
HAL Id: hal-00753809
https://hal.science/hal-00753809

Submitted on 19 Nov 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Building Meaningful Timed Models of Closed-loop DES
for Verification Purposes
Matthieu Perin, Jean-Marc Faure

To cite this version:
Matthieu Perin, Jean-Marc Faure. Building Meaningful Timed Models of Closed-loop
DES for Verification Purposes. Control Engineering Practice, 2013, In press, In press.
�10.1016/j.conengprac.2012.05.002�. �hal-00753809�

https://hal.science/hal-00753809
https://hal.archives-ouvertes.fr

Building Meaningful Timed Models of Closed-loop DES
for Verification Purposes

Matthieu Perina, Jean-Marc Faurea,b

aLaboratoire Universitaire de Recherche en Production Automatisée,
École Normale Supérieure de Cachan, F-94230 Cachan

(e-mail: {perin, faure}@lurpa.ens-cachan.fr)
bInstitut Supérieur de Mécanique de Paris,

F-93400 Saint-Ouen
(e-mail: jean-marc.faure@supmeca.fr)

Abstract

Formal verification methods require that a model of the system to analyze, in the form of a network of automata

for instance, be built previously. Every evolution of this formal model must represent a real evolution of the modeled

system; if the model contains indeed spurious evolutions, meaningless states, which do not correspond to physically

possible states, can be reached and the verification results are surely not trustworthy. This paper focuses on construc-

tion of the formal model of a closed-loop system which can be represented as a Discrete Event System (DES) and

where all evolutions and states are meaningful wrt to the real system behavior. A closed-loop system is composed of

a physical system to control, named plant, and a controller. A modular approach to build the plant model is presented

in the first part of the paper; to prevent from meaningless evolutions and states in this model, a solution based on

the concept of urgent edges is proposed and exemplified. Then, construction of the formal model of the closed-loop

system is addressed; it is shown that restriction of the evolutions of this model to the only meaningful ones can be

easily achieved by introducing variables that represent the modification of the inputs of the logic controller and the

stability condition of the control specification.

Keywords:

Formal methods, Plant model, Concurrent evolutions, Urgency, GRAFCET1, Model-checking

1. Introduction

Programmable Logic Controllers (PLCs) are widely used in automation systems. These components execute

software that implement the control specifications; to ensure dependability during operation of the automation system,

it really matters to check whether the specifications, as well as their implementation if no automatic certified code

generator is used, are conform to what is expected. Formal methods, based on sound, well-defined models, and in

particular formal verification methods by model-checking (Bérard et al. (2001)), are promising solutions to meet this

objective, as pointed out in Johnson (2007).

1Acronym from the French translation of Step Transition Control Graph

Preprint submitted to Control Engineering Practice February 17, 2012

Numerous valuable results have been published in the domain of model-checking of PLCs software and it is not

possible to give an exhaustive references list; however, it can be mentioned that the formalisms used in these works

are mainly transition systems (Bauer et al. (2004); Gourcuff et al. (2008); Schlich et al. (2009); Pavlovic and Ehrich

(2010) for instance), NCES (Net Condition/Event Systems) or TNCES (Timed NCES) (Hanisch et al. (1997); Vyatkin

and Hanisch (1999); Lobov et al. (2005a,b); Hanisch et al. (2006)), or timed automata (Bauer et al. (2004); Behrmann

et al. (2004), for instance).

According to Frey and Litz (2000), three approaches can be defined for model-checking of PLCs:

• Basic model-checking consists of an exhaustive analysis of the controller model, written in formal language, in

order to prove that some properties hold on this model. This method gives the strongest results when verification

of safety properties is addressed, because no assumption on the behavior of the environment is introduced, but

may provide no answer for liveness properties, as shown in Machado et al. (2006).

• Constraints based model-checking still uses a controller model described in a formal language but adds some

assumptions (over the input / output variables for example) in order to reduce the possibility of evolutions of the

analyzed model. This approach provides less strong results, because the results are correct iff the assumptions

are true, but permits to obtain answers for some simple liveness properties.

• The model-based model-checking approach uses, in addition to the controller model, a plant model also de-

scribed in a formal language. This method always provides results for liveness properties.

A detailed comparison of the first and third approaches can be found in Machado et al. (2006). As the first

concern of controller designers is to be sure that the controller is able to command the plant as required, verification

of all liveness properties is mandatory. This explains why this paper focuses only on model-based model-checking.

Closed-loop DES model

Orders

Sensors
information Plant model Controller

 model

Formal properties

AG !deadlock
AG ((TEST_KO || TEST_OK) EF !P)
…

VERIFICATION TOOL

PLC

Actuators,
Motors,
Sensors, …

Real components

Properties satisfied or not

Figure 1: Model-based model-checking principle.

Figure 1 describes the principle of model-based model-checking applied to a closed-loop discrete event system

(DES) where:

2

• The real closed-loop DES is composed of a PLC connected to plant components. Two models: plant model and

controller model, are then to be built.

• The formal models of both plant and controller are inputs, with one or several formal properties, of a model-

checker.

• This verification tool provides back a Boolean answer: the properties are satisfied (or not) on the model.

In order to obtain trustworthy results, the properties and the models given to the model-checker have to be mean-

ingful. The construction of meaningful formal properties will not be addressed in this paper; the interested reader

is referred to Campos and Machado (2009) for further information on this topic. At the opposite, this work focuses

on the construction of meaningful models, i.e. models where every evolution represents a change of state in the real

world; a meaningful plant model for instance must contain only evolutions which are physically feasible. A first con-

sequence of this objective is that timed models must be considered to model correctly the behavior of the closed-loop

system where some evolutions consume time.

Model-based model-checking of timed models has been addressed previously in Lobov et al. (2005a,b); Hanisch

et al. (2006); Bel Mokadem et al. (2010). The novelty of the work presented in this paper comes from the following

three features:

• The plant model is built from generic models of plant components (sensors, actuators). This choice is close to

the industrial practice in CAD2 where specific systems are often constructed by assembling instances of libraries

components and is mandatory to obtain industrial acceptance of model-based model-checking. This solution

was not selected in the latter reference where only a case study is presented and no methodology to build the

plant model is proposed. This is not the case for the first three references where such a methodology is presented

by using three UML3 diagrams (class diagrams, state-charts and collaboration diagrams); this approach is surely

valuable. However, it has been considered in this work, on the basis of previous research works in cooperation

with companies, that lots of automation engineers are not familiar with UML diagrams and that the use of three

kinds of diagrams may provoke difficulties during design of the generic models. This is the reason why only

one formalism (Timed Automata with Discrete Data) has been selected to represent these models in this study.

Combination of the two approaches does not seem to be a too difficult issue, however.

• The formal model of the controller is obtained from a specification model and not from an implementation

model, in a PLC programming language, like IL (Instruction List), LD (Ladder Diagram), FBD (Function Block

Diagram) or ST (Structured Text). This is a significant difference from the previous works where the controller

model depends on the programming language. The reason of this choice is that detection of errors in the

2Computer-Aided Design
3Unified Modelling Language

3

specification is less expensive than detection of errors in the implementation; model-checking of specifications

must then be privileged. Moreover, it is well-suited to the industrial practice to avoid manual code generation

but to generate automatically the code from the specification (model-based approach) with a certified/qualified

automatic code generator like SCADE 4; such practice is now commonly used for critical systems. It remains

interesting even if no automatic code generator is used, for cost reasons (the sooner in the life-cycle errors are

detected, the cheaper errors detection is).

• Last, both models (plant and controller models) are developed in a formalism, named Timed Automata with

Discrete Data (TADD) that permits to build realistic models because its semantics contains powerful mecha-

nisms to model urgency. Generally speaking, urgency is a concept which means that time evolution is stopped.

This permits to give priority to non-timed evolutions over timed evolutions, then to remove unexpected, for

non-realistic, concurrencies, while keeping realistic concurrencies between non-timed evolutions. Hence, con-

struction of modular meaningful models is facilitated. The semantics of TNCES does not seem to contain such

selective urgency mechanisms. The concept of urgency is used in the fourth reference (Bel Mokadem et al.

(2010)) to build the model of the closed-loop; however, this reference relies on a specific formalism: that of the

UPPAAL5 tool (Bengtsson et al. (1996)). At the opposite, the objective of this paper is to present a generic,

tool-independent method that can be implemented in several timed model-checkers.

The paper starts by presenting the formalism used in this work to model both plant and controller. Then, an

example of a closed-loop DES that will illustrate the contributions is described. Section 4 presents a modular approach

to build the plant model from generic components models; to prevent from meaningless evolutions in this model,

a solution based on the concept of urgent edges is proposed and exemplified. The next section is devoted to the

construction of the controller model, assuming that the controller is specified in GRAFCET (IEC 60848 (2002)).

Construction of the complete model of the closed-loop system is dealt with in Section 6; restriction of the evolutions

of this model to the only meaningful ones is achieved by introducing variables that represent the modification of the

inputs of the logic controller and the stability condition of the control specification. Section 7 focuses on verification

of properties on closed-loop models with include faultless or faulty plant models. The last section sums up the results

and gives perspectives for future work.

2. Timed Automata with Discrete Data

The models used in this paper will be described using the formalism of Timed Automata with Discrete Data

(TADD) described in Janowska and Janowski (2006). This formalism is particularly suitable to model urgency and

discrete variable evolutions in time. Moreover, it does not depend on a particular verification tool; the models that

will be presented may thus be used with different tools provided that sound transformation rules has been defined.

4SCADE website: http://www.esterel-technologies.com/products/scade-suite/
5UPPAAL website: http://www.uppaal.org

4

The complete formalism is defined in Janowska and Janowski (2006) and is an extension of the timed automata

formalism presented in Alur (1994). The major additions are the urgent edges, Boolean guards and a clear definition

of the behavior of discrete variables. The main features of this formalism are reminded below.

2.1. Variables, expressions and constraints

Let V = Vb ∪Vz be the finite set of discrete variables composed of the set of Boolean variables Vb taking values in

{true, f alse} and the set of integer variables Vz taking values in Z used by the TADD AT ADD.

The following sets may then be defined:

• The set Expr(Vz) of all arithmetical expressions over Vz is defined by:

expr ::= z | v | expr � expr | − expr | (expr) (1)

with z ∈ Z, v ∈ Vz, and � ∈ {−,+,×, /}, where / stands for the Euclidean division.

• B(V) is the set of all Boolean expressions over V defined by:

b ::= true | expr # expr | b ∧ b | b ∨ b | ¬b | (b) | v (2)

where expr ∈ Expr(Vz), v ∈ Vb and # ∈ {<,≤,=,≥, >}.

• A(V) is the set of all the actions over V such that:

a ::= ε | vz := expr | vb := {b, true, f alse} | a , a (3)

where ε is the null action, vz ∈ Vz, vb ∈ Vb, b ∈ B(V) and expr ∈ Expr(Vz).

Moreover, let C be a set of special variables taking values in R+ and named clocks; the set N(C) of all timed

constraints over a clock c is defined by:

n ::= true | c # d | n ∧ n (4)

with c ∈ C, d ∈ N, and # ∈ {<,≤,=,≥, >}.

2.2. Timed Automata with Discrete Data without urgency

The previous definitions allow to define a timed automaton with discrete data as a tuple (L, l0,V,C, E, I) where:

• L is a finite set of locations.

• l0 ∈ L is the initial location.

5

• V is a set of discrete variables, let v ∈ V be a variable, ṽ is the variable valuation and Ṽ is the set of all the

variables valuations.

• C is a set of clocks, let c ∈ C be a clock, c̃ ∈ [0,+∞) is the clock valuation and C̃ is the set of all the clocks

valuations.

