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Abstract

The aim of this study is to estimate as accurately as possible the e�ective response, as well as the
statistics of the �elds (�rst and second moments), in elasto-(visco)plastic heterogeneous materials
with isotropic and/or kinematic hardening. After time-discretization, a new incremental variational
principle for the increments in strain and internal variables in materials governed by two potentials
is derived. This variational principle, together with the variational method of Ponte Casta~neda
(1992) is used to introduce a linear comparison composite (LCC) at each time step, approximating
in a variational sense the original problem. The e�ective response of the LCC, as well as the
�rst and second moments of the stress and strain �elds in each phase of the LCC are shown to
provide estimates for the same quantities in the actual nonlinear elasto-(visco)plastic composite.
The accuracy of the model is assessed by comparison with full-�eld simulations. The agreement
is found to be quite satisfactory, in particular the asymmetry between tension and compression
observed in elasto-plastic composites (Bauschinger e�ect) is well reproduced, unlike in other mean-
�eld models. The statistics of the stress and strain �elds, and to a certain extent, that of the
back-stress �eld, are also in good agreement with full-�eld simulations.

Keywords: Homogenization, elasto-plasticity, elasto-viscoplasticity, two-phase composite,
kinematic hardening, isotropic hardening

1. Introduction

This study is devoted to the overall response of nonlinear composites comprised of phases
which, when deformed, have a partly reversible and partly irreversible behavior. This is the case
of most engineering materials including nonlinear viscoelastic materials, where both elastic and
nonlinear viscous e�ects are always present and coupled, and of elasto-viscoplastic or elasto-plastic
constituents, where dissipative e�ects are observed beyond a certain stress threshold. A typical
example of such a coupling between elastic and dissipative deformations is provided by metals at
high temperature which exhibit a rate-dependent elasto-viscoplastic behavior with a combination
of kinematic and isotropic hardening. A commonly used model for describing this behavior at
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in�nitesimal strains reads as (Lemâ�tre and Chaboche, 1988):

_" = M : _� + _" p; _" p =
3
2

_p
s � X

(� � X )eq
;

X = H : " p; _p = _"0

 
[(� � X )eq � � Y � R(p)]+

�

! n

:

9
>>>=

>>>;

(1)

where" is the linearized strain, � is the Cauchy stress ands is the stress deviator,M is the elastic
compliance of the material,X is the back stress, a (traceless) second-order tensor associated with

kinematic hardening, (� � X )eq =
�

3
2 (s � X ) : (s � X )

� 1=2
is the von Mises norm of� � X , p is

the accumulated plastic strain de�ned as

_p = _"p
eq =

�
2
3

_" p : _" p
� 1=2

;

R(p) is a nonnegative scalar parameter associated with isotropic hardening,n is the rate-sensitivity
exponent and [:]+ denotes the Macaulay bracket (positive part of a function):

[f ]+ = 0 if f � 0; [f ]+ = f if f � 0:

Rate-independent plasticity (with isotropic and kinematic hardening) is obtained in the limit as
n tends to + 1 . The aim of this study is to derive e�ective properties of heterogeneous ma-
terials (metal-matrix composites, alloys, polycrystalline aggregates) when one or several of the
constituents obey the constitutive relations (1), or more general ones with a similar structure. The
tools which will be developed apply to a class of constitutive relations which is indeed more general
than (1).

Predicting the e�ective response of heterogeneous materials from the constitutive relations of
the individual phases is a long-standing problem which has attracted a huge body literature. At the
�rst place, the relations between the microstructure of a composite material and its e�ective linear
properties has been extensively studied (see Milton, 2002, for a review). The last two decades have
witnessed an increasing interest innonlinear composites. Most of the recent e�orts in this area have
concentrated on nonlinear behaviors governed by a single potential,i.e. either purely hyperelastic
materials (in which case the potential is the free-energy density), or purely viscous or rigid-plastic
materials (in which case the potential is a dissipation potential). The recent developments in
these theories are based onvariational principles, used in association withlinearization schemes
(to linearize nonlinear constitutive relations) and with linear homogenization schemes. The proper
de�nition of a linear comparison composite, approaching in a speci�c sense the actual nonlinear
composite, has naturally emerged as a central question (Willis, 1989; Ponte Casta~neda, 1991, 1992,
1996; Suquet, 1993). The importance of accounting for higher-order moments in the linearization
schemes has also progressively been evidenced. First, the use of second moments of �elds per
phase, instead of their �rst moments (averages) which was the usual basis of former mean-�eld
approaches, has been proved by variational arguments to improve the predictions of the models
(Ponte Casta~neda, 1991; Suquet, 1995; Ponte Casta~neda and Suquet, 1998; Moulinec and Suquet,
2003). Second, Ponte Casta~neda (2002a) has shown that taking into account both the �rst and
the second moment per phase of the �elds in the de�nition of the linear comparison composite, or
equivalently their average and their intraphase uctuations instead of just one of these quantities,
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leads to more accurate predictions, as con�rmed by several theoretical or computational studies
(Idiart et al., 2006b; Idiart and Ponte Casta~neda, 2007).

By contrast, less e�ort has been directed toward situations where both reversible and irreversible
e�ects are present. When the phases are elasto-plastic, Hill's incremental approach (Hill, 1965)
which reduces the problem to the homogenization of the lineartangent moduli of the phases, is
one of the �rst rational approach to the problem. It was later extended by Hutchinson (1976)
to creeping polycrystals. In the self-consistent vision of a polycrystal, the strain in each grain
is uniform in that grain and no intragranular �eld uctuation is accounted for in this type of
approach. Twenty years after its proposition, the incremental approach was recognized to give
yield predictions which are too sti� and to violate rigorous upper bounds (Gilormini, 1995; Suquet,
1996, for polycrystals and two-phase composite respectively). The Transformation Field Analysis
of Dvorak (1992) is another noteworthy approach based on the resolution of thermoelastic problems
with piecewise uniform transformation eigenstrains. The evolution of each eigenstrain is governed
by the �rst moment of the stress (average stress) in the corresponding phase. It was found that
the TFA's predictions are again too sti� (Suquet, 1997, for instance) due to the use of the initial
elastic operators in the thermoelastic analysis. To soften the predictions of the above models,
Masson and Zaoui (1999) introduced the so-calleda�ne method , which is based on the solution
of a linear viscoelastic problem with eigenstrains. Accounting for the viscous character of the
phases softens the predictions of earlier models based on elastic accommodation. In the a�ne
approach, the eigenstrain used at each time step is estimated by means of the �rst moment of
the �elds in each phase. This method has been used by several authors, Chaboche et al. (2005)
and Doghri et al. (2010) for elasto-viscoplastic phases (with a threshold). However, in order to
obtain satisfactory results, an isotropic approximation of the tangent moduli had to be considered
and this approximation has not yet received a proper theoretical justi�cation. An improvement
was brought in Doghri et al. (2011) by considering the second moment of the stress in the yield
function, but still using the isotropic projection of the tangent operators in the phases. Mercier
et al. (2005); Mercier and Molinari (2009) have proposed an alternative approach based on the
interaction law in an in�nite medium between elastic and viscous strains. This method, which has
been applied to polycrystals and two-phase composites, reproduces the exact result for two-phase
Maxwellian phases (Mercier et al., 2005). In the nonlinear case, these linearization procedures
follow the a�ne method and therefore make use of only the �rst moment of the �elds. This leads
to an overestimate of the overall yield stress when the phases exhibit a threshold between elastic
and viscous e�ects. One objective of the present study is precisely to incorporate higher-order
statistics of the �elds in the analysis.

To this aim, Lahellec and Suquet (2007a,b) have recently proposed a variational approach to
couple elastic and dissipative e�ects in composite materials. This approach applies when these
two aspects of the behavior of materials can be described with two constitutive potentials (within
the class ofstandard generalized materials). The �rst potential is the free-energy density w(" ; � ),
depending on the (in�nitesimal) strain " and on internal variables � describing irreversible phe-
nomena. w is the energy available in the system to trigger its evolution. The second potential is the
dissipation potential ' ( _� ) which describes the evolution of the irreversible mechanisms. Using a
discretization in time of the evolution equations, Lahellec and Suquet have derived anincremental
variational principle governing the state of the composite at the end of a time step, assuming that
the state at the beginning of the time step is known. This variational principle allowed them to
extend to phases governed by two potentials some of the approaches used in nonlinear homoge-
nization for phases governed by a single potential (Lahellec and Suquet, 2007b,c). The method
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has been applied successfully to elasto-viscoplastic phases (without threshold, sometimes called
nonlinear viscoelasticity) subjected to loading-unloading conditions along radial paths. However
limitations of the method have appeared for non radial loading conditions, involving rotation of
the principal axes of the loading.

Brassart et al. (2011, 2012) have proposed another variational method based on the same
incremental potential as Lahellec and Suquet (2007a) but optimized in a di�erent way. This
method has been applied to elasto-viscoplastic phases with a threshold. Its structure is similar to
that of radial return algorithms. The approximation used by these authors in the resolution of the
thermoelastic problem with nonuniform plastic strains amounts to replacing the plastic strain �eld
by its average over the whole volume element. Satisfactory results were obtained for phases with
isotropic hardening, but a dependence to the time step was noticed in the case of ideally-plastic
phases (Brassart et al., 2011).

Of particular relevance to the present study is the Bauschinger e�ect exhibited by heteroge-
neous materials under loading-unloading cycles (Corbin et al., 1996) which manifests itself by an
asymmetric response to loading and unloading: after a loading period the composite is unloaded,
immediately after unloading the response of the composite is elastic but it soon becomes plastic
again for a stress which is much lower (in absolute value) than the stress reached at the end of the
loading regime. This asymmetry (Bauschinger e�ect), suggests the presence of a macroscopic kine-
matic hardening, even when there is no kinematic hardening at the level of the individual phases.
This apparent kinematic hardening at the macroscopic level is a consequence of the nonuniformity
of the microscopic stress �eld in individual phases which, therefore, must be taken into account.
Predicting accurately the Bauschinger e�ect is a di�cult challenge for most micromechanical mod-
els and none of the above mentioned models (Doghri et al., 2010; Brassart et al., 2011; Mercier and
Molinari, 2009, e.g.) has the capability of reproducing it accurately. As will be seen in sections 5
and 6 of the present study, the model proposed here is a step in this direction. This improvement
is mainly due to the fact that the present model is capable of estimating accurately the second
moment of the stress �eld in each individual phase for most common types of hardening of the
individual phases (isotropic and/or kinematic hardening).

The paper is organized as follows. The orientation of the paper is exposed in section 2. A
new incremental variational principle for the rate of internal variables in generalized standard
materials is derived in section 3. This variational principle is used in section 4 in the spirit of
the variational method of Ponte Casta~neda (1992) to de�ne a linear thermoelastic comparison
composite (LCC). The de�nition of this LCC makes use of the �rst and second moments of the
stress �eld in each phase of the LCC. The model is applied in section 5 to phases exhibiting
isotropic hardening only (with a threshold) and in section 6 to constituents with both isotropic and
linear kinematic hardening. Comparison with full-�eld simulations show that the proposed model
captures accurately the e�ective behavior of the composite (including the Bauschinger e�ect). The
statistics of the stress (�rst and second moments) are also accurately predicted.

2. Motivation and orientation

This section aims at motivating the variational principles of section 3. It is intentionally
nontechnical and does not pretend to be fully rigorous.

