idiart and Ponte Castañeda, 2007):

〈ε̇〉
r

=
1

c(r)
∂d̃0

∂τ
(r)
0

, 〈ε̇⊗ ε̇〉
r

=
2

c(r)
∂d̃0

∂L(r)
0

(64)

The statistics of the stress field follow from (64) and (47):

〈σ〉
r

= L(r)
0 : 〈ε̇〉

r
+ τ

(r)
0 , C(r)(σ) = C(r)(L0

(r) : ε̇). (65)

5.3. Interpretation of the LCC as a non-local approximation

The above variational scheme consisting in the successive implementation of the five different
steps described above will be called the Rate-Variational Procedure (RVP). It may appear rather
technical but fortunately it can receive a simple interpretation. It has already been noticed in
(49) that the LCC can be interpreted as a linear viscoelastic composite on the time step [tn, tn+1].
Further algebra using eqs. (40, 41, 52) together with the fact that ṗ is uniform per phase, show

that the viscosity η
(r)
0 in phase r of the LCC can be alternatively written as:

η
(r)
0 =

1

3

σ
(r)
eq

ε̇0


 η(r)

[
σ

(r)
eq − σ

(r)
Y −R(r)(p(r)

]+




n(r)

. (66)
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Therefore the constitutive equations for the LCC read as:

ε̇ = M
(r)
0 :

(
σ − σ(r)

n

∆t

)
+ ε̇p,

ε̇p =
3

2
ṗ(r) s

σ
(r)
eq

, ṗ(r) = ε̇0




[
σ

(r)
eq − σ

(r)
Y −R(r)(p(r))

]+

η(r)




n(r)

.





(67)

The analogy with (1) (no kinematic hardening is considered in this section) is clear, except that

the closure equations for η
(r)
0 are nonlocal in the sense that they involve the second moment σ

(r)
eq of

the stress field (which itself depends on the viscosities in each phase, rendering the determination

of η
(r)
0 a fully coupled and nonlinear problem). The replacement of the actual nonlinear composite

by the linearly viscous LCC, corresponds to the following approximations:

1. In the evolution equation (67)2, the local equivalent stress σeq(x) at each point x in phase r

is replaced by σ
(r)

and the yield stress σ
(r)
Y +R(p(x)) is replaced by σ

(r)
Y +R(p(r)),

2. the compliance M (r) of phase r is replaced by M
(r)
0 ,

3. the stress field σn(x) is replaced by the uniform stress σ
(r)
n in phase r.

The similarity between (67) and (1) is essential in the numerical integration in time of the effective
relations.

5.4. General implementation of the model

The numerical implementation of the RVP model takes advantage of the similarities between
between (67) and (1) to transpose the algorithms known for the integration of elasto-viscoplastic
constitutive relations to the RVP model. Before addressing the integration in time, we recall that
the RVP model requires, as a pre-requisite, a linear homogenization scheme to estimate the effective
properties of the LCC, which can be seen (after time-discretization) as a linear thermoelastic
composite (see (45)) with the same microstructure as the actual composite. This scheme should
not only deliver the effective properties of the thermoelastic composite, but also deliver the first and
second moments per phase of the stress field. It may be an analytical scheme, such as the Hashin-
Shtrikman scheme for microstructures of matrix-inclusion type, or the self-consistent scheme for
polycrystalline microstructures, or a purely computational scheme, such as the full-field resolution
of a unit-cell problem for a linear thermoelastic composite. Obviously, the highest gain in CPU
time is obtained when the linear homogenization scheme is analytical and this is the direction
which will be explored in the sequel. Once the linear scheme is selected, the algorithm goes as
follows:

1. At the beginning of the current time step tn+1, the overall strain εn, the first and second
moments per phase of σn and the first moment of pn are known. An increment in overall
strain ∆ε is applied. The quantities of interest to be determined at the end of the time step
are the macroscopic stress σn+1, the first and second moments per phase of σn+1 and the
first moment of pn+1 (the index n + 1 referring to the current time step is shown here for
clarity but will be dropped in the sequel as was done earlier).
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2. At the current time step tn+1, the coupled nonlinear equations (56), (57) and (58) are to

be solved for σ
(r)
n , L

(r)
0 and η

(r)
0 . These equations involve the first and second moment of

the stress field in the LCC (determined using the above linear homogenization scheme) and
the first and second moments of the stress field σn at the previous time step. This is done
by performing a loop to determine the unknowns. At the beginning of this loop, which is
internal to the time step, the elastic and viscous properties of the LCC are initialized with

their value at the end of the previous time step whereas the initial uniform stress σ
(r)
n in

phase r is initialized with 〈σn〉r . Then the (k+ 1)-th iterate goes as follows: assuming L
(r)
0 ,

σ
(r)
n and η

(r)
0 , r = 1, ..., N to be known from the k-th iterate:

• Compute the thermoelastic properties (45) and determine the first and second moments
of the stress field σ in the LCC using relations (65).

• Find H(r) (or equivalently L
(r)
0 ), σ

(r)
n and η

(r)
0 , r = 1, ..., N at iterate (k + 1) solving

the coupled nonlinear equations (56), (57), (58).

3. Once the above nonlinear problem is solved, the optimal LCC is determined and the estimate
of the macroscopic stress provided by (36) is the macroscopic stress in the LCC. Indeed the
right-hand side of (36) being stationary with respect to all variables, one has

σ =
∂d̃

∂ε̇
(ε̇) =

∂d̃0

∂ε̇
(ε̇) = L̃0 : ε̇+ τ̃ 0. (68)

4. All quantities required for the next time step are updated at the end of the current time step.
The accumulated plastic strain field p (which is uniform per phase) is updated by means of
(59) where the second moment of the plastic strain-rate is obtained from the second moment
of the stress field in the LCC by means of (42). The first and second moments of the stress
field σn, required by the procedure for the next time step, are updated by the first and
second moments of the stress field in the optimal LCC at the end of the current time step.

5.5. Sample example: two-phase particulate composite

The composites considered in this section consist of a nonlinear elasto-(visco)plastic matrix
(phase 2) reinforced by spherical, randomly distributed, elastic particles (phase 1).