• E ⊆ L × B(V) × N(C) × A(V) × 2C × L is a set of edges from a source location l ∈ L to a target location l′ ∈ L,

with a guard g ∈ B(V), a timed constraint t ∈ N(C) and an action a ∈ A(V). The term 2C is introduced for the

reset of clocks: each clock may be reset or not. r ⊆ C is defined as the set of the clocks to be reset in a specific

edge.

• I : L→ N(C) assigns an invariant to a location.

The semantics of a TADD is given below, with the following additional definitions:

• C̃ |= I(l) means that the valuations of clocks satisfy the invariant of location l.

• Ṽ |= g(e) means that the valuations of discrete variables satisfy the guard g of the edge e ∈ E.

• C̃ |= t(e) means that the valuations of clocks satisfy the timed constraint t of the edge e.

• [r 7→ 0]C̃ stands for the modification of clocks valuations such that each valuation of clocks from r is reset.

• [Va
a
7→ N]Ṽ stands for the modification of the valuations of variables from Va ⊆ V according to the action a.

The semantics of a TADD is a transition system 〈S , s0,→〉 where a state s ∈ S is a tuple (l, Ṽ , C̃), s0 = (l0, Ṽ0, C̃0)

is the initial state and→⊆ S × S is the transition relation such that:

(l, Ṽ , C̃)→ (l, Ṽ , C̃ + d) if

∀c,∀d′, 0 ≤ d′ ≤ d, c̃ + d′ |= I(l)
(5)

(l, Ṽ , C̃)→ (l′, Ṽ ′, C̃′) if

∃ e : l
g,t,a,r
−→ l′, Ṽ |= g, C̃ |= t, C̃′ = [r 7→ 0]C̃, Ṽ ′ = [Va

a
7→ N]Ṽ and C̃′ |= I(l′)

(6)

T >= 2 && !b
0 2 1

T <= 2

X < 42 || !b

a := true,
X := 42,
T := 0

Figure 2: A Timed Automaton with Discrete Data .

Figure 2 is an example of TADD with one clock T, two Boolean variables (a,b) and one integer variable X. TADD

will follow the following rules of representations:

6

• Locations (0, 1 and 2 in this example) are represented by circles, location names are in bold font.

• The initial location (here, location 0) is represented with a source edge.

• Locations invariants (T <= 2 for location 1 in this example) are in bold font.

• Edges are represented by arrows.

• Guards and time constraints are in normal font. The guard and time constraint of an edge may be combined by

a disjunction or conjunction operator, respectively noted || and && (T >= 2 && !b, for example). The Boolean

complement operator (NOT operator) will be noted !.

• Actions on variables will be represented by the assignment operator := in bold font; actions are separated

by comas, when several actions are associated with an edge. Clock resets will follow the same pattern, the

assignment being limited to reset (zero-assignment), like in the edge from location 1 to location 2.

2.3. Complete semantics of TADD

This semantics includes the concept of urgent edge. A Boolean attribute noted u ∈ {true, f alse} is associated with

every edge in that case. Edges with the urgent attribute u set to true are named urgent edges whereas those with the

urgent attribute equal to false are referred to as normal edges (generally simply called edges without precision). The

intuitive action of this attribute is to give priority to urgent edges over timed evolutions (equation 5). It is obvious that

no constraint on clocks valuations must take place in an urgent edge (t = true).

The syntax of TADD is then modified: an edge becomes a 7-tuple of the form e = (l, g, t, u, a, r, l′) with two

locations l and l′, one guard g, one time constraint t, the urgent attribute u, one action a and a set of clocks to reset r.

With this addition, the complete semantics of a TADD is a transition system 〈S , s0,→〉 where a state s ∈ S is a

tuple (l, Ṽ , C̃), s0 = (l0, Ṽ0, C̃0) is the initial state and→⊆ S × S is the transition relation such that:

(l, Ṽ , C̃)→ (l, Ṽ , C̃ + d) if

∀c,∀d′, 0 ≤ d′ ≤ d, c̃ + d′ |= I(l), and

∀e = (l, g, t, u, a, r, l′), u = f alse or (u = true and Ṽ |, g or C̃ |, I(l′))

(7)

(l, Ṽ , C̃)→ (l′, Ṽ ′, C̃′) if

∃ e : l
g,t,u,a,r
−→ l′, Ṽ |= g, C̃ |= t, C̃′ = [r 7→ 0]C̃, Ṽ ′ = [Va

a
7→ N]Ṽ and C̃′ |= I(l′)

(8)

The introduction of urgent Boolean attributes removes potential concurrencies between urgent and timed edges.

Nevertheless other concurrencies remain, as exemplified in the examples of Figure 3 where urgent edges are repre-

sented by double-lined arrows:

• several urgent edges starting from the same location are concurrent when this location is active and when their

guards are satisfied (Figure 3a);

7

• several non-urgent edges starting from the same location are concurrent when this location is active and when

their guards and time constraints are satisfied (Figure 3b); in the case of this example, the two edges are con-

current when the clock value is equal to 2;

• several non-timed (urgent or non-urgent) edges starting from the same location are concurrent when this location

is active and when their guards are satisfied (Figure 3c).

These concurrency structures imply that the evolutions of a TADD model are non-deterministic which is compul-

sory to model the behavior of plant in a realistic fashion.

true

0

1 2

true

(a)

T >= 2 true

1

2 3

T <= 2

(b)

true true

A

B C

(c)

Figure 3: Three examples of TADD.

2.4. Network of Timed Automata with Discrete Data

A network of TADD is a set of automata ATADD
i = (Li, l0i ,V,C, Ei, Ii) with i ∈ N∗; the sets of clocks (C) and vari-

ables (V) are shared by all automata. The network thus is { ATADD
i } = (L̄, l̄0,V,C, E, I) with the following definitions:

• L̄ = (L1 × L2 · · · × Ln) is the set of locations.

• l̄ = (l1, l2, . . . , ln) is defined as the active location vector.

• l̄0 = (l01, l
0
2, . . . , l

0
n) is defined as the initial location vector.

• V and C are the shared set of variables and clocks.

• E =
⋃

i Ei

• I(l̄) =
∧

j I j(li) is defined as the common invariant function.

• l̄[li 7→ l′i] stands for the change of the ith value of vector l̄ from li to l′i .

The semantics of a network of TADD is a transition system 〈S , s0,→〉 where a state s ∈ S is a tuple (l̄, Ṽ , C̃),

s0 = (l̄0, Ṽ0, C̃0) is the initial state and→⊆ S × S is the transition relation such that:

8

(l̄, Ṽ , C̃)→ (l̄, Ṽ , C̃ + d) if

∀c,∀d′, 0 ≤ d′ ≤ d, c̃ + d′ |= I(l̄), and

∀e = (l̄, g, t, u, a, r, l̄′), u = f alse or u = true and Ṽ |, g or C̃ |, I(l′)

(9)

(l̄, Ṽ , C̃)→ (l̄′ = l̄[li 7→ l′i], Ṽ
′, C̃′) if

∃ ei : li
g,t,u,a,r
−→ l′i , Ṽ |= g, C̃ |= t, C̃′ = [r 7→ 0]C̃, Ṽ ′ = [Va

a
7→ N]Ṽ and C̃′ |= I(l̄′)

(10)

2.5. Example of network of timed automata with discrete data

Figure 4 presents a simple network of TADD where:

• L̄ = {{A, B,C} × {1, 2, 3}}.

• l̄0 = {A, 1}

• V = Vb ∪ Vz = {a} ∪ ∅

• C = {T }

• I(l) : 1 7→ T ≤ 2

• There is one urgent edge (A→ B) and three non-urgent edges : 2 non-timed (A→ C and 1→ 3) and one timed

(1→ 2)

Two possible evolutions of this network are described below.

1. At the initial state (locations A and 1 active, a false and T equals 0) two edges are concurrent:

• A→ B because its guard is satisfied

• A→ C for the same reason.

The other edges cannot be fired because 1 → 2 is timed thus forbidden by the urgent edge and the guard of

1→ 3 is false. The behavior of the network is non-deterministic. The next active location vector is either (B,1),

if the first edge is fired or (C,1) if the second edge is fired; in the latter case, a is set to true.

true true

A

B C

a := true

T >= 2 a

1

2 3

T <= 2

Figure 4: Network of two Timed Automata with Discrete Data.

9

true true

A

B C

a := true

T >= 2 a

1

2 3

T <= 2

Figure 5: State of the example of figure 4 after the first evolution.

2. Figure 5 shows the active locations assuming that the edge A→ C has been fired. When T=0 (firing an urgent

edge does not consume time), there is no concurrency because only the guard of 1→ 3 is true. If this edge is

not fired before the clock value reaches 2, two edges (1→ 2 and 1→ 3) become concurrent at this date. One of

these edges is then fired at this date because location 1 cannot remain longer active owing to its invariant.

In this example, the guards which are always true have been represented; it will no longer be the case in the

remainder of this paper, for brevity reasons.

3. Description of the example

H_OUT H_MID H_IN

H_G_IN

H_G_OUT

V_OUT

V_IN

V_G_IN

V_G_OUT

P

Testing device

TEST
TEST_OK

TEST_KO

START

Figure 6: Testing station layout.

The contributions of this work will be exemplified on the example represented in Figure 6. This example is a

testing station composed of:

• An horizontal bistable pneumatic cylinder plugged to a 5/3 double-piloted valve.

• A set of three sensors detecting three positions of the rod of this cylinder: rod at the rightmost position, rod at

the leftmost position and rod in the middle position.

10

• A vertical bistable pneumatic cylinder plugged to a 5/3 double-piloted valve.

• A set of two sensors detecting two positions of the rod of this cylinder: rod at upper position and rod at lower

position.

• A suction cup plugged to a vacuum pump, used to pick and transfer mechanical parts.

• A testing device, used to verify whether a part is conform or not.

• A push-button used to start the testing procedure.

A PLC will be used to control the plant; the inputs and outputs of the plant are given in Table 1. It matters to note

that the inputs of the plant are the outputs of the controller and vice-versa.

Inputs Description Outputs Description

H G IN Command to move the cup to the right H IN Rod at the rightmost position

H G OUT Command to move the cup to the left H MID Rod at the middle position

H OUT Rod at the leftmost position

V G IN Command to move the cup to the top V IN Rod at the upper position

V G OUT Command to move the cup to the bottom V OUT Rod at the lower position

P Command to activate the vacuum pump

TEST Command to the testing device to test part TEST OK Part has passed the test

TEST KO Part has failed the test

START Push-button starting the testing procedure

Table 1: List of inputs and outputs of the plant example.

The expected behavior of the closed-loop system is the following:

1. When the START button is pushed, the suction cup goes down and picks the part (it is assumed that a part is

present when the START button is pushed).

2. The part is lifted, moved to the middle position and then lowered to the testing device.

3. This device gives back the result of the test (TEST OK or TEST KO).

4. • If the test was passed, the suction is stopped and the part moves on. The suction cup comes back to its

initial position (move up, then move right).

• If the test was failed, the part is brought to the leftmost position (move up, then move left) and is released

into a collector of non-conform parts. Then the suction cup comes back to its initial position.

11

4. Building meaningful plant models

Two approaches are a priori possible to build the plant model (Figure 7):

• The first one (Figure 7a) is called the monolithic approach and is based on expertise; a single monolithic model

is built from the layout of the plant. This approach is obviously error-prone and can be applied reasonably only

to toy-cases.