The problem of �nding the e�ective response of composites with nonlinear elasto-(visco)plastic
constituents has connections with two di�erent classes of problems.
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1. E�ective properties of nonlinear composites governed by one potential.When the elastic
deformations are negligible and when there is no hardening (therefore no stored energy) the con-
stituents are purely viscous. Considering again (1) as a typical example of the situations that we
have in mind, these relations reduce to

_" (x ) =
3
2

_p(x )
s(x )

� eq(x )
; _p(x ) = _"0

0

B
@

h
� eq � � ( r )

Y

i +

� ( r )

1

C
A

n ( r )

in phaser; (2)

where r refers to the r -th phase, whereasx is the position in the phase. The variational method
of Ponte Casta~neda (1992) for predicting the e�ective response of nonlinearly viscous composites
is based on the replacement of the actual nonlinear composite by a linear comparison composite
(LCC) whose properties are de�ned in an optimal way using a variational principle. This substi-
tution has been interpreted by Suquet (1995) as the replacement of the constitutive relations (2)
by:

_" (x ) =
1

2� ( r )
0

s(x ) in phaser;

where the viscosity � ( r )
0 of phaser depends on the second moment�

( r )
eq of the stress �eld in phase

r through:

� ( r )
0 =

1
3

�
( r )
eq

_"0

0

B
@

� ( r )

h
�

( r )
eq � � ( r )

Y

i +

1

C
A

n ( r )

; �
( r )
eq =

s �
3
2

s : s
�

r

; (3)

where h:i r denote spatial averaging over phaser and � is the stress �eld in the LCC. It should
be noted that, although the constitutive relations (2) are local, the constitutive equations (3) are

nonlocal in the sense that the viscosity � ( r )
0 at any point x in phase r depends on�

( r )
eq which is

an integral over the entire phaser and not only on the value of the stress at point x . Another
equivalent writing of (3) highlights this feature:

_" (x ) =
3
2

_p( r ) s(x )

�
( r )
eq

; _p( r ) = _"0

0

B
@

h
�

( r )
eq � � ( r )

Y

i +

� ( r )

1

C
A

n ( r )

in phaser: (4)

Equation (4) has a form which is very similar to (2) except that the multiplier _p( r ) is now uniform

over phaser and de�ned by means of the second moment�
( r )
eq of the stress �eld over the entire

phase.

In the elasto-viscoplastic context considered in this paper, it is expected to arrive at relations
such as (4) for the plastic strain-rate _" p in each phase (instead of the full strain-rate_" ), involving
the second moment of the stress �eld in an appropriately de�ned linear comparison composite.

2. E�ective properties of linear viscoelastic composites. Linear viscoelastic composites ap-
pear naturally in the problem for two reasons. First, they correspond to a particular case of the
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constitutive relations (1) (no hardening, rate-sensitivity exponent n = 1). Second, the lineariza-
tion of elasto-viscoplastic constitutive relations leads naturally to linear viscoelastic composites.
Although the e�ective response of linear viscoelastic composites is relatively well understood, es-
sentially thanks to the Laplace transform which permits to translate the problem for a linear
viscoelastic composite into a problem for a linear elastic composite, the question of determining
the second moments of the stress �eld in the individual phases of a viscoelastic composite has not
yet received a satisfactory answer. Without these second moments, the linearization outlined in
the preceding paragraph cannot be made.

A way around this problem is, instead of using the Laplace transform, to discretize in time the
evolution equations for a viscoelastic composite which read as

_" (x ; t) = M ( r ) : _� (x ; t) + M v( r ) : � (x ; t) in phaser;

where M v( r ) is the viscosity tensor of phaser . After time-discretization, using a backward di�er-
entiation scheme _f (tn +1 ) ' f n +1 � f n

� t (where f n denotesf (tn )), the constitutive equations read
as

_" n +1 (x ) =
�

1
� t

M ( r ) + M v( r )
�

: � n +1 (x ) �
1

� t
M ( r ) : � n (x ) in phaser: (5)

The constitutive relations for a viscoelastic composite correspond, after time-discretization, to
nonclassical thermoelastic problem with piecewise uniform elastic compliance1

� t M ( r ) + M v( r )

but with a nonuniform eigenstrain � 1
� t M ( r ) : � n (x ). Second moments of the stress �eld in such

nonclassical thermoelastic composites are not known. However, when the nonuniform �eld� n (x )
can be approximated by a uniform stress� ( r )

n in each individual phaser , these second moments
are known. The aim of the present work is precisely to approximate (in a variational sense) the
problem (5) by a problem where the eigenstrain is piecewise uniform. A similar problem was
addressed in Lahellec et al. (2011).

In a �rst attempt, the stress �eld � n (x ) can be replaced in each phase by its average over this
phase:

� n (x ) ' � ( r )
n = h� n i r in phaser: (6)

This approximation is a �rst moment approximation. Unfortunately this simple model is rather
inaccurate, as discussed in Lahellec and Suquet (2012) for linear viscoelastic composites and shown
in the sequel for nonlinear elasto-viscoplastic composites. In order to get satisfactory results, it is
indeed necessary to account for the second moment of� n in each phase (in addition to the �rst
moment) in the de�nition of � ( r )

n (Lahellec and Suquet, 2012).

The similarity with the two above problems motivates the orientation of the rest of this paper:

1. First, establish variational principles governing the evolution of nonlinear elasto-viscoplastic
composites.

2. Second, adapt the variational method of Ponte Casta~neda (1992) to these variational princi-
ples, both for the linearization of the constitutive relations and for the approximation of the
stress �eld from the previous time step by a piecewise uniform stress.
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3. Rate Variational Principles for a single constituent

3.1. Individual constituents

The constitutive relations (1) can be formulated in the framework of Generalized Standard
Materials with two convex potentials. The �rst potential is the free-energy density w(" ; � ) which
depends on the (in�nitesimal) strain " and on internal variables � describing irreversible phenom-
ena. The stress� and the driving forces A triggering the evolution of the internal variables �
derive from the free-energy density:

� =
@w
@"

(" ; � ); A = �
@w
@�

(" ; � ): (7)

Then the evolution of the internal variables � is governed by the driving forces according to

A =
@'
@_�

( _� ); or equivalently _� =
@'�

@A
(A ); (8)

where the dissipation potential ' ( _� ) is the second potential de�ning the model and ' � is its
Legendre transform. When the two potentials w and ' are convex functions of their arguments
(" ; � ) and _� respectively, the material governed by (7) and (8) is said to be ageneralized standard
material (Halphen and Nguyen, 1975; Germain et al., 1983).

In the model (1), the internal variables are � = ( " p; p). The free-energyw is the sum of two
terms, the elastic energy (recoverable under unloading) and the energy stored in the hardening of
the material which itself consists of two contributions due to isotropic and kinematic hardening
respectively:

w(" ; � ) =
1
2

(" � " p) : L : (" � " p) + wst (p) +
1
2

" p : H : " p; (9)

where

wst (p) =
Z p

0
R(q)dq:

The driving forces associated with" p and p read respectively:

�
@w
@" p (" ; � ) = L : (" � " p) � H : " p = � � X

�
@w
@p

(" ; � ) = �
@wst

@p
(p) = � R(p):

9
>>=

>>;
(10)

Finally the evolution equations for " p and p in (1) derive from the dissipation potential:

' ( _� ) = � Y _"p
eq +

� _"0

m + 1

�
_"p
eq

_"0

� m +1

+ I f _p = _"p
eqg

( _� );

where m = 1=n, _"p
eq =

q
2
3 _" p : _" p and I is the indicator function enforcing the constraint _p = _"p

eq:

I f _p = _"p
eqg

( _� ) =
�

0 if _p = _"p
eq� 0;

+ 1 otherwise:
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The indicator function I , and therefore ' , are not di�erentiable but are convex functions1. An
alternative expression forI will be useful. Introducing a Lagrange multiplier �, we note that

I f _p = _"p
eqg

( _� ) = Sup
�

f �( _p � _"p
eq)g;

and the following alternative expression for' is obtained:

' ( _� ) = Sup
�

' � ( _� ); ' � ( _� ) = � Y _"p
eq +

� _"0

m + 1

�
_p
_"0

� m +1

+ �( _"p
eq � _p): (11)

As a check, a derivation of the constitutive equations (1) from the potential (11) is given in
Appendix A.

3.2. Rate-potential

Upon elimination of A between (7) and (8), the constitutive relations of the materials un-
der consideration can be re-written as a system of two coupled equations, one of them being a
di�erential equation in time :

� =
@w
@"

(" ; � );
@w
@�

(" ; � ) +
@'
@_�

( _� ) = 0 : (12)

The time derivative _� in (12) can be approximated by a di�erence quotient after use of an implicit
(backward) Euler-scheme known for its stability and consistence. The time interval of study [0; T]
is discretized into time intervals t0 = 0 ; t1; ::::; tn ; tn +1 ; :::; tN = T. For simplicity the time step
tn +1 � tn is denoted by � t (its dependence onn is omitted for simplicity) and the value f (tn ) of a
function f evaluated at time tn is denoted by f n . Assuming that (" n ; � n ) are known at time tn ,
the time-discretization procedure applied to (12) leads to the discretized system for the unknowns
(" n +1 ; � n +1 ) :

� n +1 =
@w
@"

(" n +1 ; � n +1 );
@w
@�

(" n +1 ; � n +1 ) +
@'
@_�

( _� ) = 0 : (13)

where
_� =

� n +1 � � n

� t
: (14)

Lahellec and Suquet (2007b) have developed a variational principle for (" n +1 ; � n +1 ) at the end of
the time step. Here we develop a variational principle for the rates (_" ; _� ) between tn and tn +1 .
Consistent with the backward scheme (14), the following relations are used in (13):

" n +1 = " n + � t _" ; � n +1 = � n + � t _� ;

leading to the following two equations for (_" ; _� )

� n +1 =
@w
@"

(" n + � t _" ; � n + � t _� );
@w
@�

(" n + � t _" ; � n + � t _� ) +
@'
@_�

( _� ) = 0 : (15)

1 In full rigor, the �rst equation in (8) is to be understood in the sense of subdi�erentials.
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Introducing the rate-potential D, function of the two variables _" ; _�

D( _" ; _� ) =
1

� t
[w(" n + � t _" ; � n + � t _� ) � w(" n ; � n )] + ' ( _� ) ;

it is readily seen that:

@D
@_"

( _" ; _� ) =
@w
@"

(" n + � t _" ; � n + � t _� ) = � n +1 ;

@D
@_�

( _" ; _� ) =
@w
@�

(" n + � t _" ; � n + � t _� ) +
@'
@_�

( _� ) = 0 :

9
>=

>;

Therefore the second equation in (15) is the Euler-Lagrange equation for the variational problem :

Inf
_�

D( _" ; _� ):

De�ning the condensed rate-potentialas

d( _" ) = Inf
_�

D( _" ; _� ); (16)

we obtain the following remarkable result which gives the stress as the derivative of a single potential
with respect to the strain-rate :

� n +1 =
@d
@_"

( _" ): (17)

The proof of relation (17) relies classically on the stationarity of D with respect to _� :

@d
@_"

( _" ) =
@D
@_"

( _" ; _� ) +
@D
@_�

( _" ; _� ) :
@_�
@_"

; (18)

where _� ( _" ) denotes the solution of the in�mum problem in (16). The last term in (18) vanishes
by virtue of the stationarity of D with respect to _� , and we are left with :

@d
@_"

( _" ) =
@D
@_"

( _" ; _� ) = � n +1 : (19)

Remark 1. Under the assumption that w and ' are convex functions of their arguments, the rate-
potential D is a convex function of (_" ; _� ) and the condensed incremental potentiald is a convex
function of _" . The latter property follows from a general result given in Ekeland and Temam (1976)
and already used in Lahellec and Suquet (2007b).