The inclusions are linearly elastic and isotropic, characterized by their bulk modulus k(1) and
shear modulus µ(1):

L(1) = 3k(1)J + 2µ(1)K, with k(1) = 20 GPa, µ(1) = 6 GPa. (69)

The elastic properties of the matrix are isotropic and characterized by a bulk modulus k(2) and a
shear modulus µ(2):

L(2) = 3k(2)J + 2µ(2)K, with k(2) = 10 GPa, µ(2) = 3 GPa. (70)

Three different matrices are considered in section 5.6.1, 5.6.2 and 5.6.3. The first matrix is ideally-

plastic (rate-independent with no hardening) characterized by a fixed threshold σ
(2)
Y . The second

matrix is also rate-independent, but exhibits a varying threshold with isotropic hardening. The
third matrix is rate-dependent beyond a threshold.

The type of microstructure and the relative stiffness of the phases (inclusions stiffer than the
matrix) suggests that the lower Hashin-Shtrikman bound is appropriate for estimating the linear
effective properties of the actual composite, as well as those of the linear comparison composite.
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5.5.1. Implementation of the Rate-Variational Procedure

The procedure described in section 5.2 is now implemented in conjunction with the Hashin-
Shtrikman scheme to homogenize the linear comparison thermoelastic composite. A few simplifi-
cations can be made.

First, according to the Hashin-Shtrikman scheme, there is no stress fluctuations in the inclusions
(phase 1). Consequently, σn is uniform in the inclusions and there is no reason to approximate it

by a different uniform stress σ
(1)
n . Note, in addition, that the equation (63) becomes trivial (both

sides of the equations are identically 0 since there is no stress fluctuations). The most natural

choice for σ
(1)
n is σn itself (which coincides with its average, since it is uniform)

σ(1)
n = 〈σn〉1.

The elastic moduli in the inclusions of the LCC are the actual elastic moduli of the inclusions (to
be consistent with (60) and (61)):

L0
(1) = L(1),

and therefore L(1)
0 = L(1) and τ

(1)
0 = 〈σn〉1.

Second, the elastic moduli L0
(2) of the matrix in the LCC are chosen to be isotropic and

proportional to the initial elastic moduli of the actual composite :

L0
(2) = 3k

(2)
0 J + 2µ

(2)
0 K = θ(2)

(
2µ(2)K + 3k(2)J

)
(71)

This choice, instead of considering a fully anisotropic L0
(2) or even an isotropic elastic tensor

with two elastic moduli independent of those of the actual composite, is sub-optimal but reduces
the determination of L0

(2) to that of a single scalar unknown θ(2) in the matrix. Despite this
simplification, the solution is found to be still accurate. With the form (71) of the moduli in the
LCC, the thermoelastic tensors (45) read:

L(2)
0 = 3∆t k(2)θ(2)J + 2

∆tµ(2)θ(2)η
(2)
0

∆tµ(2)θ(2) + η
(2)
0

K,

τ
(2)
0 =

(
η

(2)
0

∆tµ(2)θ(2) + η
(2)
0

K + J

)
: σ(2)

n .





(72)

The unknowns of the problem are θ(2), σ
(2)
n and η

(2)
0 which are to be determined using the simplified

form taken by the general equations (61), (63) and (58) when the choice (71) is made. The equality
of the first moment of the stress fields σn and σ̂n leads to:

〈σn〉2 = h(2)〈σ〉
2

+
(

1− h(2)
)
σ(2)
n , with h(2) = 1− 1/θ(2). (73)

Assuming h(2) to be known for the moment, this equation allows for the determination of σ
(2)
n

in terms of 〈σn〉2 and h(2) (note that 〈σ〉
2
, the first moment of the stress field in the matrix of the

LCC, depends on σ
(2)
n through a relation which can be explicited for each class of microstructure).
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The unknown σ
(2)
n can therefore be removed from the list of unknowns and we are left with two

scalar unknowns4, h and η0.

After due account of the form (71) for L
(2)
0 in the definition (60) of H(2), the equation (63) for

the stress fluctuations in the matrix becomes

C(2)(σn) ::

(
K

2µ(2)
+

J

3k(2)

)
= h2C(2)(σ) ::

(
K

2µ(2)
+

J

3k(2)

)
, (74)

which gives a first scalar equation. Solving numerically this nonlinear equation is not straightfor-
ward. The strategy adopted in the examples presented below is exposed in appendix Appendix C.
The second scalar equation is provided by eqs (59) and (49):

ṗ =

√
2

3
〈ε̇p : ε̇p〉2 =

1

3η
(2)
0

√〈
3

2
s : s

〉

2

,

where s is the stress deviator in the LCC. Substituting this expression in the term 3η0ṗ in (52)
yields: √〈

3

2
s : s

〉

2

− (σY +R(pn + ∆tṗ)) = η

(
ṗ

ε̇0

)m
. (75)

(75) is the second (nonlinear) scalar equation which together with (74) allows for the determination

of h and η0. Note that the fluctuations C(2)(σ) and the second moment 〈s : s〉2 of the stress
deviator in the LCC entering (74) and (75) are known in terms of h and η0.

It follows from (59) that ṗ is always nonnegative. A necessary condition for (75) to admit a
positive solution ṗ is : √〈

3

2
s : s

〉

2

− (σY +R(pn + ∆tṗ)) ≥ 0. (76)

(76) is the prediction of the RVP model for the effective yield criterion of the matrix. Not sur-
prisingly, it is based on the second moment of the stress field in the matrix, a result which is
reminiscent of the role played by second moments in the variational method for composites with a
single potential (Ponte Castañeda and Suquet, 1998, recalled in section 2).

5.5.2. Prediction-correction algorithm

At time tn+1, the first and second moment in the matrix of the stress field σn at time tn , and
the accumulated plastic strain pn at time tn are known. An increment ε̇ is applied. Then:

1. Elastic prediction: First set η
(2)
0 = +∞ in (72) and compute the elastic stress field σtrial

(or more specifically the statistics of this field) and the corresponding unknown htrial solving
simultaneously (47) and (74).

4To simplify notations, the superscript (2) referring to the matrix will be omitted from now on for h, ṗ, η, σY ,
wst and m since they only exist in the matrix phase, the inclusions being purely elastic

21



2. Check whether this trial field σtrial satisfies the yield criterion (77):

if

√〈
3

2
strial : strial

〉

2

− (σY +R(pn)) < 0 then ṗ = 0,

if

√〈
3

2
strial : strial

〉

2

− (σY +R(pn)) ≥ 0 then ṗ ≥ 0.





(77)

3. If the criterion (77) is satisfied (first inequality), then set σ = σtrial and h = htrial and
proceed to the next time step.

4. If the criterion (77) is violated (second inequality), solve (47), (74) and (75) for σ, h and

η
(2)
0 . The first and second moments of the stress field in the LCC are obtained using the

relations given in section (5.2.6)

Comments:

1. The same algorithm can be used for the determination of h(r) in phases which are purely
elastic, in which case only the first step of the algorithm is required (solving simultaneously
(47) and (74)).