• The second one (Figure 7b) is called the modular approach; the complete plant model is built by instanciation

of generic models of plant components (actuators, sensors, ...). This model thus is a set of small formal models

which can be easily modified when the real plant changes (new components introduction, existing components

modification). Only this approach is applicable to real cases, as detailed in Philippot et al. (2009), and this is

the reason why it was selected for this study.

Modeling

Plant design

Plant model

(a) Monolithic approach.

Instanciation

Plant model

Library of generic
models of plant
components

Plant design

Actuator Sensor

(b) Modular approach.

Figure 7: Two approaches to build a plant model.

A first version of generic components models is presented in the next section; no urgent edge is introduced in

this basic version. The plant model of the example is then obtained, by instantiation of generic models. The third

subsection aims at showing that spurious evolutions leading to meaningless states may occur in the plant model. To

solve this issue, an improvement of the solution presented in Perin and Faure (2009) is proposed.

4.1. Basic generic components models description

Figure 8 shows the generic model of a pneumatic cylinder plugged to a 5/3 double-piloted valve. The following

variables have been introduced:

12

• Two logic input variables which are assigned by the controller model and only read by the cylinder model:

– G IN (go in): order to move the rod inside the body of the cylinder

– G OUT (go out): order to move the rod outside the body of the cylinder

• One output variable which is assigned and read by the cylinder model and only read by other models (such as

sensors models):

– X: integer variable modeling the length of the rod which is outside the cylinder. The value of this variable

belongs to the interval [X min,X max] with X max and X min integers that satisfy X max > X min.

• One clock t.

!G_IN

!G_OUT

G_OUT && X < X_max

G_IN && X > X_min

G_IN &&
t == 1 &&
X – D_X >
X_min

t <= 1

t <= 1 G_OUT &&
t == 1 &&
X + D_X <
X_max

t := 0,
X := X – D_X

t := 0,
X := X + D_X

t := 0

t := 0

G_OUT && t==1 && X + D_X >= X_max

X := X_max

G_IN && t==1 && X – D_X <= X_min

X := X_min

2 0 1

Figure 8: Basic generic model of bi-stable pneumatic cylinder plugged to a 5/3 double-piloted valve.

Details on this model are:

• The locations 0, 1 and 2 represent respectively the motionless rod, the rod going out and coming in the body of

the cylinder. The invariant on clock t ensures that for each time step (t ≤ 1) the variable X is modified (increased

or decreased).

• The edges 0→ 1 and 0→ 2 model the beginning of a movement (going out or coming in) due to an order from

the controller. The guards of these edges include constraints that mean that a movement is possible only if the

physical limit is not already reached. The clock t is reset in order to start counting the elapsed time.

• The edges without time constraint 1 → 0 and 2 → 0 model the end of a movement when the order becomes

false.

• The self-loop edges, from/to the locations 1 and 2, model the rod movement. Their guards ensure that the order

is still true and that the physical limit (X max or X min) will not be exceeded once the edge fired. The time

constraints implies that the edge is fired each time step; the value of X is then increased or decreased by D X,

parameter that represents the elementary movement.

• The edges with a time constraint 1 →0 and 2 → 0 model the end of a movement when the physical limit is

reached.

13

In order to reduce the number of generic models, a unique generic model is built for the set of sensors related

to an actuator. This approach will be exemplified with a set of three sensors that is aiming at distinguishing five

logical positions of a linear actuator (Figure 9): the extreme positions IN and OUT, the middle position MID and

the two positions between the extreme and the middle ones. The physical detection ranges of the logical sensors

are grayed; this means for instance that the logical position is IN when the variable X (position of the mobile part

of the actuator) stands in the interval [X min,X IN max]. It must be mentioned that, when coupling an instance of

the actuator model and an instance of the sensor model, the values of the bound parameters X IN max, X MID min,

X MID max, X OUT min, in the sensors model, and the D X parameter, in the actuator model, must be consistent to

permit every logical position be detected. A solution is to define D X as the smallest detection range.

X

X_MID_min

X_MID_max

MID

X_OUT_min

OUT

X_IN_max

IN

X_min X_max

Figure 9: Ranges of the sensors.

Figure 10 shows the generic model of this set of sensors. The following variables have been introduced:

• One input variable which are assigned by another model and only read by the sensors model: X, integer that

represents the physical position of a mobile moving on the axis. It is assumed that the minimal value of X is 0;

no assumption on the maximal value is made.

• Three logical output variables: IN, OUT and MID. The logical position of the mobile is obtained from the

values of these three variables.

This model comprises five locations that correspond to the five logical positions (IN, OUT, MID, Between IN and

MID, Between MID and OUT). Every edge represents a change of logical position. It matters to underline that no

initial location is defined because the initial physical position of the mobile is unknown. This location will be defined

when instantiating the model, according to the physical initial position.

X < X_IN_max

X >= X_IN_max

X <= X_MID_min

X > X_MID_min

X < X_MID_max

X >= X_MID_max

X <= X_OUT_min

X > X_OUT_min

IN := false

IN := true

MID := true

MID := false

MID:= false

MID := true

OUT := true

OUT := false
4 3 2 1 0

Figure 10: Basic generic model of a set of three logic sensors.

14

4.2. Plant model

The plant model is obtained by selecting the appropriate generic components models and by instantiating these

models as many times as there are instances of these components in the plant. The result of the instantiation process

for the horizontal cylinder and its associated set of sensors is presented in Figure 11.

!H_G_IN

!H_G_OUT

H_G_OUT && H < 20

H_G_IN && H > 0

H_G_IN &&
t == 1 &&
H – 2 > 0

t <= 1

t <= 1
H_G_OUT &&
t == 1 &&
H + 2 < 20

t := 0,
H:= H – 2

t := 0,
H := H + 2

t := 0

t := 0

H_G_OUT && t==1 && H + 2 >= 20

H := 20

H_G_IN && t==1 && H – 2 <= 0

H := 0

2 0 1

(a) Instanciated model of the horizontal pneumatic cylinder.

H < 2

H >= 2

H <= 9

H > 9

H < 11

X >= 11

H <= 18

H > 18

H_IN := false

H_IN := true

H_MID := true

H_MID := false

H_MID:= false

H_MID := true

H_OUT := true

H_OUT := false
4 3 2 1 0

(b) Instantiated model of the sensors detecting horizontal movements.

Figure 11: Instantiated models for the horizontal movement of the example.

It has been chosen to implement communications between automata by using exclusively shared variables in the

plant model. To avoid multiple assignments, each shared variable is assigned by one and only one component model.

In the case of Figure 11, H (position on the horizontal axis) is only assigned by the actuator model (Figure 11a) and

H IN, H MID and H OUT are only assigned by the sensors model (Figure 11b). As the initial horizontal position is

the rightmost one, the initial location of the sensors model corresponds to the position IN.

The complete set of models for the plant is composed of:

• One instance of the generic pneumatic cylinder plugged to a 5/3 double-piloted valve model (Figure 11a),

named H Act, to model the horizontal actuator, where X, G IN and G OUT are instantiated respectively by H,

H G IN and H G OUT, and where X min, X max and D X are respectively settled to 0, 20, and 2.

• One instance of the generic pneumatic cylinder plugged to a 5/3 double-piloted valve model, named V Act,

to model the vertical actuator, where X, G IN and G OUT are instantiated respectively by V, V G IN and

V G OUT, and where X min, X max and D X are respectively settled to 0, 10, and 1.

• One instance of the generic model of sensors (Figure 11b), named H Sen, to model the set of sensors detecting

the position of the horizontal rod, where X, OUT, MID, and IN are instantiated respectively by H, H OUT,

15

H MID, and H IN, and where X IN max, X MID min, X MID max, and X OUT min are respectively set to 2,

9, 11, and 18. As the initial position of the rod is supposed to be fully retracted, the variable H IN is initialized

to true and the initial location will be the rightmost location 0.

• One instance of the generic model of sensors, not described in this paper but similar to the 3-sensor generic

model with also one initial location but only three locations standing for the possible sensors values and named

V Sen, to model the set of sensors detecting the position of the vertical rod, where X, OUT and IN are instanti-

ated respectively by V, V IN, and V OUT and where X IN max, and X OUT min are respectively set to 1 and

9. As the initial position of the rod is supposed to be fully retracted, the V IN variable is initialized to true and

the initial location is defined to be consistent with this value.

• One instance of the generic model of a suction pad, one instance of the generic model of a testing device,

and one instance of the generic model of a push-button. The latter two models will be used only during the

verification process and are described in section 7.

4.3. Evolution of the plant model

The aim of this subsection is to show that spurious evolutions leading to meaningless states can occur in the plant

model. This issue will first be exemplified on the previous example, and then generalized.

4.3.1. Illustration of the issue on the example

The following simple scenario represented in Figure 12 will be used to pinpoint the issue: the rod of the horizontal

actuator is in its rightmost position (rod retracted) and this actuator receives from the controller the order to move

to the middle position (the variable H G OUT is set by the controller and will remain true until the variable H MID

becomes true).

At the beginning of this scenario, the active locations of H Sen and H Act are their initial locations; H IN is true,

H MID and H OUT are false and H equals 0. When H G OUT becomes true, the active location of H Act becomes

the right location, which models the outgoing movement of the rod; then the clock t increases by 1 and the self-loop

edge of H Act is fired, setting the value of H to 2 and resetting t. The state described in Figure 12a is thus reached.

From this state, two concurrent evolutions are possible according to the selected semantics:

• If the semantics given by (7) is selected, the clock t increases by 1 and thus permits another evolution of H Act

(the invariant is satisfied), using the self-loop edge that models the end of one outgoing movement step; during

this evolution, the value of H becomes 4. The active location of H Sen remains the same. This evolution is

represented in Figure 12b, where the dotted edge represents the fired edge.

• If the semantics given by (8) is selected (Figure 12c), H Sen evolves. The dotted edge is fired, which means that

the sensor has detected that the rod is no longer in its rightmost position (H IN is reset). The clock t remains

equal to 0 and H Act does not evolve.

16

H >= 2

X < 2

H_IN := true

H_IN := false

0 1
!H_G_out

H_G_out && H < 20
t <= 1 H_G_out &&

t == 1 &&
H + 2 < 20

t := 0,
H := H + 2

t := 0

H := 20

0 1

H_G_out && t==1 && (H + 2) >= 20 H_Act H_Sen

(a) Initial state of the analysis (the active states are greyed and H=2).

H >= 2

X < 2

H_IN := true

H_IN := false

0 1
!H_G_out

H_G_out && H < 20
t <= 1 H_G_out &&

t == 1 &&
H + 2 < 20

t := 0,
H := H + 2

t := 0

H := 20

0 1

H_G_out && t==1 && (H + 2) >= 20 H_Act H_Sen

(b) Evolution 1: H is increased whereas the sensor model does not evolve.

H >= 2

X < 2

H_IN := true

H_IN := false

0 1
!H_G_out

H_G_out && H < 20
t <= 1 H_G_out &&

t == 1 &&
H + 2 < 20

t := 0,
H := H + 2

t := 0

H := 20

0 1

H_G_out && t==1 && (H + 2) >= 20 H_Act H_Sen

(c) Evolution 2: H does not increase but the sensor model evolves, resetting H IN

Figure 12: Meaningless and meaningful evolutions of the plant model.

This discussion clearly shows that the evolution which consumes time (first evolution above) leads to a meaning-

less state that does not represent correctly the physical behavior of the plant components: the model of the actuator

assigns the value 4 to H whereas the sensor model always yields the information H IN true. This evolution is spurious.

On the opposite, when the second interpretation is selected, the sensor model evolves at the right time. This evolution

corresponds to the real behavior and thus is meaningful.