3.3. Rate-potential for elasto-(visco)plastic constituents
With the de�nitions (9) and (11), the rate-potential D for the constitutive model (1) reads as:

D ( _" ; _� ) = Sup
�

D ( _" ; _� ; �) ;

D ( _" ; _� ; �) =
� t
2

[( _" � _" p) : L : ( _" � _" p) + _" p : H : _" p] +
1

� t
[wst (pn + � t _p) � wst (pn )]

+ � n : ( _" � _" p) + X n : _" p + � Y _"p
eq +

� _"0

m + 1

�
_p
_"0

� m +1

+ �( _p � _"p
eq ):

9
>>=

>>;
(20)
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4. Composite materials

A representative volume element (r.v.e.) V of the composite is composed ofN phases occupying
domains V ( r ) with characteristic functions � ( r ) and volume fraction c( r ) . Each individual phase is
governed by the di�erential equations (12) with potentials w( r ) and ' ( r ) . The free-energyw and
the dissipation potential ' at position x are given by:

w(x ; " ; � ) =
NX

r =1

� ( r ) (x )w( r ) (" ; � ); ' (x ; _� ) =
NX

r =1

� ( r ) (x )' ( r ) ( _� ): (21)

The r.v.e. V is subjected to a path of macroscopic strain2 " (t) and the local problem which is solved
by the local �elds � (x ; t), " (x ; t) and � (x ; t) consisting in the constitutive relations, equilibrium
and compatibility conditions and imposed loading path, reads as :

� =
@w
@"

(" ; � );
@w
@�

(" ; � ) +
@'
@_�

( _� ) = 0 ; div � = 0 ; h" (t)i = " (t); (22)

complemented, as usual, by appropriate boundary conditions on@V(uniform stress, uniform strain
or periodicity conditions are the most common types of B.C. used in practice). For de�niteness,
it is implicitly assumed in the sequel that periodicity conditions are imposed on the boundary of
V . All �elds � ; " ; � depend onx and t. Spatial averaging overV and V ( r ) are denoted byh:i and
h:i r respectively.

The homogenized or e�ective responseof the composite along the path of prescribed strain
f " (t); t 2 [0; T]g is the history of average stressf � (t); t 2 [0; T]g where � (t) = h� (x ; t)i .

4.1. E�ective rate-potential
Upon discretization of the time interval [0; T], the local problem (22) can be written with the

help of (17) as :

� n +1 =
@d
@_"

( _" ); div � n +1 = 0 ; h_" i = _" ; (23)

where _" = ( " n +1 � " n )=� t, and where the rate-potentialsd and D read as :

D( _" ; _� ; x ) =
NX

r =1

D ( r ) ( _" ; _� ; x )� ( r ) (x ); d( _" ; x ) = Inf
_�

D( _" ; _� ; x ); (24)

D ( r ) ( _" ; _� ; x ) =
1

� t

h
w( r ) (" n (x ) + � t _" ; � n (x ) + � t _� ) � w( r ) (" n (x ); � n (x ))

i
+ ' ( r ) ( _� ) (25)

The average stress� n +1 = h� n +1 i satis�es :

� n +1 =
@~d

@_"

�
_"
�

; (26)

where
~d
�

_"
�

= Inf
h_" i = _"

hd( _" )i = Inf
h_" i = _"

D
Inf

_�
D( _" ; _� )

E
: (27)

2 Imposing a stress-controlled path requires only small modi�cations of the present procedure.
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The proof of (26) proceeds classically by using the stationarity ofD with respect to _� and Hill's
lemma.

The homogenization of the evolution problem (22) is therefore reduced to the variational prob-
lem (27). The latter problem amounts to �nding the e�ective potential ~d of a composite material
with a single potential d. However, two important features of this potential, making the problem
slightly more general than the problems usually addressed with the one-potential homogenization
approaches, are worth noting :

1. The condensed potentiald is not explicitly known and is certainly nonquadratic in general
(except whenw and ' are both quadratic).

2. The condensed potentiald depends onx not only through the characteristic functions � ( r ) (x )
but also through the �elds " n (x ) and � n (x ). In other words d( _" ) cannot be put under the
familiar form (21) of a function of _" depending only on the constituent.

The �rst point makes the variational problem (27) strongly reminiscent of the problem of nonlinear
composites composed ofN di�erent phases governed by a single potential. However the second
point shows that the problem at hand is more complicated than the latter one. Even the full
rate-potential d does not depend only on the phaser but also depends on" n (x ) and � n (x ) which
may have strong uctuations, even within each single phase.

4.2. Linear comparison composite

The idea of the method, inspired from the variational method of Ponte Casta~neda (1992), is
to replace the variational problem (26) by a simpler one for a potential d0 which remains to be
speci�ed, and estimate the error made in this substitution. Since the exact expression of the
condensed potentiald is not known, it is easier to do this substitution on the full incremental
potential D. D is written as:

D( _" ; _� ) = D0( _" ; _� ) + ( D � D 0)( _" ; _� ); (28)

whereD0( _" ; _� ) is the rate-potential for a (�ctitious) comparison composite which will be chosen in
such a way that the comparison composite is indeed alinear comparison composite (LCC). Using
this translation, the following inequalities are obtained:

D( _" ; _� ) � D 0( _" ; _� ) + Sup
_" ; _�

(D � D 0)( _" ; _� );

D( _" ; _� ) � D 0( _" ; _� ) + Inf
_" ; _�

(D � D 0)( _" ; _� ):

9
=

;
(29)

Then, averaging overV and taking the in�mum with respect to _� and _" , bounds for ~d are obtained

~d
�

_"
�

� Inf
h_" i = _"

� D
Inf

_�
D0( _" ; _� )

E
+

�
Sup
_" ; _�

� D( _" ; _� )
��

; (30)

~d
�

_"
�

� Inf
h_" i = _"

� D
Inf

_�
D0( _" ; _� )

E
+

�
Inf
_" ; _�

� D( _" ; _� )
��

; (31)
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where � D = D�D 0. These bounds are valid for any choice ofD0. Re�ned bounds can be obtained
by optimizing the right hand-side of (30) and (31) over D0 :

~d
�

_"
�

� Inf
D 0

Inf
h_" i = _"

� D
Inf

_�
D0( _" ; _� )

E
+

�
Sup
_" ; _�

� D( _" ; _� )
��

;

~d
�

_"
�

� Sup
D 0

Inf
h_" i = _"

� D
Inf

_�
D0( _" ; _� )

E
+

�
Inf
_" ; _�

� D( _" ; _� )
��

;

9
>>=

>>;
(32)

It has been recognized in other situations (Ponte Casta~neda, 2002a) that a sharper estimate can
be obtained by replacing the in�mum and supremum requirements in (32) by stationarity require-
ments. The resulting expression has no bounding character and is only an estimate (hopefully
accurate) for ~d:

~d( _" ) ' Stat
D 0

Inf
h_" i = _"

� D
Inf

_�
D0( _" ; _� )

E
+

�
Stat

_� ; _"
� D( _" ; _� )

��
: (33)

5. Elasto-(visco)plastic composites with isotropic hardening only

In this section only isotropic hardening is considered (H = 0; X = 0, R(p) arbitrary). Having
in mind the form (20) of the rate-potential for elasto-viscoplastic constituents whereD is obtained
as a supremum over a Lagrange multiplier �, we will �x � and work with D ( _" ; _� ; �) and then
take the supremum over � :

~d
�

_"
�

= Inf
h_" i = _"

�
Inf

_�
Sup

�
D( _" ; _� ; �)

�
= Sup

�
Inf

h_" i = _"

D
Inf

_�
D( _" ; _� ; �)

E
:

5.1. Linear comparison composite
The reference potentialD0 is chosen in phase (r ) as:

D ( r )
0 ( _" ; _� ; �) = � t

2 ( _" � _" p) : L ( r )
0 : ( _" � _" p) + 1

� t

h
w( r )

st (pn + � t _p) � w( r )
st (pn )

i

+ � ( r )
n : ( _" � _" p) +

� ( r ) _"0

m( r ) + 1

�
_p
_"0

� m ( r ) +1

+ � _p + � ( r )
0 _" p : _" p

9
>>=

>>;
(34)

This choice for D0 is motivated by the following considerations:

{ Ideally, D0 should be uniform per phase as a function of_" ; _� (as in (21)). This explains why
the �eld � n (x ) in (20) has been replaced by the second-order tensor� ( r )

n which is uniform
in phaser .

{ A �rst, natural, choice for D0 would be to assign to the linear elastic composite the actual
elastic properties of the composite and to average the stress �eld from the previous time step:

L ( r )
0 = L ( r ) ; � ( r )

n = h� n i : (35)

This choice corresponds to a�rst-moment model (see section 2), called the RVP1st model in
the sequel. As will be seen later, this model is not as accurate as the model which will be
proposed here having the exibility of optimizing over L ( r )

0 and � ( r )
n .
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{ Choosing D0 quadratic3 in _" ; _� would simplify the stationarity problem in (33) and would
lead to a reduced potential d0 being quadratic in _" . This is only partially achieved by the
expression (34) which is quadratic with respect to _" and _" p but not with respect to _p. It
will turn out in the course of the calculations that _p (and therefore p) can be chosen to be
uniform per phase which is another way of simplifying the stationarity problem in (33).

The estimate (33) involves an optimization step with respect to D0. The optimization is
performed on the parameters� ( r )

n ; L ( r )
0 ; � ( r )

0 and (33) takes the form:

~d
�

_"
�

' Stat
� ( r )

n ; L ( r )
0 ; � ( r )

0

Sup
�

"

Inf
h_" i = _"

D
Inf

_�
D0( _" ; _� ; �)

E
+

�
Stat
_" ; _�

� D( _" ; _� ; �)
� #

: (36)

The general procedure outlined in section 4.2 can now be followed and implemented in several
steps, each step corresponding to a stationarity problem.

5.2. Stationarity problems

5.2.1. 1st step: Stat
_" ; _�

� D

Making use of the relations (20) and (34), the error function � D can be expressed as :

� D ( _" ; _� ; �) =
� t
2

( _" � _" p) : � L ( r ) : ( _" � _" p) + � � ( r )
n : ( _" � _" p) +

�
� ( r )

Y � �
�

_"p
eq � � ( r )

0 _" p : _" p;

where
� � ( r )

n (x ) = � n (x ) � � ( r )
n in phaser; � L ( r ) = L ( r ) � L ( r )

0 :

The optimality conditions for � D with respect to _" and _" p (note that there is no dependence of
� D on _p) yield respectively:

Stat
_"

) � t � L ( r ) : ( _" � _" p) + � � ( r )
n = 0 ; (37)

Stat
_" p

) � � t � L ( r ) : ( _" � _" p) � � � ( r )
n +

�
� ( r )

Y � �
� 2_" p

3 _"p
eq

� 2� ( r )
0 _" p+ � i = 0 ; (38)

where i is the identity for second-order tensors, and� is a multiplier associated with the incom-
pressibility constraint _" p:i = 0. Finally:

�
Stat
_" ; _�

� D
�

=

*

�
1
2

� � ( r )
n :

�
� t � L ( r )

� � 1
: � � ( r )

n +
1

6� ( r )
0

�
� ( r )

Y � �
� 2

+

(39)

5.2.2. 2nd step: Inf
_�

D0

The conditions for an in�mum with respect to _� = ( _" p; _p) are:

Inf
_" p

) � � t : L ( r )
0 : ( _" � _" p) � � ( r )

n + 2 � ( r )
0 _" p+ � 0i = 0 ; (40)

3quadratic is to be understood here in the sense of the sum of quadratic, linear and constant terms.
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where, again,� 0 is a multiplier associated with the incompressibility constraint _" p:i = 0.