2. As already noticed, when the composite microstructure is such that the stress field has

fluctuations in a given phase, the elastic modulus L
(r)
0 in the LCC may differ from the elastic

modulus L(r) of this phase even when this phase is purely elastic. The elastic modulus L
(r)
0

and eigenstress σ
(r)
n have to be determined.

5.6. Comparison with full-field simulations

The accuracy of the model is assessed by comparison with full-field simulations. In order to
impose truly non-radial loading conditions these full-field simulations are performed on a three-
dimensional unit-cell. The loading conditions correspond to a tension-torsion experiment, except
that they are applied through a strain-controlled procedure. The applied macroscopic strain tensor
ε is the combination of an isochoric extension ε33(t) in the axial direction and of equal shears ε13(t)
along the two coordinate planes parallel to the axial direction:

ε(t) = ε33(t)

(
−1

2
e1 ⊗ e1 −

1

2
e2 ⊗ e2 + e3 ⊗ e3

)
+ε13(t) (e1 ⊗ e3 + e3 ⊗ e1 + e2 ⊗ e3 + e3 ⊗ e2) .

(78)
Applying this loading requires a truly three-dimensional analysis. A computational method based
on Fast Fourier Transforms, originally proposed by Moulinec and Suquet (1998) and implemented
in the freeware CRAFT (a software freely available at http://craft.lma.cnrs-mrs.fr) was used for
this analysis. The FFT method compares favorably with the Finite Element Method for unit-cell
calculations involving periodicity conditions (Prakash and Lebensohn, 2009). The microstructure
(shown in figure 1) contains monodisperse spherical inclusions with volume fraction c(1) = 0.17,
randomly distributed in a surrounding matrix and is discretized into a regular array of 256×256×
256 Fourier points. A relatively large number of inclusions (50) was chosen to approach isotropy
as closely as possible. This unit-cell is subjected to three different loading programs. First a
strain-controlled experiment with a purely isochoric macroscopic strain is applied following a radial
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Figure 1: Three-dimensional microstructure containing 50 spherical inclusions randomly distributed in the sur-
rounding matrix.

direction in strain space, but with a periodic change in the sign of the macroscopic strain-rate (see
figure 2 (a)):

ε13(t) = 0 for all t,

ε̇33(t) = ε̇0 when 0 ≤ t ≤ T0, ε̇33(t) = −ε̇0 when T0 ≤ t ≤ 3T0, ε̇33(t) = ε̇0 when 3T0 ≤ t ≤ 5T0, etc...

}

(79)
The axial strain ε33 is non monotonic and varies between ε0 = ε̇0T0 and −ε0 and vice-versa.

t

ε33
ε13

(a)

t

ε33
ε13

(b)

t

ε33
ε13

(c)

Figure 2: Particulate composites. Three different loading histories: ε33(t) macroscopic axial strain, ε13(t)
macroscopic shear strain. (a): Program 1: radial loading-unloading in strain space. (b) and (c): two
different non-radial paths in strain space (programs 2 and 3 respectively).

In the second and third loading conditions, the components ε33(t) and ε13(t) are specified
independently (following two different time histories shown in figure 2 (b) and (c)) and can be
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interpreted as follows. In the second loading program (figures 2b and 4a, the axial strain is applied
first at constant strain-rate with no applied shear, then, when the axial deformation reaches ε0,
a shear deformation is applied while the axial strain is kept constant. Then the axial strain is
decreased to 0 while the shear strain is kept constant. Finally the shear strain is decreased to 0.

In the third loading program (figure 2c and 5a), the axial strain is increased linearly (while
no shear strain is applied) and the specimen enters the plastic regime. Then the axial strain is
reduced until the axial stress vanishes, resulting in an elastic unloading of the specimen. Then a
shear strain (with a constant axial strain) is applied from this macroscopically elastic state and
the specimen enters again the plastic regime.

These loading histories involve a rotation of the principal axes of the macroscopic strain and
therefore a rotation of the principal axes of macroscopic stress (since the composite has overall
isotropy). In program 2 the axes rotate in the plastic regime while they rotate in the elastic regime
in program 3.

The predictions of the RVP model are compared with the full-field simulations for these 3
loading programs and for 3 different matrices, elastic ideally-plastic, elastic-plastic with isotropic
hardening, elastic viscoplastic (rate-sensitive material beyond a threshold). In addition to the RVP
model, the predictions of a simplified model, referred to as RVP1st, are also shown. This model

corresponds to the same constitutive relations (67) for the LCC, except that σ
(2)
n is computed as

the first moment of σn(x) over the matrix consequently L
(2)
0 is equal to L(2) (see section 2 for

a presentation of this simplification). The viscosity η
(2)
0 in the matrix is derived using equation

(66) making use of the second moments of the stress field in each phase (this a feature of the

RVP procedure). But the approximation on σ
(2)
n being a first moment approximation the model is

referred to as RVP1st, 1st standing for the first moment approximation. In the RVP1st model the

stress fluctuations within the matrix are not taken into account in the evaluation of L
(2)
0 (although

they do exist, see figure 3 d). This simplification leads to h = 0 in the matrix (or equivalently

θ = 1) in (71) and σ
(2)
n = 〈σn〉2.

5.6.1. Ideally-plastic matrix

First the matrix is elastic ideally-plastic with elastic properties (70) and yield stress:

σ
(2)
Y = 100 MPa. (80)

The particles are elastic with elastic properties (69).
The full-field simulations and the two models are compared in figure 3 (solid line for the RVP

model, dotted line for RVP1st and symbols for the full-field simulations considered as reference).

Four plots are shown for the overall stress σ33, the average stress in the inclusions σ
(1)
33 and in the

matrix σ
(2)
33 and the second invariant of the stress fluctuations in the matrix. These plots call for

the following comments.

1. The RVP model slightly overestimates the overall stress, with a maximum error of about 5
%. The error is essentially due to the approximation of the plastic dissipation potential σY ε̇

p
eq

by a quadratic and isotropic potential η0ε̇
p : ε̇p. The overall stress at the plateau coincides

with the prediction of Ponte Castañeda’s variational procedure for a single potential (plastic
potential) which is known to be a rigorous upper bound and which is stiffer than more
accurate second-order procedures (see Idiart et al., 2006a, for instance).
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2. The RVP1st model underestimates this asymptotic stress with a maximum error of 5 %. This
error is a combination of two factors, the approximation of the plastic potential σY ε̇

p
eq (over-

estimate) and the approximation of the stress at the previous time step (underestimate) cor-
responding to σn : (ε̇− ε̇p) in the rate-potential. There is a partial error compensation, since
in the linear viscoelastic case (reported in a companion paper Lahellec and Suquet, 2012),
where there is no approximation on the dissipation potential, the approximation RVP1st
systematically underestimates the overall response.