4.3.2. Generalization

The issue that was exemplified above is the general issue of concurrent evolutions in a set of timed automata.

Edges can thus be concurrent with respect to only one semantics or to several ones. The first case is not really an

issue, because it often models a real concurrency problem, such as concurrent access to shared resources. On the

other hand, the second case can lead to modeling flaws. Indeed, plant designers often think that the time is spent

(time evolution semantics given by equation 7) after all other possible evolutions have been made (location change

semantics given in equation 8). This is not true, unless the urgent attribute is used, and leads to spurious evolutions and

state spaces that include meaningless states, especially when physical systems evolutions with different time scales,

17

like the movement of an actuator rod and the detection of a sensor, are to be modeled.

4.4. Modification proposed

4.4.1. Instantaneous and timed evolutions

In order to solve the problem that was emphasized in the previous section, it matters to come back to the plant

modeling process. The designer has to model the behavior of a physical system by means of a formalism for timed

discrete event systems which owns particular semantics. Whatever the semantics choice, all evolutions of the formal

model must represent real meaningful evolutions of the plant. These latter ones can be separated in two sets, according

to a time consumption criterion:

• Instantaneous evolutions are evolutions which have no duration, in the designer’s viewpoint, such as the detec-

tion of a part by a sensor;

• Timed evolutions are evolutions which consume time, such as the movement of a rod.

In the remainder of this paper, it will be assumed that every edge of the network of TADD models either an instanta-

neous evolution or a timed evolution, but not both. If this is not the case, the edge must be split.

The solution consists in giving priority to instantaneous evolutions over timed evolutions by using TADD with

urgency and by setting the urgent attribute to true for every instantaneous evolution and to false for every timed

evolution. The formal models of the plant components that will be used for verification are merely obtained by

instantiation of the modified meaningful generic models (Figures 13a for cylinders and 13b for sensors) and therefore

contain only meaningful evolutions.

! G_IN

!G_OUT

G_OUT && X < X_max

G_IN && X > X_min

G_IN &&
t == 1 &&
X – D_X >
X_min

t <= 1

t <= 1 G_OUT &&
t == 1 &&
X + D_X <
X_max

t := 0,
X := X – D_X

t := 0,
X := X + D_X

t := 0

t := 0

G_OUT && t==1 && X + D_X >= X_max

X := X_max

G_IN && t==1 && X – D_X <= X_min

X := X_min

2 0 1

(a) Modified version of the generic model of the bistable pneumatic cylinder.

X < X_IN_max

X >= X_IN_max

X <= X_MID_min

X > X_MID_min

X < X_MID_max

X >= X_MID_max

X <= X_OUT_min

X > X_OUT_min

IN := false

IN := true

MID := true

MID := false

MID:= false

MID := true

OUT := true

OUT := false
4 3 2 1 0

(b) Modified version of the generic sensor model.

Figure 13: Modified version of generic models.

18

4.4.2. Application to the example

Once the two models H Act and H Sen are modified (Figure 14), when H reaches the value 2 (Figure 14a), only

the instantaneous evolution of H Sen (Figure 14b) remains possible, assuming that H G OUT remains true. The

spurious evolution which was discussed in Section 4.3.1 is no longer possible, because the urgent edge has priority

over the timed one.

!H_G_out

H_G_out && H < 20
t <= 1 H_G_out &&

t == 1 &&
H + 2 < 20

t := 0,
H := H + 2

t := 0

H := 20

0 1

H_G_out && t==1 && (H + 2) >= 20 H_Act H_Sen

H <= 2

X > 2

H_IN := true

H_IN := false
0 1

(a) Initial state, H equals 2.

!H_G_out

H_G_out && H < 20
t <= 1 H_G_out &&

t == 1 &&
H + 2 < 20

t := 0,
H := H + 2

t := 0

H := 20

0 1

H_G_out && t==1 && (H + 2) >= 20 H_Act H_Sen

H <= 2

X > 2

H_IN := true

H_IN := false
0 1

(b) Only the meaningful evolution remains possible.

Figure 14: Evolutions of the modified models.

5. Building the controller model

This section focuses on construction of the model of the controller, assuming that the controller behavior bas been

specified in GRAFCET, an industrial specification language (IEC 60848 (2002)), and implemented into a PLC with

cyclic I/O scanning.

A brief reminder of the GRAFCET syntax and evolution rules is first presented. Then, the behavior of the example

(Figure 6) controller, in the form of a GRAFCET, is given to illustrate this reminder. A method to define formally the

behavior of a GRAFCET model by a set of algebraic equations is proposed in the third part. This allows to model the

behavior of the controller, PLC which executes such a set of equations, using TADD.

5.1. Brief reminder on the GRAFCET standard

Only the elements of the GRAFCET syntax and semantics that are useful to understand the rest of this paper are

reminded below. The interested readers are referred to David (1995), Bierel et al. (1997), Provost et al. (2011) for

deeper presentations.

19

5.1.1. GRAFCET syntax

A GRAFCET model describes the expected behavior of a logic controller which receives logic input signals and

generates logic output signals. A GRAFCET (Figure 15) comprises steps, graphically represented by squares, and

transitions, represented by horizontal lines; a step can only be linked to transitions and a transition only linked to

steps. The links from steps to transitions and from transitions to steps are directed links. The default orientation is

from top to bottom and it is not necessary in this case to put an arrow on the link. An arrow must be put on a link if

this link goes from bottom to top or may be put on any link to ease understanding.

A step defines a partial state of the system and can be active or inactive; hence, a Boolean variable, named step

activity variable can be defined for each step. The set of all active steps define the situation of the GRAFCET.

Actions may be associated to a step; an action associated to a step is performed only when this step is active and

then acts upon an output variable.

A transition condition must be associated to each transition; this condition is a Boolean expression which may

include input variables, steps activity variables and conditions on time.

5.1.2. Evolution rules

The detailed behavior of any GRAFCET model can be obtained by applying the following five evolution rules:

1. At the initial time, all the initial steps, defined by the model designer and double-squared, are active; all the

other steps are inactive.

2. A transition is enabled when all the steps that immediately precede this transition (upstream steps of the transi-

tion) are active. A transition is fireable when it is enabled and when the associated transition condition is true.

A fireable transition must be immediately fired.

3. Firing a transition provokes simultaneously the activation of all the immediately succeeding steps and the deac-

tivation of all the immediately preceding steps.

4. When several transitions are simultaneously fireable, they are simultaneously fired.

5. When a step shall be both activated and deactivated, by applying the above previous evolution rules, it is

activated if it was inactive, or remains active if it was previously active.

5.2. GRAFCET specification of the controller of the example

The expected behavior of the controller of the example has been described textually in section 3. The GRAFCET

of Figure 15 represents this behavior.

The inputs and outputs of this model are respectively the outputs and inputs of the plant. Moreover, the following

notations are used in the transition conditions:

• · is the disjunction operator,

• + is the conjunction operator,

20

0

1

2

3

4

5

6

20

21

22

23

10

11

12

t0

t1

t2

t3

t4

t5

t6at6b

t10

t11

t12

t20

t21

t22

t23

START

V OUT

3s/X2

V IN

H MID

V OUT

TEST OK · TEST KOTEST KO

5s/X10

V IN

H IN

V IN

H OUT

5s/X22

H IN

V G OUT

P

P V G IN

P H G OUT

P V G OUT

P TEST

V G IN

H G IN

P V G IN

P H G OUT

H G IN

Figure 15: GRAFCET specification of the controller of the example.

• x is the complement of x,

• Ns/Xi means that the condition becomes true N seconds after the activation of the step i.

5.3. Algebraic representation of a GRAFCET specification

The behavior of a GRAFCET model can be represented by a set of algebraic equations, as detailed in Machado

et al. (2006). This requires to introduce the following definitions.

Let S tep be the set of steps of the GRAFCET, let s ∈ S tep be a step:

• Xs is the activity variable associated to step s. It is set to true if the step is active, false otherwise.

• Pres is the set of preceding transitions (using directed links) of step s.

• Posts is the set of following transitions (using directed links) of step s.

Let Trans be the set of transitions of the GRAFCET, let t ∈ Trans be a transition:

• TCt is the transition condition associated to transition t.

• U pt ⊂ S tep is the set of upstream steps of transition t.

21

• Dnt ⊂ S tep is the set of downstream steps of transition t.

• FCt is the firing condition of transition t. It is set to true if the transition can be fired.

Let Out be the set of output variables of the GRAFCET, let o ∈ Out be an output variable.

• AS o ⊂ S tep is the set of steps where the output variable o is set through actions.

The following three sets of equations defines then the behavior of a GRAFCET:

Firing conditions of transitions:

FCt = (
∧

Xs) ∧ TCt (11)

where Xs belongs to U pt.

Steps activities evolutions: :

Xs = (
∨

FCt) ∨ (Xs ∧ (
∧

(¬FCu))) (12)

where FCt ∈ Pres and FCu ∈ Posts.

Outputs values definitions:

o = (
∨

Xs), (13)

where Xs belongs to AS o

At the initial situation, the step activity variables of the initial steps are true, the other steps activity variables are

false. The output variables associated through actions to the initial steps are also true, the other output variables false.

5.4. Controller model

The I/O scanning cycle of a PLC is reminded in Figure 16; this cycle comprises three phases (input values reading,

execution of the control application and output values updating) that are performed sequentially. If the behavior of

the controller has been specified in GRAFCET, the control application can be described by the three sets of equations

which have been previously defined and executing this application consists in evaluating sequentially these sets :

1. The firing conditions of transitions are first computed.

2. Then, the values of the step activity variables are updated.

3. Last, the outputs values are computed.

22

Inputs reading

Computation of
firing conditions

Computation of
steps activities

Computation of
output values

1

2

3

Output updating

Execution of the
control application

PLC cycle

Figure 16: Implementation of the algebraic model of GRAFCET in a PLC.

It is then possible to build a first version of the model of the controller in TADD (Figure 17) using the three sets

of equations. This model does not represent the first and third phases of the PLC cycle because, in the model of the

closed-loop system, the inputs and outputs of the PLC model are variables shared with the model of the plant. The

inputs reading phase is merely performed by reading the values of variables written by the plant model and the outputs

updating phase consists in writing variables. Hence, only the second phase of the PLC cycle is modeled. To take into

account the order of the three computations, three locations, then edges, are introduced; the three sets of equations are

actions associated to the edges. Last, it matters to underline that all edges are urgent because it is assumed that the

duration of the PLC cycle is far smaller than that of the timed evolutions of the plant components; the consequence of

this assumption on the behavior of the closed-loop system will be discussed in the following section.

As some transition conditions depend on time and specifically on durations of steps (conditions associated to

transitions t2, t10 and t22 in Figure 15), models of timers are to be added to the previous model of the PLC. A solution

to model a timer with timed automata is given in Mader and Wupper (1999). Figure 18 shows how this solution can

be adapted to a timer which measures the time t1 elapsed from the activation of a step i:

• In the initial location, the timer is disabled. When the variable T Xi t1 which represents the activation of the

step becomes true, the active location becomes RUN; the timer is launched.

• From this new location, two evolutions are possible. The timer can be disabled if T Xi t1 becomes false.

Otherwise, the active location becomes OK when the duration defined by the parameter t1 is elapsed; the

variable T Xi t1 Q becomes true. This variable is the transition condition of the transition which follows the

step and can be used in the firing condition of this transition.