Inf
_p

) R( r ) (pn + � t _p) + � ( r )
�

_p
_"0

� m

+ � = 0 ; (41)

where R( r ) (p) = @w( r )
st (p)=@p. Thanks to (40), _" p can be expressed in terms of_" as:

_" p =
�

� tL ( r )
0 + 2 � ( r )

0 K
� � 1

: K : (� tL ( r )
0 : _" + � ( r )

n ) (42)

whereK is the projector on purely deviatoric second-order tensors. Using this relation to simplify
the stationary value of D0, it is found that

Inf
_�

D0 = d( r )
0 ( _" ) in phase r; (43)

where
d( r )

0 ( _" ) =
1
2

_" : L ( r )
0 : _" + � ( r )

0 : _" + f 0(x ); (44)

with:

L ( r )
0 = � tL ( r )

0 � � tL ( r )
0 : K :

�
� tL ( r )

0 + 2 � ( r )
0 K

� � 1
: K : � tL ( r )

0 ;

� ( r )
0 = � � tL ( r )

0 : K :
�

� tL ( r )
0 + 2 � ( r )

0 K
� � 1

: K : � ( r )
n + � ( r )

n ;

f 0(x ) = �
1
2

� ( r )
n : K :

�
� tL ( r )

0 + 2 � ( r )
0 K

� � 1
: K : � ( r )

n + g(�( x )) ;

9
>>>>=

>>>>;

(45)

where

g(�) =
1

� t

�
w( r )

st (pn + � t _p) � w( r )
st (pn )

�
+

� ( r ) _"0

m + 1

�
_p
_"0

� m +1

+ � _p (46)

with _p solution of (41).

5.2.3. 3rd step: ~d0
�

_" ; �
�

= Inf
h_" i = _"

�
Inf

_�
D0

�

The linear comparison composite is a linear thermoelastic solid with piecewise uniform elastic
moduli and eigenstress. The local problem for the LCC reads as:

� = L ( r )
0 : _" + � ( r )

0 ; div � = 0 ; h_" i = _" ; (47)

The e�ective constitutive relation for the LCC takes the form

� = ~L 0 : _" + ~� 0;

where the e�ective elastic moduli ~L 0 and the e�ective eigenstress~� 0 can be evaluated using a
linear homogenization schemeappropriate for the composite microstructure. An example will be
given in section 5.5 with the Hashin-Shtrikman estimate. The e�ective rate-potential ~d0 takes the
general form (see Lahellec and Suquet, 2007b, appendix B, for more details):

~d0( _" ) =
1
2

_" : ~L 0 : _" + ~� 0 : _" + ~f : (48)
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Remark 2. An equivalent form of (47) helps understanding the true meaning of the LCC. After
some algebra on (45) it is seen that

(L ( r )
0 ) � 1 =

1
� t

 

M ( r )
0 +

1

2� ( r )
0

K

!

; (L ( r )
0 ) � 1 : � ( r )

0 = � M ( r )
0 : � ( r )

n :

so that the constitutive relations in the LCC can alternatively be written as:

_" = M ( r )
0 :

 
� � � ( r )

n

� t

!

+ _" p; _" p =
1

2� ( r )
0

K : � : (49)

Therefore the local problem for the LCC, which is a linear thermoelastic problem, can be consid-
ered as a discretized (in time) evolution problem for a linear viscoelastic composite with elastic
complianceM ( r )

0 = ( L ( r )
0 ) � 1, initial stress � ( r )

n at time tn (beginning of the time step) and viscosity
� ( r )

0 . The LCC changes from one time step to the other) .

5.2.4. 4th step: Sup
�

[::::]

The condition for a supremum with respect to � of the bracketed term in (36) takes a simple
form, thanks to the stationarity of all terms between the brackets in (36) :

@D0

@�
+

@� D
@�

= 0 ; (50)

where the two derivatives are evaluated at the stationary points ofD0 and � D respectively. Making
use of (34) and (39), the condition for a supremum over � is:

_p �
1

3� ( r )
0

�
� ( r )

Y � �
�

= 0 : (51)

Eliminating � between (41) and (51), it is found that _p solves the nonlinear equation:

R( r ) (pn + � t _p) + � ( r )
�

_p
_"0

� m ( r )

+ � ( r )
Y � 3� ( r )

0 _p = 0 (52)

The material parameters � ( r )
Y , � ( r ) , m( r ) and � ( r )

0 are uniform in each phase. Therefore, whenever
the �eld pn is uniform per phase, the equation (52) is a scalar equation which admits a single
solution over each phase, _p = _p( r ) in phase r . Assuming that the initial �eld p0 is uniform per
phase, it follows (by recursion) that p(t) is, for all t, uniform in each phase. Furthermore, equation
(51) shows that, since _p is uniform over phaser , � is uniform too:

� ( r ) = � ( r )
Y � 3� ( r )

0 _p( r ) : (53)

Coming back to (45) it is seen that f 0 is now uniform per phase.
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5.2.5. 5th step: Stat
� ( r )

n ;L ( r )
0 ;� ( r )

0

The last step of the procedure consists in optimizing the choice of the linear comparison com-
posite (LCC), or in other words in optimizing the right-hand side of (36) with respect to � ( r )

n ; L ( r )
0

and � ( r )
0 . For de�niteness, the �elds in the LCC are denoted by _" , _" p, � , and determined as

solutions of (40) and (47) in the third step of the procedure. By contrast, the analogous �elds
determined in the �rst step (evaluation of the error function � D) and solution of (37){(38) are
denoted with an upperscript � . Then:

Stat
� ( r )

n

) h ( _" � _" p)i r = h( _" � � _" p� )i r ; (54)

Stat
L ( r )

0

) h ( _" � _" p) 
 ( _" � _" p)i r = h( _" � � _" p� ) 
 ( _" � � _" p� )i r : (55)

In other words, the �rst and second moments in each individual phase of the elastic strain-rate in
the optimal LCC coincide with the elastic strain-rate determined by minimizing the error function
� D. These conditions (54) and (55) can be rewritten in terms of the �rst and second moment of
the stress �eld at time t and tn . It follows from (37) and (54) that :

_" � � _" p� = �
�

� t � L ( r )
� � 1

: � � ( r )
n ; _" � _" p = (� tL 0) � 1 : � � ;

where � � = � � � ( r )
n . Then the relations (54) and (55) can be transformed into :

�
�

� L ( r )
� � 1

:
D

� � ( r )
n

E

r
=

�
L ( r )

0

� � 1
: h� � i r ; (56)

and
�

� � ( r )
n :

�
� L ( r )

� � 1



�
� L ( r )

� � 1
: � � n

�

r
=

�
� � :

�
L ( r )

0

� � 1



�
L ( r )

0

� � 1
: � �

�

r
: (57)

The optimal elastic moduli L ( r )
0 and eigenstress� ( r )

n in the LCC are determined by solving the
coupled equations (56) and (57).

Finally, the last stationarity condition with respect to � ( r )
0 reads as :

Stat
� ( r )

0

) h _" p : _" pi r =
1

6(� ( r )
0 )2

� �
� ( r )

Y � �
� 2

�

r
=

3
2

( _p( r ) )2; (58)

where the last equality results from (51). Relation (58) shows that the piecewise uniform equivalent
plastic strain-rate _p( r ) in the LCC is given by the second moment of the plastic strain-rate in the
LCC:

_p( r ) =

r
2
3

h_" p : _" pi r : (59)

Remark 3. De�ning

H ( r ) = I � L ( r ) : (L ( r )
0 ) � 1 and b� n (x ) = H ( r ) � (x ) + ( I � H ( r ) ) : � ( r )

n ; (60)
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it can readily been checked that the condition (56) is equivalent to

h� n i r = hb� n i r : (61)

Similarly, the condition (57) is equivalent to

h� n 
 � n i r = hb� n 
 b� n i r : (62)

Following Idiart and Ponte Casta~neda (2007) the (quadratic) uctuations of a �eld � in phase r
are de�ned as

C ( r ) (� ) =

�

� � h � i r

�



�
� � h � i r

��
r
:

The equality between the �rst and second moments of� n and �̂ n in phase r can be equivalently
expressed as the equality between the �rst moment and the uctuations of these �elds. According
to (60), � is the only �eld contributing to the uctuations of �̂ n and therefore (62) can be replaced
by a relation between the uctuations of � n and the uctuations of � :

C ( r ) (� n ) = C ( r ) (H ( r ) : � ): (63)

5.2.6. Field statistics in the linear comparison composite
The �rst and second moments of the strain-rate �eld in each individual phase of the LCC

de�ned as

h_" i r =
1�

�V ( r )
�
�

Z

V ( r )

_" dx ; h_" 
 _" i r =
1�

�V ( r )
�
�

Z

V ( r )

_" 
 _" dx :

These moments are obtained using classical relations in linear thermoelastic composites (Ponte
Casta~neda and Suquet, 1998; Buryachenko, 2001; Idiart and Ponte Casta~neda, 2007):

h_" i r =
1

c( r )

@~d0

@� ( r )
0

; h_" 
 _" i r =
2

c( r )

@~d0

@L ( r )
0

(64)

The statistics of the stress �eld follow from (64) and (47):

h� i r = L ( r )
0 : h_" i r + � ( r )

0 ; C ( r ) (� ) = C ( r ) (L 0
(r ) : _" ): (65)

5.3. Interpretation of the LCC as a non-local approximation

The above variational scheme consisting in the successive implementation of the �ve di�erent
steps described above will be called theRate-Variational Procedure (RVP) . It may appear rather
technical but fortunately it can receive a simple interpretation. It has already been noticed in
(49) that the LCC can be interpreted as a linear viscoelastic composite on the time step [tn ; tn +1 ].
Further algebra using eqs. (40, 41, 52) together with the fact that _p is uniform per phase, show
that the viscosity � ( r )

0 in phaser of the LCC can be alternatively written as:

� ( r )
0 =

1
3

�
( r )
eq

_"0

0

B
@

� ( r )

h
�

( r )
eq � � ( r )

Y � R( r ) (p( r )
i +

1

C
A

n ( r )

: (66)
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Therefore the constitutive equations for the LCC read as:

_" = M ( r )
0 :

 
� � � ( r )

n

� t

!

+ _" p;

_" p =
3
2

_p( r ) s

�
( r )
eq

; _p( r ) = _"0

0

B
@

h
�

( r )
eq � � ( r )

Y � R( r ) (p( r ) )
i +

� ( r )

1

C
A

n ( r )

:

9
>>>>>>=

>>>>>>;

(67)

The analogy with (1) (no kinematic hardening is considered in this section) is clear, except that

the closure equations for� ( r )
0 are nonlocal in the sense that they involve the second moment�

( r )
eq of

the stress �eld (which itself depends on the viscosities in each phase, rendering the determination
of � ( r )

0 a fully coupled and nonlinear problem). The replacement of the actual nonlinear composite
by the linearly viscous LCC, corresponds to the following approximations:

1. In the evolution equation (67)2, the local equivalent stress� eq(x ) at each point x in phaser

is replaced by�
( r )

and the yield stress� ( r )
Y + R(p(x )) is replaced by � ( r )

Y + R(p( r ) ),

2. the complianceM ( r ) of phaser is replaced byM ( r )
0 ,

3. the stress �eld � n (x ) is replaced by the uniform stress� ( r )
n in phaser .

The similarity between (67) and (1) is essential in the numerical integration in time of the e�ective
relations.

5.4. General implementation of the model

The numerical implementation of the RVP model takes advantage of the similarities between
between (67) and (1) to transpose the algorithms known for the integration of elasto-viscoplastic
constitutive relations to the RVP model. Before addressing the integration in time, we recall that
the RVP model requires, as a pre-requisite, a linear homogenization scheme to estimate the e�ective
properties of the LCC, which can be seen (after time-discretization) as a linear thermoelastic
composite (see (45)) with the same microstructure as the actual composite. This scheme should
not only deliver the e�ective properties of the thermoelastic composite, but also deliver the �rst and
second moments per phase of the stress �eld. It may be an analytical scheme, such as the Hashin-
Shtrikman scheme for microstructures of matrix-inclusion type, or the self-consistent scheme for
polycrystalline microstructures, or a purely computational scheme, such as the full-�eld resolution
of a unit-cell problem for a linear thermoelastic composite. Obviously, the highest gain in CPU
time is obtained when the linear homogenization scheme is analytical and this is the direction
which will be explored in the sequel. Once the linear scheme is selected, the algorithm goes as
follows:

1. At the beginning of the current time step tn +1 , the overall strain " n , the �rst and second
moments per phase of� n and the �rst moment of pn are known. An increment in overall
strain � " is applied. The quantities of interest to be determined at the end of the time step
are the macroscopic stress� n +1 , the �rst and second moments per phase of� n +1 and the
�rst moment of pn +1 (the index n + 1 referring to the current time step is shown here for
clarity but will be dropped in the sequel as was done earlier).
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2. At the current time step tn +1 , the coupled nonlinear equations (56), (57) and (58) are to
be solved for � ( r )

n , L ( r )
0 and � ( r )

0 . These equations involve the �rst and second moment of
the stress �eld in the LCC (determined using the above linear homogenization scheme) and
the �rst and second moments of the stress �eld � n at the previous time step. This is done
by performing a loop to determine the unknowns. At the beginning of this loop, which is
internal to the time step, the elastic and viscous properties of the LCC are initialized with
their value at the end of the previous time step whereas the initial uniform stress� ( r )

n in
phaser is initialized with h� n i r . Then the (k + 1)-th iterate goes as follows: assumingL ( r )

0 ,

� ( r )
n and � ( r )

0 , r = 1 ; :::; N to be known from the k-th iterate:

� Compute the thermoelastic properties (45) and determine the �rst and second moments
of the stress �eld � in the LCC using relations (65).