3. The RVP model is able to capture the Bauschinger effect observed upon unloading of the
composite which corresponds to a plastification in the re-loading phase for a stress which
is, in absolute value, less than the stress from which the volume element was unloaded.
The RVP1st model and most models in the literature are unable to capture this apparent
kinematic hardening at the macroscopic scale.

4. Both models (RVP and RVP1st) estimate accurately the average stress in the matrix with
a maximal error which is less than 5 %. By contrast, the average stress in the inclusions is
less accurately reproduced, especially with the RVP1st model.

5. The stress fluctuations in the matrix predicted by the RVP model show the same trends
as those obtained by full-field simulations, with a maximal difference of about 30 %. The
fluctuations predicted by RVP1st are much more inaccurate with an error which can be as
large as 90 %.

6. In terms of CPU time, the RVP model is obviously much faster than the full-field simulations.
The simulation shown in figure 3 takes 120 s with the RVP model (using Mathematica on a
single CPU) whereas the full-field simulation takes 13h (elapsed time) on a cluster with 40
CPU’s.

5.6.2. Elasto-plastic matrix with isotropic hardening

The second matrix is also rate-independent but exhibits isotropic hardening characterized by
a power-law relation

σeq = σ
(2)
Y + βpγ . (81)

The stored energy function is in the form wst(p) = 1
γ+1βp

γ+1. The example below corresponds to
the data

σ
(2)
Y = 100 MPa, β(2) = 100 Mpa, γ(2) = 0.4. (82)

The predictions of the different models are shown in figures 6, 7 and 8 for the three different loading
programs described in figure 2. The observed trends are similar to those of the ideally-plastic matrix
(except for the asymptotic stress which no longer exists): the overall stress is accurately predicted
by the RVP model (slightly overestimated by 2 %), and in particular the Bauschinger effect upon
unloading is correctly captured, the statistics of the stress field in the inclusions (first moment)
and in the matrix (first moment and fluctuations) are correctly predicted. The predictions of the
RVP1st are less accurate (no Bauschinger effect, significant discrepancy on the stress fluctuations).
A difference with the ideally-plastic matrix in the approximation made by the RVP model is that,
when the matrix exhibits hardening, the actual accumulated plastic strain field is nonuniform.
Therefore the stress threshold, σY + R(p) in (1), varies from point to point in a given phase (the
matrix here). However, it was found that when the RVP model is adopted, ṗ and therefore p is
uniform in each phase (see equation (59)). The problem is therefore simplified since the threshold
is again uniform in each phase (as in the ideally-plastic case where it does not depend on p), but
of course it is only an approximation.
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Figure 3: Particulate composite. Elastic ideally-plastic matrix. Radial loading-unloading (program 1).
Comparison between the RVP model (solid line), the simplified model RVP1st (dotted line) and full-field
simulations (symbols). (a) Macroscopic axial stress. (b) Average stress in the matrix. (c) Average stress
in the inclusions. (d) Stress fluctuations in the matrix.
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Figure 4: Particulate composite. Non-radial loading (program 2, figure 2 b). Elastic ideally-plastic matrix.
Comparison between the RVP model (solid line) and full-field simulations (symbols). (a) Prescribed path
in strain space. (b) Resulting path in stress space. (c) Macroscopic axial stress. (d) Macroscopic shear
stress.
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Figure 5: Particulate composite. Non-radial loading (program 3, figure 2 c). Elastic ideally-plastic matrix.
Comparison between the RVP model (solid line) and full-field simulations (symbols). (a) Prescribed path
in strain space. (b) Resulting path in stress space. (c) Macroscopic axial stress. (d) Macroscopic shear
stress.
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Figure 6: Particulate composite. Rate-independent matrix with isotropic hardening. Radial loading-
unloading (program 1). Comparison between the RVP model (solid line), the simplified model RVP1st
(dotted line) and full-field simulations (symbols). (a) Macroscopic stress in the tensile direction. (b)
Average stress in the matrix. (c) Average stress in the inclusions. (d) Stress fluctuations in the matrix.
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Figure 7: Particulate composite. Non-radial loading (program 2, figure 2 b). Rate-independent matrix with
isotropic hardening. Comparison between the RVP model (solid line) and full-field simulations (symbols).
(a) Macroscopic axial stress. (b) Macroscopic shear stress.
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Figure 8: Particulate composite. Non-radial loading (program 3, figure 2 c). Rate-independent matrix with
isotropic hardening. Comparison between the RVP model (solid line) and full-field simulations (symbols).
(a) Macroscopic axial stress. (b) Macroscopic shear stress.
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5.6.3. Rate-dependent matrix

The third matrix is rate-dependent beyond a threshold (without hardening) and with material
parameters (in addition to (80)):

η(2) = 100 Mpa, ε̇
(2)
0 = 1 s−1, m(2) = 0.3. (83)

Monotonic loading tests at different strain-rates have been performed and the predictions of the

σ
33

(M
P
a)

ε33

ε̇33 = 12 103 s−1

ε̇33 = 12 102 s−1

ε̇33 = 12 101 s−1

ε̇33 = 12 100 s−1

ε̇33 = 12 10−2 s−1

ε̇33 = 12 10−3 s−1

Figure 9: Particulate composites. Rate-dependent matrix. Monotonic loading at different strain-rates.

model are compared with full-field simulations in figure 9. The overall stress, as well as the rate-
sensitivity, is well-reproduced by the model. Then, a typical loading-unloading cycle was performed
at an overall strain-rate ε̇33 = ±6. 10−2 s−1. The predictions of the model are compared with full-
field simulations in figure 10. Again the agreement between the model and the reference results for
the overall response of the composite and the first and second moments of the stress field is seen
to be reasonably good.

5.7. Comparison with data from the literature (dual-phase materials and metal-matrix composites)

The predictions of the RVP and RVP1st models are compared in the present section with other
results in the literature. Brassart et al. (2010); Brassart (2011) have performed FEM simulations
of the response of a three-dimensional volume element containing 30 spherical inclusions randomly
distributed in the surrounding matrix.