23

1

2

FC_T0 := X_0 && START ,
FC_T1 := X_1 && V_OUT ,
FC_T3 := X_3 && V_IN ,
…

TEST := X_6 ,
P := X_2 || X_3 || X_4 || X_5 || X_6 || X_20 || X_21 ,
V_G_OUT := X_1 || X_5 ,
…

X_0 := (FC_T12 || FC_T23)|| (X_0 && !(FC_T0)),
X_1 := (FC_T0)|| (X_1 && !(FC_T1)),
X_2 := (FC_T1)|| (X_2 && !(FC_T2)),
…

0

Figure 17: First version of the PLC model for the example of Figure 15.

t := 0

OUT

T_Xi_t1_Q := true

T_Xi_t1

!T_Xi_t1

T_Xi_t1 && t >= t1

!T_Xi_t1

T_Xi_t1_Q := false

t <= t1

RUN

OK

Figure 18: Model of a timer associated to step i.

Once the models of timers defined, the complete set of algebraic equations for the GRAFCET of Figure 15 can be

stated (Figure 19). Some firing conditions (CF T2, CF T10, and CF T22) depend on timer output variables and three

GRAFCET outputs must be defined to launch the timers (first three equations of 19c).

The complete model of the controller specified by the GRAFCET of Figure 15 and implemented in a PLC with

cyclic I/O scanning is the network of TADD given in Figure 20:

• Figure 20a models the I/O scanning and controller behavior;

• Figures 20b, 20c, and 20d model the timers;

• Communication between these models is performed by the variables T Xi ti (timer launch) and T Xi t1 Q (end

of timer).

24

CFT0 = X0 ∧ S T ART

CFT1 = X1 ∧ V OUT

CFT2 = X2 ∧ T X2 3s Q

CFT3 = X3 ∧ V IN

CFT4 = X4 ∧ H MID

CFT5 = X5 ∧ V OUT

CFT6a = X6 ∧ T ES T OK

CFT6b = X6 ∧ T ES T KO

CFT10 = X10 ∧ T X10 5s Q

CFT11 = X11 ∧ V IN

CFT12 = X12 ∧ H IN

CFT20 = X20 ∧ V IN

CFT21 = X21 ∧ H OUT

CFT22 = X22 ∧ T X22 5s Q

CFT23 = X23 ∧ H IN

(a) Firing conditions

X0 = (CFT12 ∨CFT23) ∨ (X0 ∧ ¬(CFT0))

X1 = (CFT0) ∨ (X1 ∧ ¬(CFT1))

X2 = (CFT1) ∨ (X2 ∧ ¬(CFT2))

X3 = (CFT2) ∨ (X3 ∧ ¬(CFT3))

X4 = (CFT3) ∨ (X4 ∧ ¬(CFT4))

X5 = (CFT4) ∨ (X5 ∧ ¬(CFT5))

X6 = (CFT5) ∨ (X6 ∧ ¬(CFT6a ∨CFT6b))

X10 = (CFT6a) ∨ (X10 ∧ ¬(CFT10))

X11 = (CFT10) ∨ (X11 ∧ ¬(CFT11))

X12 = (CFT11) ∨ (X12 ∧ ¬(CFT12))

X20 = (CFT6b) ∨ (X20 ∧ ¬(CFT20))

X21 = (CFT20) ∨ (X21 ∧ ¬(CFT21))

X22 = (CFT21) ∨ (X22 ∧ ¬(CFT22))

X23 = (CFT22) ∨ (X23 ∧ ¬(CFT23))

(b) Steps activities

T X2 3s = X2

T X10 5s = X10

T X22 5s = X22

T ES T = X6

P = X 2 ∨ X3 ∨ X4 ∨ X5 ∨ X6 ∨ X20 ∨ X21

V G OUT = X1 ∨ X5

V G IN = X3 ∨ X11 ∨ X20

H G OUT = X4 ∨ X21

H G IN = X12 ∨ X23

(c) Outputs values

Figure 19: Algebraic representation of the GRAFCET specification of the example.

25

1 2

FC_T0 := X_0 && START ,
FC_T1 := X_1 && V_OUT ,
FC_T2 := X_2 && T_X2_3s_Q ,
FC_T3 := X_3 && V_IN ,
FC_T4 := X_4 && H_MID ,
FC_T5 := X_5 && V_OUT ,
FC_T6a := X_6 && TEST_OK ,
FC_T6b := X_6 && TEST_KO ,
FC_T10 := X_10 && T_X10_5s_Q ,
FC_T11 := X_11 && V_IN ,
FC_T12 := X_12 && H_IN ,
FC_T20 := X_20 && V_IN ,
FC_T21 := X_21 && H_OUT ,
FC_T22 := X_22 && T_X22_5s_Q ,
FC_T23 := X_23 && H_IN

T_X2_3s := X_2 ,
T_X10_5s := X_10 ,
T_X22_5s := X_22 ,
TEST := X_6 ,
P := X_2 || X_3 || X_4 || X_5 || X_6 || X_20 || X_21 ,
V_G_OUT := X_1 || X_5 ,
V_G_IN := X_3 || X_11 || X_20 ,
H_G_OUT := X_4 || X_21 ,
H_G_IN := X_12 || X_23

X_0 := (FC_T12 || FC_T23)|| (X_0 && !(FC_T0)),
X_1 := (FC_T0)|| (X_1 && !(FC_T1)),
X_2 := (FC_T1)|| (X_2 && !(FC_T2)),
X_3 := (FC_T2)|| (X_3 && !(FC_T3)),
X_4 := (FC_T3)|| (X_4 && !(FC_T4)),
X_5 := (FC_T4)|| (X_5 && !(FC_T5)),
X_6 := (FC_T5)|| (X_6 && !(FC_T6a || FC_T6b)),
X_10 := (FC_T6a)|| (X_10 && !(FC_T10)),
X_11 := (FC_T10)|| (X_11 && !(FC_T11)),
X_12 := (FC_T11)|| (X_12 && !(FC_T12)),
X_20 := (FC_T6b)|| (X_20 && !(FC_T20)),
X_21 := (FC_T20)|| (X_21 && !(FC_T21)),
X_22 := (FC_T21)|| (X_22 && !(FC_T22)),
X_23 := (FC_T22)|| (X_23 && !(FC_T23))

0

(a) PLC cycle model.

t := 0

OUT

T_X2_3s_Q := true

T_X2_3s

! T_X2_3s

T_X2_3s && t >= 3

! T_X2_3s

T_X2_3s_Q := false

t <= 3

RUN

OK

(b) Model of the timer associated to step 2.

t := 0

OUT

T_X10_5s_Q := true

T_X10_5s

! T_X10_5s

T_X10_5s && t >= 5

! T_X10_5s

T_X10_5s_Q := false

t <= 5

RUN

OK

(c) Model of the timer associated to step 10.

t := 0

OUT

T_X22_5s_Q := true

T_X22_5s

! T_X22_5s

T_X22_5s && t >= 5

! T_X22_5s

T_X22_5s_Q := false

t <= 5

RUN

OK

(d) Model of the timer associated to step 22.

Figure 20: Complete controller model of the example.

6. Building meaningful models of closed-loop systems

The model of the closed-loop system, termed in what follows closed-loop model, is a network of TADD composed

by the plant model and the controller model.

26

6.1. Closed-loop model evolutions

Figure 21 shows a possible evolutions sequence of a part of the closed-loop model. For readability purposes, only

a partial representation of the vertical pneumatic cylinder (V Act model) and of the PLC cycle model is presented. As

a reminder, a partial view of the GRAFCET specification is given, with the active steps grayed. The transitions which

must be fired at a given moment are also grayed.

At the initial date, Figure 21a, the active locations of both V Act and PLC cycle model are the initial ones (X 0 is

true for instance). It will be assumed that the Boolean variable START is true, all other Boolean variables are false

and V, position on the vertical axis, equals 0.

• The first evolution is an evolution of the PLC cycle model (Figure 21c), because V G OUT is false. The firing

conditions (FC) are computed: as START is true and step 0 active (X 0 is true), the firing condition FC 0

becomes true.

• The PLC cycle model continues to evolve from location 1 to 2 (Figure 21e), calculating the new active steps.

As FC 0 is true, step 0 is deactivated and step 1 activated (X 0 reset, X 1 set).

• During the third evolution of the PLC cycle from 2 to 0 (Figure 21g), the values of the output variables of the

controller are computed. V G OUT becomes true because step 1 is active.

• Then, two urgent edges, one in the plant model and one in the controller model are concurrent. It will be

assumed that the edge of the plant model is fired (otherwise the previous evolutions may occur leading another

time to a concurrency situation), as shown in Figure 21i. The V Act model evolves from location 0 to the

location 1 modeling the outgoing movement of the rod, because V G OUT is true.

This leads to a deadlock in the plant model. As the urgent edges of the PLC cycle model have priority over the

only fireable edge of the plant model (timed self-loop from/to location 1), this edge will never be fired, the clock t

and the variable V will never be increased. This would mean that the rod of the cylinder stays motionless while this

actuator has received the order to move out; this state is really a meaningless state for a faultless actuator.

6.2. Removing deadlock of the plant model

The solution to solve this issue is to allow the evolutions of the PLC cycle model only when an input variable

of the controller has been modified. This solution must be also applied to the variables which represent the end of

timers (T Xi t1 Q variables) because the models of timers include also timed evolutions which could be superseded

by urgent edges of the PLC cycle. This solution is implemented by introducing new variables:

• EVOL PL (for evolution of the plant), Boolean variable representing the assignation of an input variable of the

controller. This variable becomes true each time an input variable of the controller is assigned by the plant

model. An action -EVOL PL := true- is then added to every edge of the plant model where an input variable

27

! V_G_OUT

V_G_OUT && V < 10
t <= 1 V_G_OUT &&

t == 1 &&
V + 1 < 10

t := 0,
V := V + 1

t := 0

V := 10

0 1

V_G_OUT && t==1 && (V + 1) >= 10 V_Act PLC

1 2

0

FC_T0 := X_0 …

X_0 := (FC_T12 || FC_T23)||…

T_X2_3s := X_2 …

(a) Initial state.

0

1

t0

t1

START

V OUT

V G OUT

0

(b) Specification.

! V_G_OUT

V_G_OUT && V < 10
t <= 1 V_G_OUT &&

t == 1 &&
V + 1 < 10

t := 0,
V := V + 1

t := 0

V := 10

0 1

V_G_OUT && t==1 && (V + 1) >= 10 V_Act PLC

1 2

0

FC_T0 := X_0 …

X_0 := (FC_T12 || FC_T23)||…

T_X2_3s := X_2 …

(c) First evolution: firing conditions.

0

1

t0

t1

START

V OUT

V G OUT

0

(d) Specification.

! V_G_OUT

V_G_OUT && V < 10
t <= 1 V_G_OUT &&

t == 1 &&
V + 1 < 10

t := 0,
V := V + 1

t := 0

V := 10

0 1

V_G_OUT && t==1 && (V + 1) >= 10 V_Act PLC

1 2

0

FC_T0 := X_0 …

X_0 := (FC_T12 || FC_T23)||…

T_X2_3s := X_2 …

(e) Second evolution: active steps.

0

1

t0

t1

START

V OUT

V G OUT1

(f) Specification.

! V_G_OUT

V_G_OUT && V < 10
t <= 1 V_G_OUT &&

t == 1 &&
V + 1 < 10

t := 0,
V := V + 1

t := 0

V := 10

0 1

V_G_OUT && t==1 && (V + 1) >= 10 V_Act PLC

1 2

FC_T0 := X_0 …

X_0 := (FC_T12 || FC_T23)||…

T_X2_3s := X_2 …

0

(g) Third evolution: set of output variables.

0

1

t0

t1

START

V OUT

V G OUT1

(h) Specification.