� Find H ( r ) (or equivalently L ( r )
0 ), � ( r )

n and � ( r )
0 , r = 1 ; :::; N at iterate ( k + 1) solving

the coupled nonlinear equations (56), (57), (58).

3. Once the above nonlinear problem is solved, the optimal LCC is determined and the estimate
of the macroscopic stress provided by (36) is the macroscopic stress in the LCC. Indeed the
right-hand side of (36) being stationary with respect to all variables, one has

� =
@~d

@_"
( _" ) =

@~d0

@_"
( _" ) = ~L 0 : _" + ~� 0: (68)

4. All quantities required for the next time step are updated at the end of the current time step.
The accumulated plastic strain �eld p (which is uniform per phase) is updated by means of
(59) where the second moment of the plastic strain-rate is obtained from the second moment
of the stress �eld in the LCC by means of (42). The �rst and second moments of the stress
�eld � n , required by the procedure for the next time step, are updated by the �rst and
second moments of the stress �eld in the optimal LCC at the end of the current time step.

5.5. Sample example: two-phase particulate composite
The composites considered in this section consist of a nonlinear elasto-(visco)plastic matrix

(phase 2) reinforced by spherical, randomly distributed, elastic particles (phase 1).
The inclusions are linearly elastic and isotropic, characterized by their bulk modulusk(1) and

shear modulus� (1) :

L (1) = 3k(1) J + 2 � (1) K ; with k(1) = 20 GPa; � (1) = 6 GPa: (69)

The elastic properties of the matrix are isotropic and characterized by a bulk modulusk(2) and a
shear modulus� (2) :

L (2) = 3k(2) J + 2 � (2) K ; with k(2) = 10 GPa; � (2) = 3 GPa: (70)

Three di�erent matrices are considered in section 5.6.1, 5.6.2 and 5.6.3. The �rst matrix is ideally-
plastic (rate-independent with no hardening) characterized by a �xed threshold � (2)

Y . The second
matrix is also rate-independent, but exhibits a varying threshold with isotropic hardening. The
third matrix is rate-dependent beyond a threshold.

The type of microstructure and the relative sti�ness of the phases (inclusions sti�er than the
matrix) suggests that the lower Hashin-Shtrikman bound is appropriate for estimating the linear
e�ective properties of the actual composite, as well as those of the linear comparison composite.
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5.5.1. Implementation of the Rate-Variational Procedure
The procedure described in section 5.2 is now implemented in conjunction with the Hashin-

Shtrikman scheme to homogenize the linear comparison thermoelastic composite. A few simpli�-
cations can be made.

First, according to the Hashin-Shtrikman scheme, there is no stress uctuations in the inclusions
(phase 1). Consequently,� n is uniform in the inclusions and there is no reason to approximate it
by a di�erent uniform stress � (1)

n . Note, in addition, that the equation (63) becomes trivial (both
sides of the equations are identically 0 since there is no stress uctuations). The most natural
choice for � (1)

n is � n itself (which coincides with its average, since it is uniform)

� (1)
n = h� n i 1:

The elastic moduli in the inclusions of the LCC are the actual elastic moduli of the inclusions (to
be consistent with (60) and (61)):

L 0
(1) = L (1) ;

and therefore L (1)
0 = L (1) and � (1)

0 = h� n i 1.
Second, the elastic moduliL 0

(2) of the matrix in the LCC are chosen to be isotropic and
proportional to the initial elastic moduli of the actual composite :

L 0
(2) = 3k(2)

0 J + 2 � (2)
0 K = � (2)

�
2� (2) K + 3k(2) J

�
(71)

This choice, instead of considering a fully anisotropicL 0
(2) or even an isotropic elastic tensor

with two elastic moduli independent of those of the actual composite, is sub-optimal but reduces
the determination of L 0

(2) to that of a single scalar unknown � (2) in the matrix. Despite this
simpli�cation, the solution is found to be still accurate. With the form (71) of the moduli in the
LCC, the thermoelastic tensors (45) read:

L (2)
0 = 3� t k (2) � (2) J + 2

� t� (2) � (2) � (2)
0

� t� (2) � (2) + � (2)
0

K ;

� (2)
0 =

 
� (2)

0

� t� (2) � (2) + � (2)
0

K + J

!

: � (2)
n :

9
>>>>=

>>>>;

(72)

The unknowns of the problem are� (2) , � (2)
n and � (2)

0 which are to be determined using the simpli�ed
form taken by the general equations (61), (63) and (58) when the choice (71) is made. The equality
of the �rst moment of the stress �elds � n and �̂ n leads to:

h� n i 2 = h(2) h� i 2 +
�

1 � h(2)
�

� (2)
n ; with h(2) = 1 � 1=� (2) : (73)

Assuming h(2) to be known for the moment, this equation allows for the determination of � (2)
n

in terms of h� n i 2 and h(2) (note that h� i 2, the �rst moment of the stress �eld in the matrix of the

LCC, depends on� (2)
n through a relation which can be explicited for each class of microstructure).
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The unknown � (2)
n can therefore be removed from the list of unknowns and we are left with two

scalar unknowns4, h and � 0.
After due account of the form (71) for L (2)

0 in the de�nition (60) of H (2) , the equation (63) for
the stress uctuations in the matrix becomes

C (2) (� n ) ::
�

K
2� (2)

+
J

3k(2)

�
= h2C (2) (� ) ::

�
K

2� (2)
+

J
3k(2)

�
; (74)

which gives a �rst scalar equation. Solving numerically this nonlinear equation is not straightfor-
ward. The strategy adopted in the examples presented below is exposed in appendix Appendix C.
The second scalar equation is provided by eqs (59) and (49):

_p =

r
2
3

h_" p : _" pi 2 =
1

3� (2)
0

s �
3
2

s : s
�

2
;

where s is the stress deviator in the LCC. Substituting this expression in the term 3� 0 _p in (52)
yields: s �

3
2

s : s
�

2
� (� Y + R(pn + � t _p)) = �

�
_p
_"0

� m

: (75)

(75) is the second (nonlinear) scalar equation which together with (74) allows for the determination
of h and � 0. Note that the uctuations C (2) (� ) and the second momenths : si 2 of the stress
deviator in the LCC entering (74) and (75) are known in terms of h and � 0.

It follows from (59) that _p is always nonnegative. A necessary condition for (75) to admit a
positive solution _p is : s �

3
2

s : s
�

2
� (� Y + R(pn + � t _p)) � 0: (76)

(76) is the prediction of the RVP model for the e�ective yield criterion of the matrix. Not sur-
prisingly, it is based on the second moment of the stress �eld in the matrix, a result which is
reminiscent of the role played by second moments in the variational method for composites with a
single potential (Ponte Casta~neda and Suquet, 1998, recalled in section 2).

5.5.2. Prediction-correction algorithm
At time tn +1 , the �rst and second moment in the matrix of the stress �eld � n at time tn , and

the accumulated plastic strain pn at time tn are known. An increment _" is applied. Then:

1. Elastic prediction: First set � (2)
0 = + 1 in (72) and compute the elastic stress �eld � trial

(or more speci�cally the statistics of this �eld) and the corresponding unknown htrial solving
simultaneously (47) and (74).

4To simplify notations, the superscript (2) referring to the matrix will be omitted from now on for h, _p, � , � Y ,
wst and m since they only exist in the matrix phase, the inclusions being purely elastic
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2. Check whether this trial �eld � trial satis�es the yield criterion (77):

if

s �
3
2

strial : strial

�

2
� (� Y + R(pn )) < 0 then _p = 0 ;

if

s �
3
2

strial : strial

�

2
� (� Y + R(pn )) � 0 then _p � 0:

9
>>>>=

>>>>;

(77)

3. If the criterion (77) is satis�ed (�rst inequality), then set � = � trial and h = htrial and
proceed to the next time step.

4. If the criterion (77) is violated (second inequality), solve (47), (74) and (75) for � , h and
� (2)

0 . The �rst and second moments of the stress �eld in the LCC are obtained using the
relations given in section (5.2.6)

Comments:

1. The same algorithm can be used for the determination ofh( r ) in phases which are purely
elastic, in which case only the �rst step of the algorithm is required (solving simultaneously
(47) and (74)).

2. As already noticed, when the composite microstructure is such that the stress �eld has
uctuations in a given phase, the elastic modulusL ( r )

0 in the LCC may di�er from the elastic
modulus L ( r ) of this phase even when this phase is purely elastic. The elastic modulusL ( r )

0

and eigenstress� ( r )
n have to be determined.

5.6. Comparison with full-�eld simulations

The accuracy of the model is assessed by comparison with full-�eld simulations. In order to
impose truly non-radial loading conditions these full-�eld simulations are performed on a three-
dimensional unit-cell. The loading conditions correspond to a tension-torsion experiment, except
that they are applied through a strain-controlled procedure. The applied macroscopic strain tensor
" is the combination of an isochoric extension"33(t) in the axial direction and of equal shears"13(t)
along the two coordinate planes parallel to the axial direction:

" (t) = "33(t)
�

�
1
2

e1 
 e1 �
1
2

e2 
 e2 + e3 
 e3

�
+ "13(t) (e1 
 e3 + e3 
 e1 + e2 
 e3 + e3 
 e2) :

(78)
Applying this loading requires a truly three-dimensional analysis. A computational method based
on Fast Fourier Transforms, originally proposed by Moulinec and Suquet (1998) and implemented
in the freeware CRAFT (a software freely available at http://craft.lma.cnrs-mrs.fr) was used for
this analysis. The FFT method compares favorably with the Finite Element Method for unit-cell
calculations involving periodicity conditions (Prakash and Lebensohn, 2009). The microstructure
(shown in �gure 1) contains monodisperse spherical inclusions with volume fractionc(1) = 0 :17,
randomly distributed in a surrounding matrix and is discretized into a regular array of 256� 256�
256 Fourier points. A relatively large number of inclusions (50) was chosen to approach isotropy
as closely as possible. This unit-cell is subjected to three di�erent loading programs. First a
strain-controlled experiment with a purely isochoric macroscopic strain is applied following a radial

22



Figure 1: Three-dimensional microstructure containing 50 spherical inclusions randomly distributed in the sur-
rounding matrix.

direction in strain space, but with a periodic change in the sign of the macroscopic strain-rate (see
�gure 2 (a)):

"13(t) = 0 for all t;

_"33(t) = _"0 when 0� t � T0; _"33(t) = � _"0 when T0 � t � 3T0; _"33(t) = _"0 when 3T0 � t � 5T0; etc:::

)

(79)
The axial strain "33 is non monotonic and varies between"0 = _"0T0 and � "0 and vice-versa.

t

"33

"13

(a)

t

"33

"13

(b)

t

"33

"13

(c)

Figure 2: Particulate composites. Three di�erent loading histories: " 33 (t) macroscopic axial strain, " 13 (t)
macroscopic shear strain. (a): Program 1: radial loading-unloading in strain space. (b) and (c): two
di�erent non-radial paths in strain space (programs 2 and 3 respectively).