The material data correspond to a dual-phase steel (ferrite-martensite) in Brassart et al. (2010),
and to an aluminum matrix reinforced by SiC particles in Brassart (2011). In both cases the
inclusions are linear elastic and the matrix is elasto-plastic with a power law isotropic hardening
(81). The unit-cell is subjected to a tensile test where the overall stress is imposed in the form

σ(t) = σ33(t)e3 ⊗ e3.
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Figure 10: Particulate composite. Rate-dependent matrix. Radial loading-unloading. Comparison between
the RVP model (solid line), the simplified model RVP1st (dotted line) and full-field simulations (symbols).
(a) Macroscopic stress in the axial direction. (b) Average stress in the matrix. (c) Average stress in the
inclusions. (d) Stress fluctuations in the matrix.
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The dual-phase steel is composed of a ferritic matrix reinforced by martensitic inclusions (with a
volume fraction ranging from 0.05 to 0.35). The material data are (Brassart et al., 2010):

inclusions (martensite) : E(1) = 200 GPa, ν(1) = 0.3,

matrix (ferrite) : E(2) = 200 GPa, ν(2) = 0.3, σ
(2)
Y = 300 MPa,

β(2) = 1130 MPa, γ(2) = 0.31.

The material data for the Al-SiC metal-matrix composite are (Brassart, 2011) :

inclusions (Sic) : E(1) = 400 GPa, ν(1) = 0.2, c(1) = 0.25

matrix (Al) : E(2) = 75 GPa, ν(2) = 0.3, σ
(2)
Y = 75 MPa,

β(2) = 400 MPa, γ(2) = 0.4 or 0.05.

The predictions of the two models RVP and RVP1st are compared with the full field simulations
of Brassart et al. (2010) and Brassart (2011) in figures 11 and 12. The same trends as in section
5.6.2 are observed showing the improvement brought by the RVP model over the RVP1st model. It
can be further noticed that the accuracy of the RVP model is satisfactory at all volume fractions of
the inclusion phase. The Bauschinger effect, characterized by a different yield stress in tension in
compression after unloading the specimen, is captured by the RVP model with a good agreement
except at high volume fraction of inclusions. By contrast the prediction of the Bauschinger effect
with the RVP1st model is rather poor.

6. Isotropic and kinematic hardening

This section is devoted to the general case of elasto-(visco)plastic constituents with isotropic
and kinematic hardening. The associated rate-potential is given in (20).

6.1. Linear comparison potential

Given the reasonably accurate results obtained with the potential (34) in the case of isotropic
hardening only, a natural choice for the potential in phase r of the comparison composite is:

D0 (ε̇, α̇,Λ) = ∆t
2

[
(ε̇− ε̇p) : L0

(r) : (ε̇− ε̇p) + ε̇p : H
(r)

0 : ε̇p
]

+
1

∆t

(
w

(r)
st (pn + ∆tṗ)− w(r)

st (pn)
)

+ σ(r)
n : (ε̇− ε̇p) +X(r)

n : ε̇p

+
η(r)ε̇0
m+ 1

(
ṗ
ε̇0

)m+1

+ Λ(ṗ−ε̇peq) + η
(r)
0 ε̇p : ε̇p,





(84)

where L
(r)
0 , H

(r)

0 , σ
(r)
n , X(r)

n and η
(r)
0 have to be determined. The very same procedure as in section

5.2 can be followed. However, in order to avoid lengthy calculations, the details are omitted here.
The conclusion is that the application of the rate-variational principle leads to a systems of 4

equations (in each individual phase) for the four unknowns L
(r)
0 , H

(r)

0 , σ
(r)
n and X(r)

n which can
be expressed in terms of the first and second moments of the stress and back-stress at time tn and
of the stress field in a thermoelastic comparison composite:

〈σn〉r = 〈σ̂n〉r, 〈σn ⊗ σn〉r = 〈σ̂n ⊗ σ̂n〉r,

〈Xn〉r =
〈
X̂n

〉
r
, 〈Xn ⊗Xn〉r =

〈
X̂n ⊗ X̂n

〉
r
,
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Figure 11: Dual-phase steel. Comparison of the effective response (macroscopic tensile stress normalized

by the matrix yield stress σ
(2)
Y ) predicted by the RVP model (solid line) and the simplified model RVP1st

(dotted line) with FEM full-field simulations (symbols) from Brassart et al. (2010).
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Figure 12: Metal matrix composite. Comparison of the effective response (macroscopic tensile stress nor-

malized by the matrix yield stress σ
(2)
Y ) predicted by the RVP model (solid line) and the simplified model

RVP1st (dotted line) with full-field simulations (symbols) from Brassart (2011).

where

σ̂n(x) =H(r)
σ σ(x) + (I −H(r)

σ ) : σ
(r)
n , H(r)

σ = I −L(r) : (L
(r)
0 )−1,

X̂n(x) =H(r)
X X(x) + (I −H(r)

X ) : X(r)
n , H(r)

X = K −H(r) : (H
(r)
0 )−1,



 (86)

σ is the stress field in the thermoelastic composite, solution of the linear local problem

σ = L(r)
0 : ε̇+ τ

(r)
0 , div σ = 0, 〈ε̇〉 = ε̇, (87)

with

L(r)
0 = ∆tL

(r)
0 −∆tL

(r)
0 : K :

(
∆tL

(r)
0 + ∆tH

(r)
0 + 2η

(r)
0 K

)−1

: K : ∆tL
(r)
0 ,

τ
(r)
0 =

(
∆tL

(r)
0 + ∆tH

(r)
0 + 2η

(r)
0 K

)−1

: K : ∆tL
(r)
0 :

(
−σ(r)

n +X(r)
n

)
+ σ(r)

n ,

f0(x) = −1

2

(
σ(r)
n −X

(r)
n

)
: K :

(
∆tL

(r)
0 + ∆tH

(r)
0 + 2η

(r)
0 K

)−1

: K :
(
σ(r)
n −X

(r)
n

)
+ g(Λ(x)),





(88)
where g is given by (46). X and ε̇p are related with σ through

X =
(

∆tH
(r)
0 + 2η

(r)
0 K

)−1

:
(

∆tH
(r)
0 : s+ 2η

(r)
0 X(r)

n

)
. (89)

and
2η

(r)
0 ε̇p = s−X, (90)

The stationarity condition with respect to η
(r)
0 leads to the same equations (58) and (59) as in the

case of isotropic hardening only.
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6.2. Interpretation of the LCC

As in section 5.3 the model resulting from the RVP procedure can receive a simple interpreta-
tion. The stationarity conditions attached to the procedure allow to show that the LCC is a linear
viscoelastic composite with constitutive relations in each individual phase r reading as:

ε̇ = M
(r)
0 :

(
σ − σ(r)

n

∆t

)
+ ε̇p, ε̇p =

3

2
ṗ(r) s−X

σ −X
(r)

eq

,

ṗ(r) = ε̇0




[
σ −X

(r)

eq − σ
(r)
Y −R(r)(p(r))

]+

η(r)




n(r)

.