! V_G_OUT

V_G_OUT && V < 10
t <= 1 V_G_OUT &&

t == 1 &&
V + 1 < 10

t := 0,
V := V + 1

t := 0

V := 10

0 1

V_G_OUT && t==1 && (V + 1) >= 10 V_Act PLC

1 2

FC_T0 := X_0 …

X_0 := (FC_T12 || FC_T23)||…

T_X2_3s := X_2 …

0

(i) Fourth evolution: evolution of the actuator model.

0

1

t0

t1

START

V OUT

V G OUT1

(j) Specification.

Figure 21: Evolutions of the closed-loop model.

28

of the controller is assigned. This variable will be reset at the beginning of the PLC cycle as explained below.

Figure 22 shows the modified model of the set of vertical sensors; four actions are introduced because input

variables of the controller are assigned in every edge of this model.

• END TI (for end of a timer), Boolean variable which represents the end of a timer. This variable becomes true

when the duration of the timer is elapsed. An action -END TI := true- is then added to the edges of timers

which model this end (Figure 23).

V < 1

V >= 1

V <= 9

V > 9

V_IN:= false,
EVOL_PL := true

V_IN := true,
EVOL_PL := true

V_OUT := true,
EVOL_PL := true

V_OUT := false,
EVOL_PL := true

2 1 0

Figure 22: Modified version of the model of the set of vertical sensors.

t := 0

OUT

T_X2_3s_Q := true,
END_TI := true

T_X2_3s

! T_X2_3s

T_X2_3s && t >= 3

! T_X2_3s

T_X2_3s_Q := false

t <= 3

RUN

OK

Figure 23: Modified version of the model of the timer associated to step 2.

Once these variables introduced in the plant model and in the timer models, the PLC cycle model must be modified

as shown in Figure 24. A new initial location W (for waiting) is defined. The guard of the edge W→ 0 is true if an

input variable of the controller has changed or a timer has ended. In that case, the model may evolve (but is not forced

to) and EVOL PL and END TI are both reset to avoid two consecutive cycles without change of the value of an input

variable or end of a timer.

If focus is now put on the behavior of the closed-loop model, it can be noted that:

• When W is the active location of the PLC cycle model and the guard of the edge starting from this location

false, only the plant model or timer models can evolve.

• When W is active and this guard true, the PLC cycle model may perform one (and only one) cycle. During this

evolution, concurrencies between every edge of the model and urgent edges of other models may be found and

solved, as usually, in a non-deterministic fashion (evolution of the controller or the plant model); this implies

that several inputs of the controller may be changed by the plant model during the cycle.

29

1 2

FC_T0 := X_0 && START ,
FC_T1 := X_1 && V_OUT ,
FC_T2 := X_2 && T_X2_3s_Q ,
FC_T3 := X_3 && V_IN ,
FC_T4 := X_4 && H_MID ,
FC_T5 := X_5 && V_OUT ,
…

T_X2_3s := X_2 ,
T_X10_5s := X_10 ,
T_X22_5s := X_22 ,
TEST := X_6,
…

X_0 := (FC_T12 || FC_T23)|| (X_0 && !(FC_T0)),
X_1 := (FC_T0)|| (X_1 && !(FC_T1)),
X_2 := (FC_T1)|| (X_2 && !(FC_T2)),
X_3 := (FC_T2)|| (X_3 && !(FC_T3)),
X_4 := (FC_T3)|| (X_4 && !(FC_T4)),
X_5 := (FC_T4)|| (X_5 && !(FC_T5),
…

W

0

EVOL_PL := false,
END_TI := false

EVOL_PL || END_TI

Figure 24: Modified model of the PLC cycle.

Hence, from one cycle to the following one, at least one input variable is changed -the controller is reactive enough,

no input change is missed- but several input variables may change as this is the case when a real PLC is connected to

a real plant. The closed-loop model behaves in a realistic manner what is mandatory to obtain trustworthy verification

results.

With these modifications, the previous sequence of evolutions is changed as shown in Figure 25. The initial state

is the same (Figure 25a), except that EVOL PL is true because it is assumed that START has changed (no evolution

is possible without this assumption). This allows the PLC cycle model to start a cycle as shown in Figure 25b;

EVOL PL becomes false. The next three evolutions are unchanged and have been skipped. At the end of this PLC

cycle, V G OUT has been set to true and, as neither EVOL PL nor END TI are true (no input of the controller has

changed), the PLC model is stopped. The only evolution is then that of the V Act model shown in Figure 25c. At this

point, as no urgent edge is fireable, the self-loop edge modeling the movement of the rod can be fired after 1 time unit,

as shown is Figure 25d.

There is no more deadlock in the plant model. Another PLC cycle is possible when the next input change occurs,

and so on; in the case of this example, this change is generated by the vertical sensors model, when V becomes equal

to 1.

6.3. Removing deadlocks in the controller model

The modifications of the plant and controller models which have been introduced in the previous sub-section

remove deadlocks of the plant model but may introduce a deadlock of the controller model when the situation of the

GRAFCET is transient. It is reminded that a situation of a GRAFCET is the set of active steps at a given date; a

situation is stable iff no transition of the GRAFCET is fireable from this situation without the change of an input value

and transient iff at least one transition can be fired without inputs values change (Provost et al. (2011)). Hence, with

the modification proposed in 6.2, the PLC cycle model will reach a deadlock state if the current situation is transient

(the GRAFCET can evolve even if the values of the inputs remain the same) as illustrated in figures 26 and 27.

30

! V_G_OUT

V_G_OUT && V < 10
t <= 1 V_G_OUT &&

t == 1 &&
V + 1 < 10

t := 0,
V := V + 1

t := 0

V := 10

0 1

V_G_OUT && t==1 && (V + 1) >= 10 V_Act PLC Cycle

1 2

W

FC_T0 := X_0 …

X_0 := (FC_T12 || FC_T23)||…

T_X2_3s := X_2 …

0
EVOL_PL := false,
END_TI := false

EVOL_PL || END_TI

(a) Initial state.

! V_G_OUT

V_G_OUT && V < 10
t <= 1 V_G_OUT &&

t == 1 &&
V + 1 < 10

t := 0,
V := V + 1

t := 0

V := 10

0 1

V_G_OUT && t==1 && (V + 1) >= 10 V_Act PLC Cycle

1 2

W

FC_T0 := X_0 …

X_0 := (FC_T12 || FC_T23)||…

T_X2_3s := X_2 …

0
EVOL_PL := false,
END_TI := false

EVOL_PL || END_TI

(b) First evolution: starting of the PLC cycle.

! V_G_OUT

V_G_OUT && V < 10
t <= 1 V_G_OUT &&

t == 1 &&
V + 1 < 10

t := 0,
V := V + 1

t := 0

V := 10

0 1

V_G_OUT && t==1 && (V + 1) >= 10 V_Act PLC Cycle

1 2

W

FC_T0 := X_0 …

X_0 := (FC_T12 || FC_T23)||…

T_X2_3s := X_2 …

0
EVOL_PL := false,
END_TI := false

EVOL_PL || END_TI

(c) Fifth evolution: Evolution of the V Act model.

! V_G_OUT

V_G_OUT && V < 10
t <= 1 V_G_OUT &&

t == 1 &&
V + 1 < 10

t := 0,
V := V + 1

t := 0

V := 10

0 1

V_G_OUT && t==1 && (V + 1) >= 10 V_Act PLC Cycle

1 2

W

FC_T0 := X_0 …

X_0 := (FC_T12 || FC_T23)||…

T_X2_3s := X_2 …

0
EVOL_PL := false,
END_TI := false

EVOL_PL || END_TI

(d) Sixth evolution: Timed evolution of the V Act model.

Figure 25: Evolutions with the modified models.

31

In those figures, the table on the left gives the values of three variables, the PLC cycle model is given in the center

(dotted edges represent edges which are fired) and a part of the GRAFCET specification is represented on the right.

• The initial situation of the GRAFCET is step 23 active (Figure 26); then H G IN is true. The variable H IN

delivered by the horizontal sensor is assumed false as well as EVOL PL and END TI.

• During the activity of this step, the push-button is pressed and START becomes true as well as EVOL PL

(Figure 27a).

• This provokes one cycle of evolutions of the PLC cycle model (Figure 27b). However, no transition is fireable:

t0 is not fireable because step 0 is not active and t23 is not fireable because H IN is false. Hence, no step activity

variable changes.

• When H IN becomes true (Figure 27c), EVOL PL becomes true too. Another cycle is possible.

• During this cycle, the step activity variables of steps 23 and 0 are respectively reset and set: this models the

firing of transition t23 (27d).

From this situation no more evolution is possible because, as EVOL PL has been reset during the firing of the first

edge in the previous cycle of evolutions, the PLC cycle model is in a deadlock state, except if another input variable

changes. This is not the case because, at this moment, the plant model is waiting for the order V G OUT (action

associated to step 1) from the controller; the model of the closed-loop system has reached a deadlock. This state is

meaningless because a real system would evolve as the transition t0 can be fired and consequently must be fired.

This issue is solved by introducing a new Boolean variable, named stable, false if at least one firing condition is

true, true otherwise. This variable is assigned and used only in the PLC cycle model (Figure 28). More precisely, it

is computed in an action of the second edge of the cycle(0 → 1), once all firing conditions are computed. It is used

twice to control the following evolutions:

• if stable is not true, the outputs values are not computed and a new cycle is performed (guard of the first edge

from the initial state is true),

Variables Values

START False

H IN False

EVOL PL False

PLC Cycle model

1 2

W

FC_T0 := X_0 …

X_0 := (FC_T12 || FC_T23)||…

T_X2_3s := X_2 …

0
EVOL_PL := false,
END_TI := false

EVOL_PL || END_TI

23

0

t0

t23

START

H IN

H G IN23

GRAFCET specification

Figure 26: Sequence of evolutions of the closed-loop model with the modified cycle model: initial state.

32

Variables Values

START True

H IN False

EVOL PL True

PLC Cycle model

1 2

W

FC_T0 := X_0 …

X_0 := (FC_T12 || FC_T23)||…

T_X2_3s := X_2 …

0
EVOL_PL := false,
END_TI := false

EVOL_PL || END_TI

23

0

t0

t23

START

H IN

H G IN23

GRAFCET specification

(a) First evolution: START set.

Variables Values

START True

H IN False

EVOL PL False 1 2

W

FC_T0 := X_0 …

X_0 := (FC_T12 || FC_T23)||…

T_X2_3s := X_2 …

0
EVOL_PL := false,
END_TI := false

EVOL_PL || END_TI

PLC Cycle model

23

0

t0

t23

START

H IN

H G IN23

GRAFCET specification

(b) Second evolution: PLC model reacts.

Variables Values

START True

H IN True

EVOL PL True

PLC Cycle model

1 2

W

FC_T0 := X_0 …

X_0 := (FC_T12 || FC_T23)||…

T_X2_3s := X_2 …

0
EVOL_PL := false,
END_TI := false

EVOL_PL || END_TI

23

0

t0

t23

START

H IN

H G IN23

GRAFCET specification

(c) Third evolution: H IN set.

Variables Values

START True

H IN True

EVOL PL False 1 2

W

FC_T0 := X_0 …

X_0 := (FC_T12 || FC_T23)||…

T_X2_3s := X_2 …

0
EVOL_PL := false,
END_TI := false

EVOL_PL || END_TI

PLC Cycle model

23

0

t0

t23

START

H IN

H G IN

0

GRAFCET specification

(d) Fourth evolution: PLC model reacts.

Figure 27: Sequence of evolutions of the closed-loop model with the modified cycle model.

33

• otherwise, the outputs values are computed and the evolutions stop.