In the second and third loading conditions, the components"33(t) and "13(t) are speci�ed
independently (following two di�erent time histories shown in �gure 2 (b) and (c)) and can be
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interpreted as follows. In the second loading program (�gures 2b and 4a, the axial strain is applied
�rst at constant strain-rate with no applied shear, then, when the axial deformation reaches "0,
a shear deformation is applied while the axial strain is kept constant. Then the axial strain is
decreased to 0 while the shear strain is kept constant. Finally the shear strain is decreased to 0.

In the third loading program (�gure 2c and 5a), the axial strain is increased linearly (while
no shear strain is applied) and the specimen enters the plastic regime. Then the axial strain is
reduced until the axial stress vanishes, resulting in an elastic unloading of the specimen. Then a
shear strain (with a constant axial strain) is applied from this macroscopically elastic state and
the specimen enters again the plastic regime.

These loading histories involve a rotation of the principal axes of the macroscopic strain and
therefore a rotation of the principal axes of macroscopic stress (since the composite has overall
isotropy). In program 2 the axes rotate in the plastic regime while they rotate in the elastic regime
in program 3.

The predictions of the RVP model are compared with the full-�eld simulations for these 3
loading programs and for 3 di�erent matrices, elastic ideally-plastic, elastic-plastic with isotropic
hardening, elastic viscoplastic (rate-sensitive material beyond a threshold). In addition to the RVP
model, the predictions of a simpli�ed model, referred to as RVP1st, are also shown. This model
corresponds to the same constitutive relations (67) for the LCC, except that� (2)

n is computed as
the �rst moment of � n (x ) over the matrix consequently L (2)

0 is equal to L (2) (see section 2 for
a presentation of this simpli�cation). The viscosity � (2)

0 in the matrix is derived using equation
(66) making use of the second moments of the stress �eld in each phase (this a feature of the
RVP procedure). But the approximation on � (2)

n being a �rst moment approximation the model is
referred to as RVP1st, 1st standing for the �rst moment approximation. In the RVP1st model the
stress uctuations within the matrix are not taken into account in the evaluation of L (2)

0 (although
they do exist, see �gure 3 d). This simpli�cation leads to h = 0 in the matrix (or equivalently
� = 1) in (71) and � (2)

n = h� n i 2.

5.6.1. Ideally-plastic matrix
First the matrix is elastic ideally-plastic with elastic properties (70) and yield stress:

� (2)
Y = 100 MPa: (80)

The particles are elastic with elastic properties (69).
The full-�eld simulations and the two models are compared in �gure 3 (solid line for the RVP

model, dotted line for RVP1st and symbols for the full-�eld simulations considered as reference).
Four plots are shown for the overall stress� 33, the average stress in the inclusions� (1)

33 and in the
matrix � (2)

33 and the second invariant of the stress uctuations in the matrix. These plots call for
the following comments.

1. The RVP model slightly overestimates the overall stress, with a maximum error of about 5
%. The error is essentially due to the approximation of the plastic dissipation potential� Y _"p

eq
by a quadratic and isotropic potential � 0 _" p : _" p. The overall stress at the plateau coincides
with the prediction of Ponte Casta~neda's variational procedure for a single potential (plastic
potential) which is known to be a rigorous upper bound and which is sti�er than more
accurate second-order procedures (see Idiart et al., 2006a, for instance).
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2. The RVP1st model underestimates this asymptotic stress with a maximum error of 5 %. This
error is a combination of two factors, the approximation of the plastic potential � Y _"p

eq (over-
estimate) and the approximation of the stress at the previous time step (underestimate) cor-
responding to� n : ( _" � _" p) in the rate-potential. There is a partial error compensation, since
in the linear viscoelastic case (reported in a companion paper Lahellec and Suquet, 2012),
where there is no approximation on the dissipation potential, the approximation RVP1st
systematically underestimates the overall response.

3. The RVP model is able to capture the Bauschinger e�ect observed upon unloading of the
composite which corresponds to a plasti�cation in the re-loading phase for a stress which
is, in absolute value, less than the stress from which the volume element was unloaded.
The RVP1st model and most models in the literature are unable to capture this apparent
kinematic hardening at the macroscopic scale.

4. Both models (RVP and RVP1st) estimate accurately the average stress in the matrix with
a maximal error which is less than 5 %. By contrast, the average stress in the inclusions is
less accurately reproduced, especially with the RVP1st model.

5. The stress uctuations in the matrix predicted by the RVP model show the same trends
as those obtained by full-�eld simulations, with a maximal di�erence of about 30 %. The
uctuations predicted by RVP1st are much more inaccurate with an error which can be as
large as 90 %.

6. In terms of CPU time, the RVP model is obviously much faster than the full-�eld simulations.
The simulation shown in �gure 3 takes 120s with the RVP model (using Mathematica on a
single CPU) whereas the full-�eld simulation takes 13h (elapsed time) on a cluster with 40
CPU's.

5.6.2. Elasto-plastic matrix with isotropic hardening
The second matrix is also rate-independent but exhibits isotropic hardening characterized by

a power-law relation
� eq = � (2)

Y + �p  : (81)

The stored energy function is in the form wst (p) = 1
 +1 �p  +1 . The example below corresponds to

the data
� (2)

Y = 100 MPa; � (2) = 100 Mpa;  (2) = 0 :4: (82)

The predictions of the di�erent models are shown in �gures 6, 7 and 8 for the three di�erent loading
programs described in �gure 2. The observed trends are similar to those of the ideally-plastic matrix
(except for the asymptotic stress which no longer exists): the overall stress is accurately predicted
by the RVP model (slightly overestimated by 2 %), and in particular the Bauschinger e�ect upon
unloading is correctly captured, the statistics of the stress �eld in the inclusions (�rst moment)
and in the matrix (�rst moment and uctuations) are correctly predicted. The predictions of the
RVP1st are less accurate (no Bauschinger e�ect, signi�cant discrepancy on the stress uctuations).
A di�erence with the ideally-plastic matrix in the approximation made by the RVP model is that,
when the matrix exhibits hardening, the actual accumulated plastic strain �eld is nonuniform.
Therefore the stress threshold,� Y + R(p) in (1), varies from point to point in a given phase (the
matrix here). However, it was found that when the RVP model is adopted, _p and therefore p is
uniform in each phase (see equation (59)). The problem is therefore simpli�ed since the threshold
is again uniform in each phase (as in the ideally-plastic case where it does not depend onp), but
of course it is only an approximation.
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Figure 3: Particulate composite. Elastic ideally-plastic matrix. Radial loading-unloading (program 1).
Comparison between the RVP model (solid line), the simpli�ed model RVP1st (dotted line) and full-�eld
simulations (symbols). (a) Macroscopic axial stress. (b) Average stress in the matrix. (c) Average stress
in the inclusions. (d) Stress uctuations in the matrix.
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Figure 4: Particulate composite. Non-radial loading (program 2, �gure 2 b). Elastic ideally-plastic matrix.
Comparison between the RVP model (solid line) and full-�eld simulations (symbols). (a) Prescribed path
in strain space. (b) Resulting path in stress space. (c) Macroscopic axial stress. (d) Macroscopic shear
stress.
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Figure 5: Particulate composite. Non-radial loading (program 3, �gure 2 c). Elastic ideally-plastic matrix.
Comparison between the RVP model (solid line) and full-�eld simulations (symbols). (a) Prescribed path
in strain space. (b) Resulting path in stress space. (c) Macroscopic axial stress. (d) Macroscopic shear
stress.
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Figure 6: Particulate composite. Rate-independent matrix with isotropic hardening. Radial loading-
unloading (program 1). Comparison between the RVP model (solid line), the simpli�ed model RVP1st
(dotted line) and full-�eld simulations (symbols). (a) Macroscopic stress in the tensile direction. (b)
Average stress in the matrix. (c) Average stress in the inclusions. (d) Stress uctuations in the matrix.
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Figure 7: Particulate composite. Non-radial loading (program 2, �gure 2 b). Rate-independent matrix with
isotropic hardening. Comparison between the RVP model (solid line) and full-�eld simulations (symbols).
(a) Macroscopic axial stress. (b) Macroscopic shear stress.
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Figure 8: Particulate composite. Non-radial loading (program 3, �gure 2 c). Rate-independent matrix with
isotropic hardening. Comparison between the RVP model (solid line) and full-�eld simulations (symbols).
(a) Macroscopic axial stress. (b) Macroscopic shear stress.
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5.6.3. Rate-dependent matrix
The third matrix is rate-dependent beyond a threshold (without hardening) and with material

parameters (in addition to (80)):

� (2) = 100 Mpa; _" (2)
0 = 1 s� 1; m(2) = 0 :3: (83)

Monotonic loading tests at di�erent strain-rates have been performed and the predictions of the

�
33

(M
P

a)

"33

_"33 = 12 103 s� 1

_"33 = 12 102 s� 1

_"33 = 12 101 s� 1

_"33 = 12 100 s� 1

_"33 = 12 10� 2 s� 1

_"33 = 12 10� 3 s� 1

Figure 9: Particulate composites. Rate-dependent matrix. Monotonic loading at di�erent strain-rates.

model are compared with full-�eld simulations in �gure 9. The overall stress, as well as the rate-
sensitivity, is well-reproduced by the model. Then, a typical loading-unloading cycle was performed
at an overall strain-rate _"33 = � 6: 10� 2 s� 1. The predictions of the model are compared with full-
�eld simulations in �gure 10. Again the agreement between the model and the reference results for
the overall response of the composite and the �rst and second moments of the stress �eld is seen
to be reasonably good.

5.7. Comparison with data from the literature (dual-phase materials and metal-matrix composites)
The predictions of the RVP and RVP1st models are compared in the present section with other

results in the literature. Brassart et al. (2010); Brassart (2011) have performed FEM simulations
of the response of a three-dimensional volume element containing 30 spherical inclusions randomly
distributed in the surrounding matrix.

The material data correspond to a dual-phase steel (ferrite-martensite) in Brassart et al. (2010),
and to an aluminum matrix reinforced by SiC particles in Brassart (2011). In both cases the
inclusions are linear elastic and the matrix is elasto-plastic with a power law isotropic hardening
(81). The unit-cell is subjected to a tensile test where the overall stress is imposed in the form

� (t) = � 33(t)e3 
 e3:
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Figure 10: Particulate composite. Rate-dependent matrix. Radial loading-unloading. Comparison between
the RVP model (solid line), the simpli�ed model RVP1st (dotted line) and full-�eld simulations (symbols).
(a) Macroscopic stress in the axial direction. (b) Average stress in the matrix. (c) Average stress in the
inclusions. (d) Stress uctuations in the matrix.
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The dual-phase steel is composed of a ferritic matrix reinforced by martensitic inclusions (with a
volume fraction ranging from 0:05 to 0:35). The material data are (Brassart et al., 2010):

inclusions (martensite) : E (1) = 200 GPa; � (1) = 0 :3;
matrix (ferrite) : E (2) = 200 GPa; � (2) = 0 :3; � (2)

Y = 300 MPa;
� (2) = 1130 MPa;  (2) = 0 :31:

The material data for the Al-SiC metal-matrix composite are (Brassart, 2011) :

inclusions (Sic) : E (1) = 400 GPa; � (1) = 0 :2; c(1) = 0 :25
matrix (Al) : E (2) = 75 GPa; � (2) = 0 :3; � (2)

Y = 75 MPa;
� (2) = 400 MPa;  (2) = 0 :4 or 0:05:

The predictions of the two models RVP and RVP1st are compared with the full �eld simulations
of Brassart et al. (2010) and Brassart (2011) in �gures 11 and 12. The same trends as in section
5.6.2 are observed showing the improvement brought by the RVP model over the RVP1st model. It
can be further noticed that the accuracy of the RVP model is satisfactory at all volume fractions of
the inclusion phase. The Bauschinger e�ect, characterized by a di�erent yield stress in tension in
compression after unloading the specimen, is captured by the RVP model with a good agreement
except at high volume fraction of inclusions. By contrast the prediction of the Bauschinger e�ect
with the RVP1st model is rather poor.