(91)

Again the analogy with (1) is clear.

6.2.1. Fields statistics

The equations (85) require the field statistics (first and second moments or fluctuations per
phase) of the stress and back-stress fields σ and X in the LCC. The first and second moments of
σ and X are obtained by means of (87) and (89) from the first and second moment of ε̇, which
are obtained by application of the general results of section 5.2.6.

6.3. Example: two-phase particulate composite

The composites considered in this section have the same microstructure as in section 5.5, the
inclusions are purely elastic and the matrix is elasto-plastic or elasto-viscoplastic with isotropic
and kinematic hardening. The Hashin-Sthrikman lower bound is used to estimate the effective
properties of the LCC. The elastic properties of the phases are given by (69) and (70), the (linear)
kinematic hardening in the matrix is defined with the help of a single scalar parameter:

H(2) = H(2)K,

and the isotropic hardening follows the power-law relation (81).

6.4. Linear comparison composite

As in section 5.5, there is no field fluctuations in the inclusions (because of the use of the
Hashin-Sthrikman lower bound), and the elastic moduli are unchanged in the inclusions

L0
(1) = L(1), σ(1)

n = 〈σn〉1,

and therefore L(1)
0 = L(1) and τ

(1)
0 = 〈σn〉1.

Similarly, a simple relation is assumed between the initial moduli L(2) and H(2) and the same
moduli in the LCC:

L0
(2) = θ

(2)
σ L(2), and H

(2)
0 = θ

(2)
X H(2), (92)
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where θ
(2)
σ and θ

(2)
X are two unknown scalars. With this choice, the tensors L(2)

0 and τ
(2)
0 in the

matrix of the LCC read as :

L(2)
0 = 3∆tθ(2)

σ k(2)J + 2∆tµ(2)θ(2)
σ a(2)K, τ

(2)
0 =

(
a(2)K + J

)
: σ(2)

n + b(2)X(2)
n ,

a(2) =
2η

(2)
H

2∆tµ(2)θ(2)
σ + 2η

(2)
H

, b(2) =
2∆tµ(2)θ(2)

σ

2∆tµ(2)θ(2)
σ + 2η

(2)
H

, η
(2)
H = η

(2)
0 +

∆t

2
θ

(2)
X H(2).





(93)

The matrix in the LCC is specified via the five unknowns (θ
(2)
σ , σ

(2)
n , θ

(2)
X , X(2)

n , η
(2)
0 ) for the

determination of which five equations are required. Four equations are provided by the relations
(85) for the first and second moments per phase of σ and X. The fifth equation is provided by
equation (52) (together with (59)).

The discussion of these equations is similar to what was done in section 5.5, except for a few
technicalities which are discussed in Appendix B.

The algorithm can be summarized as follows5:

1. Elastic prediction (trial step): Set η0 = +∞ in the matrix of the LCC and solve the nonlinear
problem consisting of the local thermoelastic problem (87) together with the closure equations
(B.1). σtrial and Xtrial denote the stress and back stress fields solution of this problem in
the LCC and htrial

σ is the corresponding parameter hσ. The first and second moments of the
stress and back-stress fields required in (B.1) are obtained from the first and second moments
of the strain-rate field in the LCC, deriving from the general relations of section 5.2.6.

2. Check if the elastic prediction is admissible for the criterion (B.6) in the matrix:





if

√〈
3

2
(strial −Xtrial) : (strial −Xtrial)

〉

2

− (σY +R(pn)) < 0 then ṗ = 0,

if

√〈
3

2
(strial −Xtrial) : (strial −Xtrial)

〉

2

− (σY +R(pn)) ≥ 0 then ṗ ≥ 0.

1. When the yield criterion in the matrix is satisfied, the elastic prediction is the solution of
the problem with ṗ = 0 in the matrix. Update the first and second moments of the fields σn
and Xn and proceed to the next time step tn+2.

2. When the elastic prediction violates the yield criterion of the matrix, the viscosity η0 in the
matrix of the LCC and ṗ are searched as solutions of (B.5). In this equation, the second
moment of s−X is found from the relation (89) and from the second moment of s in the
LCC.

6.5. Comparison with full-field simulations

The predictions of the RVP model are compared in this section with full-field simulations
performed by FEM on the same geometry and loading conditions as in section (5.6) (see figure 1

5From now on, the superscript (2) referring to the matrix will be omitted in the expressions of hσ , hX , η0, p since
these quantities exist only in the matrix.
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and loading conditions (78)). The material data for the phases are:

inclusions (elastic) : µ(1) = 6 GPa, k(1) = 20 GPa,
matrix (elastoplastic) : µ(2) = 3 GPa, k(2) = 10 GPa,

σ
(2)
Y = 100 MPa, H(2) = 200 MPa.

Two other models are also included for comparison to assess the accuracy gained by considering
fluctuations in the stress and back stress fields.

1. RVP1st: In this model the fluctuations in the matrix of both the stress and the back stress
are not taken into account (although they do exist) in the definition of σ

(r)
n and X(r)

n . Under
this approximation, there is no need to solve the nonlinear equations (B.1 b and d) and the

simplification leads to h
(2)
σ = h

(2)
X = 0 in the matrix (or equivalently θ

(2)
σ = θ

(2)
X = 1) and

σ
(2)
n = 〈σn〉2, X(2)

n = 〈Xn〉2.

2. RVPX1st: In this model only the fluctuations of the back stress in the matrix are neglected
(the stress fluctuations are taken into account). Under this approximation, there is no need

to solve the nonlinear equation (B.1 d) and the simplification leads to h
(2)
X = 0 in the matrix

and X(2)
n = 〈Xn〉2.

Different quantities of interest are compared in figures 13 and 14 (solid line for the RVP model,
dotted line for RVP1st, circles for RVPX1st and stars for the full-field simulations). As expected
the predictions of the RVP model are in better agreement with the full-field simulations than those
of the other two models. The RVP1st model, which neglects the field fluctuations in the matrix,
does not capture accurately the Bauschinger effect and the fluctuations of the stress field in the
matrix. The RVPX1st model, accounting for the fluctuations of the stress field but not of the back-
stress X, is close to the RVP model. The overall stress, as well as the average stress per phase,
are in good agreement with the full-field simulation (although not as close as the RVP predictions,
see figure 13). The fluctuations of the stress field in the matrix predicted by the RVPX1st and the
RVP models are of the same order of magnitude, but the profile of these fluctuations as a function
of time is better captured by the RVP model. The average back-stress in the matrix is correctly
predicted by all three models (error less than ±3%), however, the RVP model is the only one to
capture correctly its fluctuations (with an error of about 50%).