This behavior is conforming to that described in the GRAFCET standard; outputs are updated only when the

situation is stable. Last, it matters to note that an infinite sequence of transient situations may cause an unexpected

behavior: the cycle of evolutions never stops. It is assumed in this study that the behavior of the GRAFCET model

does not contain such sequence; this assumption can be checked by model-checking the GRAFCET previously, as

described in Roussel and Lesage (1996) or Lamperiere-Couffin and Lesage (2000).

1 2

FC_T0 := X_0 && START ,
FC_T1 := X_1 && V_OUT ,
FC_T2 := X_2 && T_X2_3s_Q ,
FC_T3 := X_3 && V_IN ,
FC_T4 := X_4 && H_MID ,
FC_T5 := X_5 && V_OUT ,
… ,
stable := !FC_T0 && !FC_T1 &&
!FC_T2 … && !FC_T23

T_X2_3s := X_2 ,
T_X10_5s := X_10 ,
T_X22_5s := X_22 ,
TEST := X_6,
…

X_0 := (FC_T12 || FC_T23)|| (X_0 && !(FC_T0)),
X_1 := (FC_T0)|| (X_1 && !(FC_T1)),
X_2 := (FC_T1)|| (X_2 && !(FC_T2)),
X_3 := (FC_T2)|| (X_3 && !(FC_T3)),
X_4 := (FC_T3)|| (X_4 && !(FC_T4)),
X_5 := (FC_T4)|| (X_5 && !(FC_T5),
…

W

0

EVOL_PL := false,
END_TI := false

EVOL_PL || END_TI || !stable

!stable

stable

Figure 28: Final version of the PLC cycle model.

Figures 29 and 30 show that this final version of the PLC cycle model (Figure 28) removes the deadlock in case of

transient situations. The initial situation is the same that in Figure 27 and stable is true because this situation is stable.

• When START becomes true, EVOL PL becomes true too (Figure 29a).

• The PLC cycle model evolves (Figure 29b) and, as no firing condition is true, stable remains true. The outputs

values are assigned at their previous values and the PLC cycle stops in its initial state.

• When H IN becomes true, EVOL PL becomes true too (Figure 29c) and the PLC cycle model evolves (Figure

29d). As the firing condition FC 23 is now true, transition t23 is fired and stable becomes false. No output is

assigned and a new cycle begins.

• During this second cycle (Figure 30), FC 0 is computed true and stable false; the active step becomes step 1

(referring to Figure 15). No output is assigned and a new cycle begins.

• This third cycle (not represented) will show that the situation is stable (FC 1 requires V OUT to be true). The

outputs are assigned and, in particular, H G IN becomes false and V G OUT true (action linked to step 1).

34

Variables Values

START True

H IN False

EVOL PL True

stable True
PLC cycle model

1 2

W 0

EVOL_PL || END_TI
|| ! stable

FC_T0 := …,
stable := !FC_T0 && !FC_T1
&& !FC_T2 … && !FC_T23

EVOL_PL := false,
END_TI := false

X_0 := (FC_T12 || FC_T23)||…

T_X2_3s := …
!stable

stable

23

0

t0

t23

START

H IN

H G IN23

GRAFCET specification

(a) First evolution: START set.

Variables Values

START True

H IN False

EVOL PL False

stable True
PLC cycle model

1 2

W 0

EVOL_PL || END_TI
|| ! stable

FC_T0 := …,
stable := !FC_T0 && !FC_T1
&& !FC_T2 … && !FC_T23

EVOL_PL := false,
END_TI := false

X_0 := (FC_T12 || FC_T23)||…

T_X2_3s := …
!stable

stable

23

0

t0

t23

START

H IN

H G IN23

GRAFCET specification

(b) Second evolution: PLC model reacts.

Variables Values

START True

H IN True

EVOL PL True

stable True
PLC cycle model

1 2

W 0

EVOL_PL || END_TI
|| ! stable

FC_T0 := …,
stable := !FC_T0 && !FC_T1
&& !FC_T2 … && !FC_T23

EVOL_PL := false,
END_TI := false

X_0 := (FC_T12 || FC_T23)||…

T_X2_3s := …
!stable

stable

23

0

t0

t23

START

H IN

H G IN23

GRAFCET specification

(c) Third evolution: H IN is set.

Variables Values

START True

H IN True

EVOL PL False

stable False
PLC cycle model

1 2

W 0

EVOL_PL || END_TI
|| ! stable

FC_T0 := …,
stable := !FC_T0 && !FC_T1
&& !FC_T2 … && !FC_T23

EVOL_PL := false,
END_TI := false

X_0 := (FC_T12 || FC_T23)||…

T_X2_3s := …
!stable

stable

23

0

t0

t23

START

H IN

H G IN

0

GRAFCET specification

(d) Fourth evolution: PLC model reacts.

Figure 29: Sequence of evolutions of the closed-loop model with the final version of the PLC cycle model (part 1).

35

Variables Values

START True

H IN True

EVOL PL False

stable False
PLC cycle model

1 2

W 0

EVOL_PL || END_TI
|| ! stable

FC_T0 := …,
stable := !FC_T0 && !FC_T1
&& !FC_T2 … && !FC_T23

EVOL_PL := false,
END_TI := false

X_0 := (FC_T12 || FC_T23)||…

T_X2_3s := …
!stable

stable

23

0

t0

t23

START

H IN

H G IN

GRAFCET specification

Figure 30: Sequence of evolutions of the closed-loop model with the final version of the PLC cycle model (part 2).

6.4. Final generic models

Figure 31 depicts the two successive modifications of the closed-loop model that have been proposed in this section

to remove the deadlocks:

• Two variables EVOL PL and EVOL TI have been first defined. The first one is set in every edge of a sensor

model where an input variable of the controller is modified; the second one is set in the edge of a timer that

represents the end of this timer. These two variables are used in the guard of the first edge of the PLC cycle

model; they are reset when this edge is crossed.

• The variable stable has been then defined and a new edge introduced in the PLC cycle model. This variable is

used only in this model; it is computed at every cycle, after all firing conditions have been computed, and used

in the guards of three edges.

Then, the meaningful model of a given closed-loop system is composed of:

• Instances of generic models of plant components (Figures 13a for the actuators and 32 for the sensors);

• One controller model that is a network of TADD with one model of PLC cycle, instance of the model of Figure

33a, and as many instances of the model of Figure 33b as there are timers in the GRAFCET specification.

Intermediate closed-loop model

Basic closed-loop model

Final closed-loop model

Introduction of two variables EVOL_PL and
END_TI to avoid plant model deadlocks

Introduction of variable stable to avoid
controller model deadlocks

Figure 31: Modifications of the closed-loop model.

36

X < X_IN_max

X >= X_IN_max

X <= X_MID_min

X > X_MID_min

X < X_MID_max

X >= X_MID_max

X <= X_OUT_min

X > X_OUT_min

IN := false,
EVOL_PL := true

IN := true,
EVOL_PL := true

MID := true,
EVOL_PL := true

MID := false,
EVOL_PL := true

MID:= false,
EVOL_PL := true

MID := true,
EVOL_PL := true

OUT := true,
EVOL_PL := true

OUT := false,
EVOL_PL := true

4 3 2 1 0

Figure 32: Final version of a generic model for a set of sensors.

1 2

Firing Conditions equations
and stable variable computation

Outputs values
definitions equations

Steps activities equations

W

0

EVOL_PL := false,
END_TI := false

EVOL_PL || END_TI || !stable

!stable

stable

(a) Final version of the generic model of the PLC cycle.

t := 0

OUT

T_Xi_t1_Q := true,
END_TI := true

T_Xi_t1

!T_Xi_t1

T_Xi_t1 && t >= t1

!T_Xi_t1

T_Xi_t1_Q := false

t <= t1

RUN

OK

(b) Final version of a generic model for a timer.

Figure 33: Final generic controller model.

7. Verification of formal properties

The aim of this section is to show, on the basis of the example of Figure 6, that the closed-loop models developed

are tractable, i.e. formal properties can be checked in a short time by an existing timed model-checker. As the TADD

formalism is not tool-supported, UPPAAL (Larsen et al. (1997)) has been selected for this study. This tool is widely

used for formal verification of timed models and its efficiency, compared to other similar tools , as well as its scalability

have been already demonstrated (Larsen et al. (1995); Lindahl et al. (1998)). This choice implies that the models in

TADD are to be translated into UPPAAL timed automata prior to verification. The main rules for this translation are

only sketched below, for room reasons:

• the locations are directly translated, with their invariants;

37

• a guard of a UPPAAL edge is the conjunction of the guard and time constraint of the corresponding TADD

edge;

• an urgent UPPAAL communication channel is defined for the whole model; every urgent edge is synchronized

with this channel (Behrmann et al. (2004), what is not the case for the non-urgent edges.

7.1. Environment modeling

Properties verification on the closed-loop model requires the environment (START push-button and Testing de-

vice) be modeled because three inputs of the controller (START, TEST OK, TEST KO) are issued from the envi-

ronment. These models have been built according to the modeling rules that have been defined and are presented at

Figures 34 and 35.

0
START := !START,
EVOL_PL := true,
t := 0

t >= 1

Figure 34: START push button model.

The model of the START push-button is composed of a unique location and a self-loop; this edge is timed but

no invariant is associated to the location. Hence, firing of the edge is never forced. The value of the START logical

variable is changed when the edge is fired; as there exists concurrency between this edge and the other timed edges,

the variable START may change at any moment provided that at least one time unit be elapsed since the previous

change. Hence, these changes are uncontrollable events, a feature that is mandatory for verification.

t_TEST := 0
TEST

TEST && t >= 4

TEST_OK := true,
EVOL_PL := true t_TEST <= 4

T

!TEST
OK KO

TEST && t >= 4

TEST_KO := true,
EVOL_PL := true

TEST_OK := false,
EVOL_PL := true

TEST_KO := false,
EVOL_PL := true

!TEST !TEST
W

Figure 35: Testing device model.

Figure 35 describes a testing procedure that always lasts 4 time units and provides a Boolean test result (TEST OK

or TEST KO).

38

7.2. Properties checking with a faultless plant model

Several kinds of properties can be defined and checked on a formal model (Bérard et al. (2001)). Only one liveness

property and one safety property will be considered in this paper which focuses mainly on construction of meaningful

models. The selected liveness property is the ability to come back to the initial state of the closed-loop system (step 0

of the GRAFCET active and cylinders at their initial positions (V IN and H IN true)), whatever the current state; it is

written in the UPPAAL formalism:

!(X 0 && V IN && H IN) − − > (X 0 && V IN && H IN) (14)

where && is the conjunction operator, ! the complement one and −− > represents the Leads to operator6.

The selected safety property means that the rod of the vertical cylinder is at its uppermost position during the

horizontal movement of the cup; this property is mandatory to avoid collisions with other parts or tools and is stated

as follows:

A[] !((H G OUT ||H G IN) && !V IN) (15)

Which means that there does not exist any state of the closed-loop model where an order to the horizontal cylinder

(H G OUT or H G IN) is true and the variable V IN (vertical cylinder at its uppermost position) is false.

Both properties are verified on the presented model. Each verification result is obtained is approximately one

second; this shows tractability of the closed-loop model.

7.3. Properties checking with a faulty plant model

7.3.1. Introducing faults in plant components models

Building meaningful models of closed-loop systems where the plant components may fail in different manners

is a significant issue and would deserve a full paper. The aim of this section is simply to show on an example that

the proposed method can be extended to integrate faults of the plant components and detection of these faults by the

controller. This claim will be illustrated by focusing only on one fault: the vertical cylinder gets stuck and one fault

detection method: watchdog during the cylinder movements.