6. Isotropic and kinematic hardening

This section is devoted to the general case of elasto-(visco)plastic constituents with isotropic
and kinematic hardening. The associated rate-potential is given in (20).

6.1. Linear comparison potential
Given the reasonably accurate results obtained with the potential (34) in the case of isotropic

hardening only, a natural choice for the potential in phaser of the comparison composite is:

D0 ( _" ; _� ; �) = � t
2

h
( _" � _" p) : L 0

(r ) : ( _" � _" p) + _" p : H
( r )

0 : _" p
i

+
1

� t

�
w( r )

st (pn + � t _p) � w( r )
st (pn )

�
+ � ( r )

n : ( _" � _" p) + X ( r )
n : _" p

+ � ( r ) _"0
m + 1

�
_p
_"0

� m +1
+ �( _p� _"p

eq) + � ( r )
0 _" p : _" p;

9
>>>>>=

>>>>>;

(84)

whereL ( r )
0 , H

( r )

0 , � ( r )
n , X ( r )

n and � ( r )
0 have to be determined. The very same procedure as in section

5.2 can be followed. However, in order to avoid lengthy calculations, the details are omitted here.
The conclusion is that the application of the rate-variational principle leads to a systems of 4
equations (in each individual phase) for the four unknownsL ( r )

0 , H
( r )

0 , � ( r )
n and X ( r )

n which can
be expressed in terms of the �rst and second moments of the stress and back-stress at timetn and
of the stress �eld in a thermoelastic comparison composite:

h� n i r = hb� n i r ; h� n 
 � n i r = hb� n 
 b� n i r ;

hX n i r =
D

cX n

E

r
; hX n 
 X n i r =

D
cX n 
 cX n

E

r
;

9
=

;
(85)
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Figure 11: Dual-phase steel. Comparison of the e�ective response (macroscopic tensile stress normalized
by the matrix yield stress � (2)

Y ) predicted by the RVP model (solid line) and the simpli�ed model RVP1st
(dotted line) with FEM full-�eld simulations (symbols) from Brassart et al. (2010).
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Figure 12: Metal matrix composite. Comparison of the e�ective response (macroscopic tensile stress nor-
malized by the matrix yield stress � (2)

Y ) predicted by the RVP model (solid line) and the simpli�ed model
RVP1st (dotted line) with full-�eld simulations (symbols) from Brassart (2011).

where

b� n (x ) = H ( r )
� � (x ) + ( I � H ( r )

� ) : � ( r )
n ; H ( r )

� = I � L ( r ) : (L ( r )
0 ) � 1;

cX n (x ) = H ( r )
X X (x ) + ( I � H ( r )

X ) : X ( r )
n ; H ( r )

X = K � H ( r ) : (H ( r )
0 ) � 1;

9
=

;
(86)

� is the stress �eld in the thermoelastic composite, solution of the linear local problem

� = L ( r )
0 : _" + � ( r )

0 ; div � = 0 ; h_" i = _" ; (87)

with

L ( r )
0 = � tL ( r )

0 � � tL ( r )
0 : K :

�
� tL ( r )

0 + � tH ( r )
0 + 2 � ( r )

0 K
� � 1

: K : � tL ( r )
0 ;

� ( r )
0 =

�
� tL ( r )

0 + � tH ( r )
0 + 2 � ( r )

0 K
� � 1

: K : � tL ( r )
0 :

�
� � ( r )

n + X ( r )
n

�
+ � ( r )

n ;

f 0(x ) = �
1
2

�
� ( r )

n � X ( r )
n

�
: K :

�
� tL ( r )

0 + � tH ( r )
0 + 2 � ( r )

0 K
� � 1

: K :
�

� ( r )
n � X ( r )

n

�
+ g(�( x )) ;

9
>>>>=

>>>>;

(88)
where g is given by (46). X and _" p are related with � through

X =
�

� tH ( r )
0 + 2 � ( r )

0 K
� � 1

:
�

� tH ( r )
0 : s + 2 � ( r )

0 X ( r )
n

�
: (89)

and
2� ( r )

0 _" p = s � X ; (90)

The stationarity condition with respect to � ( r )
0 leads to the same equations (58) and (59) as in the

case of isotropic hardening only.
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6.2. Interpretation of the LCC

As in section 5.3 the model resulting from the RVP procedure can receive a simple interpreta-
tion. The stationarity conditions attached to the procedure allow to show that the LCC is a linear
viscoelastic composite with constitutive relations in each individual phaser reading as:

_" = M ( r )
0 :

 
� � � ( r )

n

� t

!

+ _" p; _" p =
3
2

_p( r ) s � X

� � X
( r )

eq

;

_p( r ) = _"0

0

B
B
B
@

�
� � X

( r )

eq � � ( r )
Y � R( r ) (p( r ) )

� +

� ( r )

1

C
C
C
A

n ( r )

:

9
>>>>>>>>>=

>>>>>>>>>;

(91)

Again the analogy with (1) is clear.

6.2.1. Fields statistics
The equations (85) require the �eld statistics (�rst and second moments or uctuations per

phase) of the stress and back-stress �elds� and X in the LCC. The �rst and second moments of
� and X are obtained by means of (87) and (89) from the �rst and second moment of_" , which
are obtained by application of the general results of section 5.2.6.

6.3. Example: two-phase particulate composite

The composites considered in this section have the same microstructure as in section 5.5, the
inclusions are purely elastic and the matrix is elasto-plastic or elasto-viscoplastic with isotropic
and kinematic hardening. The Hashin-Sthrikman lower bound is used to estimate the e�ective
properties of the LCC. The elastic properties of the phases are given by (69) and (70), the (linear)
kinematic hardening in the matrix is de�ned with the help of a single scalar parameter:

H (2) = H (2) K ;

and the isotropic hardening follows the power-law relation (81).

6.4. Linear comparison composite

As in section 5.5, there is no �eld uctuations in the inclusions (because of the use of the
Hashin-Sthrikman lower bound), and the elastic moduli are unchanged in the inclusions

L 0
(1) = L (1) ; � (1)

n = h� n i 1;

and therefore L (1)
0 = L (1) and � (1)

0 = h� n i 1.
Similarly, a simple relation is assumed between the initial moduliL (2) and H (2) and the same

moduli in the LCC:
L 0

(2) = � (2)
� L (2) ; and H (2)

0 = � (2)
X H (2) ; (92)
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where � (2)
� and � (2)

X are two unknown scalars. With this choice, the tensorsL (2)
0 and � (2)

0 in the
matrix of the LCC read as :

L (2)
0 = 3� t� (2)

� k(2) J + 2� t� (2) � (2)
� a(2) K ; � (2)

0 =
�

a(2) K + J
�

: � (2)
n + b(2) X (2)

n ;

a(2) =
2� (2)

H

2� t� (2) � (2)
� + 2 � (2)

H

; b(2) = 2� t� (2) � (2)
�

2� t� (2) � (2)
� + 2 � (2)

H

; � (2)
H = � (2)

0 +
� t
2

� (2)
X H (2) :

9
>>=

>>;
(93)

The matrix in the LCC is speci�ed via the �ve unknowns ( � (2)
� , � (2)

n , � (2)
X , X (2)

n , � (2)
0 ) for the

determination of which �ve equations are required. Four equations are provided by the relations
(85) for the �rst and second moments per phase of� and X . The �fth equation is provided by
equation (52) (together with (59)).

The discussion of these equations is similar to what was done in section 5.5, except for a few
technicalities which are discussed in Appendix B.

The algorithm can be summarized as follows5:

1. Elastic prediction (trial step): Set � 0 = + 1 in the matrix of the LCC and solve the nonlinear
problem consisting of the local thermoelastic problem (87) together with the closure equations
(B.1). � trial and X trial denote the stress and back stress �elds solution of this problem in
the LCC and htrial

� is the corresponding parameterh� . The �rst and second moments of the
stress and back-stress �elds required in (B.1) are obtained from the �rst and second moments
of the strain-rate �eld in the LCC, deriving from the general relations of section 5.2.6.

2. Check if the elastic prediction is admissible for the criterion (B.6) in the matrix:
8
>>>><

>>>>:

if

s �
3
2

(strial � X trial ) : (strial � X trial )
�

2
� (� Y + R(pn )) < 0 then _p = 0 ;

if

s �
3
2

(strial � X trial ) : (strial � X trial )
�

2
� (� Y + R(pn )) � 0 then _p � 0:

1. When the yield criterion in the matrix is satis�ed, the elastic prediction is the solution of
the problem with _p = 0 in the matrix. Update the �rst and second moments of the �elds � n

and X n and proceed to the next time steptn +2 .
2. When the elastic prediction violates the yield criterion of the matrix, the viscosity � 0 in the

matrix of the LCC and _p are searched as solutions of (B.5). In this equation, the second
moment of s � X is found from the relation (89) and from the second moment ofs in the
LCC.

6.5. Comparison with full-�eld simulations

The predictions of the RVP model are compared in this section with full-�eld simulations
performed by FEM on the same geometry and loading conditions as in section (5.6) (see �gure 1

5From now on, the superscript (2) referring to the matrix will be omitted in the expressions of h � ; hX ; � 0 ; p since
these quantities exist only in the matrix.
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and loading conditions (78)). The material data for the phases are:

inclusions (elastic) : � (1) = 6 GPa; k(1) = 20 GPa;
matrix (elastoplastic) : � (2) = 3 GPa; k(2) = 10 GPa;

� (2)
Y = 100 MPa; H (2) = 200 MPa:

Two other models are also included for comparison to assess the accuracy gained by considering
uctuations in the stress and back stress �elds.

1. RVP1st: In this model the uctuations in the matrix of both the stress and the back stress
are not taken into account (although they do exist) in the de�nition of � ( r )

n and X ( r )
n . Under

this approximation, there is no need to solve the nonlinear equations (B.1 b and d) and the
simpli�cation leads to h(2)

� = h(2)
X = 0 in the matrix (or equivalently � (2)

� = � (2)
X = 1) and

� (2)
n = h� n i 2, X (2)

n = hX n i 2.
2. RVPX1st: In this model only the uctuations of the back stress in the matrix are neglected

(the stress uctuations are taken into account). Under this approximation, there is no need
to solve the nonlinear equation (B.1 d) and the simpli�cation leads to h(2)

X = 0 in the matrix
and X (2)

n = hX n i 2.

Di�erent quantities of interest are compared in �gures 13 and 14 (solid line for the RVP model,
dotted line for RVP1st, circles for RVPX1st and stars for the full-�eld simulations). As expected
the predictions of the RVP model are in better agreement with the full-�eld simulations than those
of the other two models. The RVP1st model, which neglects the �eld uctuations in the matrix,
does not capture accurately the Bauschinger e�ect and the uctuations of the stress �eld in the
matrix. The RVPX1st model, accounting for the uctuations of the stress �eld but not of the back-
stressX , is close to the RVP model. The overall stress, as well as the average stress per phase,
are in good agreement with the full-�eld simulation (although not as close as the RVP predictions,
see �gure 13). The uctuations of the stress �eld in the matrix predicted by the RVPX1st and the
RVP models are of the same order of magnitude, but the pro�le of these uctuations as a function
of time is better captured by the RVP model. The average back-stress in the matrix is correctly
predicted by all three models (error less than� 3%), however, the RVP model is the only one to
capture correctly its uctuations (with an error of about 50%).