7. Discussion and concluding remarks

A variational approach to the effective response of elasto-viscoplastic or elasto-plastic hetero-
geneous materials with isotropic and kinematic hardening has been proposed. Central to this
approach is an incremental variational principle satisfied by the rate of internal variables in single
phases governed by two potentials. Once applied at the level of a representative volume element
composed of different phases, the Euler-Lagrange equations for this variational principle are the
partial differential equations governing, after time discretization, the quasi-static evolution of the
volume element. Then, inspired by the variational method of Ponte Castañeda (1992), the original
potential is compared to a reference potential for a linear comparison composite for which the
variational problem can be solved in closed form. Appropriate choices for the reference potential
lead to approximate models for the exact effective potential. In the present study the evolution of
the plastic strain field is linearized by means of the modified secant method or variational method
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Figure 13: Particulate composites. Matrix with kinematic hardening. Comparison between the RVP model
(solid line), the simplified model RVP1st (dotted line), the simplified model RVPX1st (circles) and full-field
simulations (stars). (a) Macroscopic stress in the tensile direction. (b) Average stress in the matrix. (c)
Average stress in the inclusions. (d) Stress fluctuations in the matrix.
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Figure 14: Particulate composites. Matrix with kinematic hardening. Comparison between the RVP model
(solid line), the simplified model RVP1st (dotted line), the simplified model RVPX1st (circles) and full-
field simulations (stars). (a)Average of the back-stress over the matrix. (b) Back-stress fluctuations in the
matrix

(see Ponte Castañeda and Suquet, 1998) (the extension of this study to other linearization methods
(Ponte Castañeda, 2002a,b), by choosing different reference potentials, is left for future work). The
corresponding accumulated plastic strain field p and the corresponding yield stress are uniform in
each individual phase.

In the present approach, the yield function of each individual phase is nonlocal and can be
described using the second moment of the stress deviator (or the second moment of the difference
between the stress deviator and the back-stress when the phases exhibit kinematic hardening),
which is an improvement on earlier methods based on the first moment (average) of the stress in
each phase (Mercier and Molinari, 2009; Doghri et al., 2010).

When the hardening of the phases is purely isotropic two models are proposed and compared:
the variational model RVP accounting for both the average and the fluctuations of the stress
field σn at the previous time step is more accurate, but requires the resolution of two nonlinear
scalar equations, coupled with the resolution of a linear equilibrium problem for a thermoelastic
composite, which can be solved in closed form (depending on the composite microstructure). The
simplified model RVP1st which accounts only for the average per phase of the field σn requires
only the resolution of one scalar nonlinear equation (coupled with a linear equilibrium problem
for a thermoelastic composite). The accuracy of these models has been assessed for two-phase
composites composed of elastic inclusions dispersed in an elasto-viscoplastic matrix with a yield
stress. The Hashin-Shtrikman estimate has been used to solve the equilibrium problem for the
linear thermoelastic comparison composite and comparisons were made with full-field simulations.
The RVP model captures accurately the effective response of the composite and the resulting
approximation for the yield surface of the composite and its evolution, including the Bauschinger
effect, is quite satisfactory (to the best of our knowledge it is the only model capable of capturing
the Bauschinger effect). The RVP1st model is simpler to implement but is less accurate, especially
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to estimate local quantities such as the intraphase fluctuations of the stress field in the matrix
which can be underestimated by about 90%.

When the phases exhibit both isotropic and kinematic hardening, three models have been
proposed with an increasing complexity. The more complex one, the RVP model, accounts for the
first and second moment of the stress and back-stress σn and Xn at the previous time step. It
requires the resolution of three nonlinear scalar equations coupled with an equilibrium problem
for a linear thermoelastic composite. The second model RVPX1st which accounts for both the
first and the second moments of the stress field σn but only for the first moment of the back
stress Xn requires the resolution of two nonlinear scalar equations coupled with an equilibrium
problem for a linear thermoelastic composite. Finally the RVP1st model which accounts only for
the first moment of the fields σn and Xn and requires only the resolution of a single nonlinear
scalar equation coupled with an equilibrium problem for a linear thermoelastic composite. The
comparisons with full-field simulations show that the RVP and RVPX1st models have a comparable
accuracy, except for the stress fluctuations where the full RVP model is definitely more accurate.
Both models capture correctly the Bauschinger effect and the evolution of the yield surface of the
composite. The RVP1st model is less accurate, it does not capture the Bauschinger effect and
underestimates significantly the stress fluctuations in the matrix.
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non linéaire. C. R. Acad. Sc. Paris IIb 320, 115–122.

Halphen, B., Nguyen, Q., 1975. Sur les matériaux standard généralisés. J. Mécanique 14, 39–63.
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Ponte Castañeda, P., 1992. New variational principles in plasticity and their application to com-
posite materials. J. Mech. Phys. Solids 40, 1757–1788.
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Appendix A. From (11) to (1)

Let us briefly show how the constitutive relations (1) can be retrieved from the dissipation
potential (11). A necessary condition for the dissipation potential ϕ given by (11) to be finite is:

ε̇peq = ṗ, (A.1)

otherwise the supremum over Λ is +∞.The evolution equations (12) for the internal variables read
as:

∂w

∂εp
= −∂ϕΛ

∂ε̇p
,

∂w

∂p
= −∂ϕΛ

∂ṗ
. (A.2)

After due account of the relations (10), the constitutive relations (A.2) read as:

s−X =
2

3
(σY + Λ)

ε̇p

ε̇peq
, −R(p) = η

(
ṗ

ε̇0

)m
− Λ. (A.3)

In order for ϕΛ to be finite and well-defined, ṗ has to be nonnegative. It follows from the second
equation in (A.3) that

Λ = R(p) + η

(
ṗ

ε̇0

)m
≥ R(p) ≥ 0.

From the first equation in (A.3) it is concluded that when ε̇p 6= 0 then σY + Λ = (σ −X)eq. The
combination of these two results shows that in order for ṗ to be different from 0, (σ−X)eq−σY−R(p)
has to be nonnegative (hence the positive part in the expression of ṗ) and ṗ is given by:

ṗ = ε̇0

(
[(σ −X)eq − σY −R(p)]

+

η

)1/m

.