Figure 36 shows the new model of the vertical cylinder. A Boolean variable V S (Vertical cylinder Stuck) is

introduced in the guards. This variable is controlled either by the user who can then verify properties in absence or

presence of the fault or randomly. When this variable is false (faultless behavior), the model behaves as explained

previously; when it is true, some edges (the self-loops that represent the movements of the rod for instance) cannot

be fired because their guards are false and other ones (urgent edges from locations 1 or 2) are forced if their source

location is active. Hence, assuming that the active location is 1 or 2, the urgent edge from this location is immediately

6 p − − > q is equivalent to A[] (p imply A <> q)

39

!V_G_IN || V_S

!V_G_OUT || V_S

V_G_OUT && V < 10 && !V_S

V_G_IN && V > 0 && !V_S

V_G_IN &&
t == 1 &&
V – 1 > 0

&& !V_S

t <= 1

t <= 1 V_G_OUT &&
t == 1 &&
V + 1 < 10
&& !V_S

t := 0,
V:= V – 1

t := 0,
V := V + 10

t := 0

t := 0

V_G_OUT && t==1 && V + 1 >= 10 && !V_S

V := 10

V_G_IN && t==1 && V – 1 <= 0 && !V_S

V := 0

2 0 1

Figure 36: Model of the vertical cylinder with a possible fault V Act F.

W0

W1

W2

twt1

twok1 twko1

X 1 + X 5

V OUT 9s/XW1· V OUT

ERROR V OUT

(a) Watchdog for moving out.

W5

W6

W7

twt2

twok2 twko2

X 3 + X 11 + X 20

V IN 9s/XW6· V IN

ERROR V IN

(b) Watchdog for moving in.

Figure 37: GRAFCET specification of the watchdogs.

fired when V S becomes true; the movement is stopped because the cylinder gets stuck. If the active location is 0

(motionless cylinder), no movement can begin.

7.3.2. Detection by the controller

In order to detect the fault of the cylinder, the controller specification must be enhanced with two watchdogs (one

for each direction: moving out, moving in) that monitor the duration of the movements. These watchdogs can be

easily represented in GRAFCET (Figure 37). When a movement is launched (the transition from the initial step is

fired), a timer is launched (the active step becomes W1 or W6). From this situation, two evolutions are possible:

• the uppermost or lowermost position is detected before the end of timer, the transition to the initial step is fired

and the timer reset;

• or the timer is elapsed before the extreme position is detected, the transition to the step which represents the

detection of the fault is fired.

The algebraic representation of these GRAFCET watchdogs is obtained as explained in section 5; an enhanced

version of the PLC cycle model, including fault detection, is obtained by adding these equations to those derived from

40

the GRAFCET of Figure 15.

7.3.3. Checking fault detection ability

Once the enhanced model of plant components, including the possible fault, and the controller, including detection

of the fault, constructed, it is possible to formally check whether the controller is able to detect the fault whatever the

date it occurs. The formal property to check is then:

(V S && (V G OUT ||V G IN)) − − > (ERROR V OUT || ERROR V G IN) (16)

This means that each time the stuck fault is present with a movement order set, the watchdog must detect their

fault.

This property holds on the enhanced model. As previously, this result is obtained in approximately one second;

enhancement of the closed-loop model does not increase the verification time.

8. Conclusion

This paper has proposed a novel method to build a timed model of a closed-loop system where all evolutions are

meaningful, i.e. correspond to real evolutions of the closed-loop. This model is a network of TADD that communicate

through shared variables. The model of the plant is obtained by instantiation of generic components models; mean-

ingless evolutions in this model are avoided by modeling all instantaneous evolutions with urgent edges. On the other

side, the model of the controller is composed of a model of the PLC cycle and models of timers; the specified behavior

of the controller, in an algebraic form, is included inside the first model. A cycle starts when at least one input of the

controller has changed or a timer is finished and stops when no more evolution of the control specification is possible

without another input change or end of timer (stability condition); this guarantees the absence of deadlocks and that

all evolutions are meaningful. Verification of formal properties with the UPPAAL model-checker has shown that the

models built with this approach are tractable.

The first prospect for further work has been sketched when properties verification was addressed. The objective

of this contribution was indeed to propose a generic meaningful model of a closed-loop system where the plant

is faultless. Such a model is a mandatory prerequisite to address modeling of a closed-loop where the plant can

include faults; if the faultless model contain indeed meaningless evolutions, it will not then be possible to distinguish

evolutions due to faults and evolutions due to modeling errors in the model with faults. Once this objective met,

construction of a plant model that includes not only one type of actuator fault but different types of faults of actuators

and sensors must be considered; this will lead to extend the controller model by adding solutions to detect and handle

these new faults.

The second prospect is to focus on properties. Trustworthy verification results are obtained only when both

properties and the model on which the properties are to be verified are meaningful. A proposal to solve the second

41

issue has been presented in this paper, assuming a faultless plant. Further work to obtain meaningful properties from

the requirements of the closed-loop system is a challenging issue.

References

Alur, R., 1994. A theory of timed automata. Theoretical Computer Science 126, 183–235.

Bauer, N., Engell, S., Huuck, R., Lohmann, S., Lukoschus, B., Remelhe, M., Stursberg, O., 2004. Verification of PLC programs given as sequential

function charts. In: LNCS. Vol. 3147. pp. 517–540.

Behrmann, G., David, R., Larsen, K., 2004. A tutorial on UPPAAL. LNCS, Formal Methods for the Design of Real-Time Systems (SFM-RT) 3185,

200–236.

Bel Mokadem, H., Berard, B., Gourcuff, V., De Smet, O., Roussel, J.-M., Oct. 2010. Verification of a timed multitask system with UPPAAL. IEEE

Transactions on Automation Science and Engineering 7 (4), 921 – 932.

Bengtsson, J., Larsen, K., Larsson, F., Pettersson, P., Yi, W., 1996. UPPAAL – a tool suite for automatic verification of real-time systems. LNCS

1066, 232–243.

Bérard, B., Bidoit, M., Finkel, A., Laroussinie, F., Petit, A., Petrucci, L., Schnoebelen, P., 2001. Systems and Software Verification. Model-

Checking Techniques and Tools. Springer.

Bierel, E., Douchin, O., Lhoste, P., 05 1997. Grafcet : from theory to implementation. European journal of automation (JESA) 31 (3), 543–559.

Campos, J. C., Machado, J., 2009. Pattern-based analysis of automated production systems. In: Proc. of the 13th IFAC Symposium on Information

Control Problems in Manufacturing, INCOM’09.

David, R., 1995. Grafcet: a powerful tool for specification of logic controllers. Control Systems Technology, IEEE Transactions on 3 (3), 253 –268.

Frey, G., Litz, L., October 2000. Formal methods in PLC programming. In: Proc. of IEEE conference on Systems, Man and Cybernetics. Nashville,

USA, pp. 2431–2436.

Gourcuff, V., de Smet, O., Faure, J.-M., 2008. Improving large-sized PLC programs verification using abstractions. In: IFAC World congress.

Hanisch, H.-M., Lobov, A., Lastra, J. L. M., Tuokko, R., Vyatkin, V., 2006. Formal validation of intelligent-automated production systems: towards

industrial applications. International Journal of Manufacturing Technology and Management (IJMTM) 8 (1/2/3), 75 – 106.

Hanisch, H.-M., Thieme, J., Luder, A. ajnd Wienhold, O., 1997. Modeling of PLC behavior by means of timed net condition/event systems. In:

Proc. of the 6th International Conference on Emerging Technologies and Factory Automation Proceedings, ETFA’97. pp. 391 – 396.

IEC 60848, 2002. International Electrotechnical Committee, Grafcet specification language for sequential function charts.

Janowska, A., Janowski, P., 2006. Slicing of timed automata with discrete data. Fundamenta Informaticae 72 (1-3), 181–195.

Johnson, T. L., 2007. Improving automation software dependability : A role for formal methods? Control engineering practice 15 (11), 1403 –

1415.

Lamperiere-Couffin, S., Lesage, J.-J., 2000. Formal verification of the sequential part of plc programs. In: Proc. of the 5th Workshop on Discrete

Event Systems, WODES’2000. pp. 247–254.

Larsen, K., Pettersson, P., Yi, W., 1997. UPPAAL in a nutshell. Journal on Software Tools for Technology Transfer 1 (1–2), 134–152.

Larsen, K. G., Pettersson, P., Yi, W., Aug. 1995. Model-Checking for Real-Time Systems. LNCS, Proceedings of of Fundamentals of Computation

Theory (965), 62–88.

Lindahl, M., Pettersson, P., Yi, W., 1998. Formal design and analysis of a gear controller: an industrial case study using uppaal. LNCS, Proceedings

of 4th International Workshop on Tools and Algorithms for the Construction and Analysis of Systems 1384, 281–297.

Lobov, A., Lastra, J., Tuokko, R., 2005a. Application of UML in plant modeling for model-based verification: UML translation to TNCES. In:

proc. of the 3rd IEEE International Conference on Industrial Informatics, INDIN’05. pp. 495 – 501.

Lobov, A., Lastra, J., Tuokko, R., 2005b. On controller and plant modeling for model-based formal verification. In: proc. of the 10th IEEE

International Conference on Emerging Technologies and Factory Automation, ETFA’05. pp. 121–128.

42

Machado, J., Denis, B., Lesage, J.-J., 2006. Formal verification of industrial controllers: with or without a plant model? In: Proc. of 7th Portuguese

Conference on Automatic Control, CONTROLO’06. Lisboa Portugal.

Machado, J., Denis, B., Lesage, J.-J., Faure., J.-M., Silva, J. F. D., September 2006. Logic controllers dependability verification using a plant

model. In: Proc. of 3rd IFAC Workshop on Discrete-Event System Design (DESDes). Rydzyna, Poland, pp. 37–42.

Mader, A., Wupper, H., June 1999. Timed automaton models for simple programmable logic controllers. In: Proc. of 11th Euromicro Conference

on Real-Time Systems. York, England, pp. 114–122.

Pavlovic, O., Ehrich, H.-D., 2010. Model checking PLC software written in function block diagram. In: Proc. of 3rd International Conference on

Software Testing, Verification and Validation (ICST). pp. 439 – 448.

Perin, M., Faure, J.-M., 2009. Building meaningful timed plant models for verification purposes. In: Proceedings of the 13th IFAC Symposium on

information control problems in manufacturing, INCOM’09. Moscow, Russia, pp. 970–975.

Philippot, A., Sayed Mouchaweh, M., Carré-Ménétrier, V., jun 2009. Modelling of a discrete manufacturing system by parts of plant. In: 13th IFAC

Symposium on Information Control Problem in Manufacturing. Moscow.

Provost, J., Roussel, J.-M., Faure, J.-M., 2011. Translating grafcet specifications into mealy machines for conformance test purposes. Control

Engineering Practice 19 (9), 947 – 957.

Roussel, J.-M., Lesage, J.-J., 07 1996. Validation and verification of grafcets using state machine. In: Proc. of IMACS-IEEE ”CESA’96” IMACS-

IEEE ”CESA’96” - Lille, France. pp. pp. 758–764.

Schlich, B., Brauer, J., Wernerus, J., Kowalewski, S., 2009. Direct model checking of PLC programs in IL. In: Proc. of the International Workshop

on Dependable Control of Discrete Systems, DCDS’09.

Vyatkin, V., Hanisch, H.-M., 1999. A modeling approach for verification of IEC 1499 function blocks using net condition/event systems. In: Proc.

of the 7th International Conference on Emerging Technologies and Factory Automation Proceedings, ETFA’99. pp. 261 – 270.

43