7. Discussion and concluding remarks

A variational approach to the e�ective response of elasto-viscoplastic or elasto-plastic hetero-
geneous materials with isotropic and kinematic hardening has been proposed. Central to this
approach is an incremental variational principle satis�ed by the rate of internal variables in single
phases governed by two potentials. Once applied at the level of a representative volume element
composed of di�erent phases, the Euler-Lagrange equations for this variational principle are the
partial di�erential equations governing, after time discretization, the quasi-static evolution of the
volume element. Then, inspired by the variational method of Ponte Casta~neda (1992), the original
potential is compared to a reference potential for a linear comparison composite for which the
variational problem can be solved in closed form. Appropriate choices for the reference potential
lead to approximate models for the exact e�ective potential. In the present study the evolution of
the plastic strain �eld is linearized by means of the modi�ed secant method or variational method
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Figure 13: Particulate composites. Matrix with kinematic hardening. Comparison between the RVP model
(solid line), the simpli�ed model RVP1st (dotted line), the simpli�ed model RVPX1st (circles) and full-�eld
simulations (stars). (a) Macroscopic stress in the tensile direction. (b) Average stress in the matrix. (c)
Average stress in the inclusions. (d) Stress uctuations in the matrix.
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Figure 14: Particulate composites. Matrix with kinematic hardening. Comparison between the RVP model
(solid line), the simpli�ed model RVP1st (dotted line), the simpli�ed model RVPX1st (circles) and full-
�eld simulations (stars). (a)Average of the back-stress over the matrix. (b) Back-stress uctuations in the
matrix

(see Ponte Casta~neda and Suquet, 1998) (the extension of this study to other linearization methods
(Ponte Casta~neda, 2002a,b), by choosing di�erent reference potentials, is left for future work). The
corresponding accumulated plastic strain �eld p and the corresponding yield stress are uniform in
each individual phase.

In the present approach, the yield function of each individual phase is nonlocal and can be
described using the second moment of the stress deviator (or the second moment of the di�erence
between the stress deviator and the back-stress when the phases exhibit kinematic hardening),
which is an improvement on earlier methods based on the �rst moment (average) of the stress in
each phase (Mercier and Molinari, 2009; Doghri et al., 2010).

When the hardening of the phases is purely isotropic two models are proposed and compared:
the variational model RVP accounting for both the average and the uctuations of the stress
�eld � n at the previous time step is more accurate, but requires the resolution of two nonlinear
scalar equations, coupled with the resolution of a linear equilibrium problem for a thermoelastic
composite, which can be solved in closed form (depending on the composite microstructure). The
simpli�ed model RVP1st which accounts only for the average per phase of the �eld� n requires
only the resolution of one scalar nonlinear equation (coupled with a linear equilibrium problem
for a thermoelastic composite). The accuracy of these models has been assessed for two-phase
composites composed of elastic inclusions dispersed in an elasto-viscoplastic matrix with a yield
stress. The Hashin-Shtrikman estimate has been used to solve the equilibrium problem for the
linear thermoelastic comparison composite and comparisons were made with full-�eld simulations.
The RVP model captures accurately the e�ective response of the composite and the resulting
approximation for the yield surface of the composite and its evolution, including the Bauschinger
e�ect, is quite satisfactory (to the best of our knowledge it is the only model capable of capturing
the Bauschinger e�ect). The RVP1st model is simpler to implement but is less accurate, especially
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to estimate local quantities such as the intraphase uctuations of the stress �eld in the matrix
which can be underestimated by about 90%.

When the phases exhibit both isotropic and kinematic hardening, three models have been
proposed with an increasing complexity. The more complex one, the RVP model, accounts for the
�rst and second moment of the stress and back-stress� n and X n at the previous time step. It
requires the resolution of three nonlinear scalar equations coupled with an equilibrium problem
for a linear thermoelastic composite. The second model RVPX1st which accounts for both the
�rst and the second moments of the stress �eld � n but only for the �rst moment of the back
stress X n requires the resolution of two nonlinear scalar equations coupled with an equilibrium
problem for a linear thermoelastic composite. Finally the RVP1st model which accounts only for
the �rst moment of the �elds � n and X n and requires only the resolution of a single nonlinear
scalar equation coupled with an equilibrium problem for a linear thermoelastic composite. The
comparisons with full-�eld simulations show that the RVP and RVPX1st models have a comparable
accuracy, except for the stress uctuations where the full RVP model is de�nitely more accurate.
Both models capture correctly the Bauschinger e�ect and the evolution of the yield surface of the
composite. The RVP1st model is less accurate, it does not capture the Bauschinger e�ect and
underestimates signi�cantly the stress uctuations in the matrix.
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Appendix A. From (11) to (1)

Let us briey show how the constitutive relations (1) can be retrieved from the dissipation
potential (11). A necessary condition for the dissipation potential ' given by (11) to be �nite is:

_"p
eq = _p; (A.1)

otherwise the supremum over � is + 1 .The evolution equations (12) for the internal variables read
as:

@w
@" p = �

@'�
@_" p ;

@w
@p

= �
@'�
@_p

: (A.2)

After due account of the relations (10), the constitutive relations (A.2) read as:

s � X =
2
3

(� Y + �)
_" p

_"p
eq

; � R(p) = �
�

_p
_"0

� m

� � : (A.3)

In order for ' � to be �nite and well-de�ned, _p has to be nonnegative. It follows from the second
equation in (A.3) that

� = R(p) + �
�

_p
_"0

� m

� R(p) � 0:

From the �rst equation in (A.3) it is concluded that when _" p 6= 0 then � Y + � = ( � � X )eq. The
combination of these two results shows that in order for _p to be di�erent from 0, ( � � X )eq� � Y � R(p)
has to be nonnegative (hence the positive part in the expression of _p) and _p is given by:

_p = _"0

 
[(� � X )eq � � Y � R(p)]+

�

! 1=m

:

Appendix B. Determination of the optimal LCC for a matrix with isotropic and kine-
matic hardening

This appendix gives details about the determination of the �ve unknownsh(2)
� , � (2)

n , h(2)
X , X (2)

n ,
� (2)

0 in the LCC when the matrix exhibits isotropic and kinematic hardening. The speci�c form
taken by equations (85) with the choice (92) is6:

h� n i 2 = h� h� i 2 + (1 � h� ) � (2)
n ; (a)

C (2) (� n ) ::
�

K
2� (2)

+
J

3k(2)

�
= h2

� C (2) (� ) ::
�

K
2� (2)

+
J

3k(2)

�
; (b)

hX n i 2 = hX hX i 2 + (1 � hX ) X (2)
n ; (c)

C (2) (X n ) :: K = ( hX )2C (2) (X ) :: K ; (d)

9
>>>>=

>>>>;

(B.1)

6From now on, the superscript (2) referring to the matrix will be omitted in the expressions of h � ; hX ; � 0 ; p since
these quantities exist only in the matrix.
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with h� = 1 � 1=� (2)
� ; hX = 1 � 1=� (2)

X . The �ve unknowns enter all these equations through the
thermoelastic propertiesL (2)

0 and � (2)
0 of the matrix in the LCC.

The unknowns � (2)
n and X (2)

n are determined �rst by the following procedure. According to
(89), the back-stressX in the LCC is related to � and X (2)

n by:

X =
� t� X H (2)

2� H
s +

� 0

� H
X (2)

n ; � H = � 0 +
� t
2

� X H (2) ; (B.2)

and, after averaging over phase 2,

hX i 2 =
� t� X H (2)

2� H
hsi 2 +

� 0

� H
X (2)

n : (B.3)

The average stresshsi 2 in the LCC can be expressed by a micromechanical model in terms of� (2)
0

and _" . Therefore, assumingh� and hX to be known, the three equations (B.1,a), (B.1,c) and (B.3)
and the localization relation in the LCC provide 4 equations for the 4 unknownshsi 2, � (2)

n , hX i 2

and X (2)
n . This system is solved by a symbolic computation software.

The unknowns h� ; hX and � 0 are now determined as follows. Thanks to relation (B.2), the
uctuations of X read as:

C (2) (X ) :: K =
�

� t� X H (2)

2� H

� 2

C (2) (s) :: K ;

Relation (B.1,d) leads to:

q
C (2) (X n ) :: K = � hX

� t� X H (2)

2� H

q
C (2) (s) :: K (B.4)

To the best of our knowledge there is no theoretical argument in favor of one sign or the other in
(B.4). However, in all examples that were considered in the course of the present study, choosing
a plus led to hX < 1 (meaning that the uctuations C (2) (X ) :: K increase with time) whereas
choosing a minus led tohX > 1 (meaning that the uctuations C (2) (X ) :: K decrease with time).
The indeterminacy is therefore removed by assuming that the variations ofhX i 2 : hX i 2 and
C (2) (X ) :: K are correlated (C (2) (X ) :: K increases or decreases whenhX i 2 : hX i 2 increases or
decreases).

Making use of the relation (90), the two equations (52) and (59) for� 0 and _p can be re-written
as :

_p =

r
2
3

h_" p : _" pi 2 =
1

3� 0

s �
3
2

(s � X ) : (s � X )
�

2
;

s �
3
2

(s � X ) : (s � X )
�

2
� (� Y + R(pn + � t _p)) = �

�
_p
_"0

� m

:

9
>>>>=

>>>>;

(B.5)

Finally the three nonlinear equations which are to be solved to determineh� ; hX and � 0 are (B.1,b),
(B.4) and (B.5) where _p is eliminated between the two equations of B.5.
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In addition, the �rst equation in (B.5) shows that _p � 0. Therefore a necessary condition for
the second equation to admit a solution is:

s �
3
2

(s � X ) : (s � X )
�

2
� (� Y + R(p)) � 0 (B.6)

(B.6) is the nonlocal (approximate) yield criterion for the matrix.

Appendix C. Resolution of (74) and (B.1,b)

Isotropic hardening : The implementation of the RVP model requires the resolution of the
nonlinear equations (74) and (75) coupled with the linear problem (47) for� , h(2) and � (2)

0 .
Numerical di�culties are expected in the resolution of equation (74), which can be put in the

form f (h; � 0) = 0, since f is a rational fraction with several poles. These poles come from the
expression of� (2)

n resulting from (73) and from the expression ofh� i 2. � (2)
n is, again, a rational

fraction with denominator DEN (h; � 0).

Figure C.15: Regularization of equation (74). Original function f (solid line) compared with the regularized
function (dotted line) as a function of h, when � 0 is the solution. (a) h < 1, (b) h > 1.

In order to avoid the singularities due to the zeros ofDEN in the resolution of (74), this equation
can be regularized by multiplying both sides by DEN (h; � 0). The improvement is illustrated in
�gure C.15 where the variations with h of f before regularization (solid line) and after regularization
(dotted line) are shown. These variations are shown for� 0 solution of the problem, at two di�erent

time steps, the �rst corresponding to h < 1 , i.e. C (2) (� n ) ::
�

K
2� (2)

+
J

3k(2)

�
< C (2) (� ) ::

�
K

2� (2)
+

J
3k(2)

�
, and the other one corresponding toh > 1, i.e. C (2) (� n ) ::

�
K

2� (2)
+

J
3k(2)

�
>
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C (2) (� ) ::
�

K
2� (2)

+
J

3k(2)

�
. The �gure also shows that equation (74) has several roots, the choice

made in the present study (which seems to deliver the best results) is to systematically choose the
smallest positive root.

Isotropic and kinematic hardening : The same di�culty arises when the phases exhibit
both isotropic and kinematic hardening in the resolution of the three nonlinear equations (B.1,b),
(B.4) and (B.5). (B.1,b) and (B.4) can be written as f 1(h� ; hX ; � 0) = 0 and f 2(h� ; hX ; � 0) = 0
wheref 1 and f 2 are rational fractions in h. These rational fractions have poles which are also poles
for � (2)

n and X (2)
n (which are again rational fractions). f 1 and f 2 are regularized by multiplying

them by their denominator.
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