Appendix B. Determination of the optimal LCC for a matrix with isotropic and kine-
matic hardening

This appendix gives details about the determination of the five unknowns h
(2)
σ , σ

(2)
n , h

(2)
X , X(2)

n ,

η
(2)
0 in the LCC when the matrix exhibits isotropic and kinematic hardening. The specific form

taken by equations (85) with the choice (92) is 6:

〈σn〉2 = hσ〈σ〉2 + (1− hσ)σ
(2)
n , (a)

C(2)(σn) ::

(
K

2µ(2)
+

J

3k(2)

)
= h2

σC
(2)(σ) ::

(
K

2µ(2)
+

J

3k(2)

)
, (b)

〈Xn〉2 = hX〈X〉2 + (1− hX)X(2)
n , (c)

C(2)(Xn) :: K = (hX)2C(2)(X) :: K, (d)





(B.1)

6From now on, the superscript (2) referring to the matrix will be omitted in the expressions of hσ , hX , η0, p since
these quantities exist only in the matrix.
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with hσ = 1 − 1/θ
(2)
σ , hX = 1 − 1/θ

(2)
X . The five unknowns enter all these equations through the

thermoelastic properties L
(2)
0 and τ

(2)
0 of the matrix in the LCC.

The unknowns σ
(2)
n and X(2)

n are determined first by the following procedure. According to

(89), the back-stress X in the LCC is related to σ and X(2)
n by:

X =
∆tθXH

(2)

2ηH
s+

η0

ηH
X(2)
n , ηH = η0 +

∆t

2
θXH

(2), (B.2)

and, after averaging over phase 2,

〈X〉2 =
∆tθXH

(2)

2ηH
〈s〉2 +

η0

ηH
X(2)
n . (B.3)

The average stress 〈s〉
2

in the LCC can be expressed by a micromechanical model in terms of τ
(2)
0

and ε̇. Therefore, assuming hσ and hX to be known, the three equations (B.1,a), (B.1,c) and (B.3)

and the localization relation in the LCC provide 4 equations for the 4 unknowns 〈s〉
2
, σ

(2)
n , 〈X〉

2

and X(2)
n . This system is solved by a symbolic computation software.

The unknowns hσ, hX and η0 are now determined as follows. Thanks to relation (B.2), the
fluctuations of X read as:

C(2)(X) :: K =

(
∆tθXH

(2)

2ηH

)2

C(2)(s) :: K,

Relation (B.1,d) leads to:

√
C(2)(Xn) :: K = ±hX

∆tθXH
(2)

2ηH

√
C(2)(s) :: K (B.4)

To the best of our knowledge there is no theoretical argument in favor of one sign or the other in
(B.4). However, in all examples that were considered in the course of the present study, choosing

a plus led to hX < 1 (meaning that the fluctuations C(2)(X) :: K increase with time) whereas

choosing a minus led to hX > 1 (meaning that the fluctuations C(2)(X) :: K decrease with time).
The indeterminacy is therefore removed by assuming that the variations of 〈X〉

2
: 〈X〉

2
and

C(2)(X) :: K are correlated (C(2)(X) :: K increases or decreases when 〈X〉
2

: 〈X〉
2

increases or
decreases).

Making use of the relation (90), the two equations (52) and (59) for η0 and ṗ can be re-written
as :

ṗ =

√
2

3
〈ε̇p : ε̇p〉2 =

1

3η0

√〈
3

2
(s−X) : (s−X)

〉

2

,

√〈
3

2
(s−X) : (s−X)

〉

2

− (σY +R(pn + ∆tṗ)) = η

(
ṗ

ε̇0

)m
.





(B.5)

Finally the three nonlinear equations which are to be solved to determine hσ, hX and η0 are (B.1,b),
(B.4) and (B.5) where ṗ is eliminated between the two equations of B.5.
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In addition, the first equation in (B.5) shows that ṗ ≥ 0. Therefore a necessary condition for
the second equation to admit a solution is:

√〈
3

2
(s−X) : (s−X)

〉

2

− (σY +R(p)) ≥ 0 (B.6)

(B.6) is the nonlocal (approximate) yield criterion for the matrix.

Appendix C. Resolution of (74) and (B.1,b)

Isotropic hardening: The implementation of the RVP model requires the resolution of the

nonlinear equations (74) and (75) coupled with the linear problem (47) for σ, h(2) and η
(2)
0 .

Numerical difficulties are expected in the resolution of equation (74), which can be put in the
form f(h, η0) = 0, since f is a rational fraction with several poles. These poles come from the

expression of σ
(2)
n resulting from (73) and from the expression of 〈σ〉

2
. σ

(2)
n is, again, a rational

fraction with denominator DEN(h, η0).

f
(h
)

f
(1
.0
1
)

h

f
(h
)

f
(1
.0
1
)

h

Figure C.15: Regularization of equation (74). Original function f (solid line) compared with the regularized
function (dotted line) as a function of h, when η0 is the solution. (a) h < 1, (b) h > 1.

In order to avoid the singularities due to the zeros ofDEN in the resolution of (74), this equation
can be regularized by multiplying both sides by DEN(h, η0). The improvement is illustrated in
figure C.15 where the variations with h of f before regularization (solid line) and after regularization
(dotted line) are shown. These variations are shown for η0 solution of the problem, at two different

time steps, the first corresponding to h < 1 , i.e. C(2)(σn) ::

(
K

2µ(2)
+

J

3k(2)

)
< C(2)(σ) ::

(
K

2µ(2)
+

J

3k(2)

)
, and the other one corresponding to h > 1, i.e. C(2)(σn) ::

(
K

2µ(2)
+

J

3k(2)

)
>
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C(2)(σ) ::

(
K

2µ(2)
+

J

3k(2)

)
. The figure also shows that equation (74) has several roots, the choice

made in the present study (which seems to deliver the best results) is to systematically choose the
smallest positive root.

Isotropic and kinematic hardening: The same difficulty arises when the phases exhibit
both isotropic and kinematic hardening in the resolution of the three nonlinear equations (B.1,b),
(B.4) and (B.5). (B.1,b) and (B.4) can be written as f1(hσ, hX , η0) = 0 and f2(hσ, hX , η0) = 0
where f1 and f2 are rational fractions in h. These rational fractions have poles which are also poles

for σ
(2)
n and X(2)

n (which are again rational fractions). f1 and f2 are regularized by multiplying
them by their denominator.
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