Sc0.43(2)Rb2Mo15S19, a partially Sc-filled variant of Rb2Mo15S19 Patrick Gougeon, Rabih Al Rahal Al Orabi, Régis Gautier, Michel Potel #### ▶ To cite this version: Patrick Gougeon, Rabih Al Rahal Al Orabi, Régis Gautier, Michel Potel. Sc0.43(2)Rb2Mo15S19, a partially Sc-filled variant of Rb2Mo15S19. Acta Crystallographica Section C: Crystal Structure Communications [1968-2013], 2012, 68 (5), pp.i25-i28. 10.1107/S0108270112016605. hal-00753746 HAL Id: hal-00753746 https://hal.science/hal-00753746 Submitted on 6 Sep 2013 **HAL** is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. Acta Crystallographica Section C ## **Crystal Structure Communications** ISSN 0108-2701 ### Sc_{0.43(2)}Rb₂Mo₁₅S₁₉, a partially Sc-filled variant of Rb₂Mo₁₅S₁₉ # Patrick Gougeon, a* Rabih Al Rahal Al Orabi, a Régis Gautier and Michel Potel ^aSciences Chimiques de Rennes, CSM–INSA, UMR CNRS No. 6226, Université de Rennes I, Avenue du Général Leclerc, 35042 Rennes CEDEX, France, and ^bSciences Chimiques de Rennes, UMR CNRS 6226, Ecole Nationale Supérieure de Chimie de Rennes, Avenue du Général Leclerc, CS 50837, 35708 Rennes CEDEX 7, France Correspondence e-mail: patrick.gougeon@univ-rennes1.fr Received 29 March 2012 Accepted 16 April 2012 Online 25 April 2012 The structure of scandium dirubidium pentadecamolybdenum nonadecasulfide, Sc_{0.43 (2)}Rb₂Mo₁₅S₁₉, constitutes a partially Sc-filled variant of Rb₂Mo₁₅S₁₉ [Picard, Saillard, Gougeon, Noel & Potel (2000), J. Solid State Chem. 155, 417-426]. In the two compounds, which both crystallize in the $R\overline{3}c$ space group, the structural motif is characterized by a mixture of Mo₆Sⁱ₈S^a₆ and Mo₉Sⁱ₁₁S^a₆ cluster units ('i' is inner and 'a' is apical) in a 1:1 ratio. The two components are interconnected through interunit Mo-S bonds. The cluster units are centred at Wyckoff positions 6b and 6a (point-group symmetries $\overline{3}$. and 32, respectively). The Rb⁺ cations occupy large voids between the different cluster units. The Rb and the two inner S atoms lie on sites with 3. symmetry (Wyckoff site 12c), and the Mo and S atoms of the median plane of the Mo₉S₁₁S₆ cluster unit lie on sites with .2 symmetry (Wyckoff site 18e). A unique feature of the structure is a partially filled octahedral Sc site with $\overline{1}$ symmetry. Extended Hückel tight-binding calculations provide an understanding of the variation in the Mo-Mo distances within the Mo clusters induced by the increase in the cationic charge transfer due to the insertion of Sc. #### Comment Acta Cryst. (2012). C68, i25-i28 In₂Mo₁₅Se₁₉ (Potel *et al.*, 1981) and In₃Mo₁₅Se₁₉ (Grüttner *et al.*, 1979), which crystallize in the $R\overline{3}c$ and $P6_3/m$ space groups, respectively, were the first compounds containing a molybdenum cluster with a nuclearity greater than 6. Indeed, their crystal structures contain an equal mixture of octahedral Mo₆ and bioctahedral Mo₉ clusters. Subsequently, compounds isotypic with In₂Mo₁₅Se₁₉, such as Alc₂Mo₁₅S₁₉ (Alc = K, Rb or Cs; Picard *et al.*, 2002, 2000, 2004) or Ba₂Mo₁₅Se₁₉ (Gougeon *et al.*, 1989), as well as compounds isotypic with In₃Mo₁₅Se₁₉, such as In_{1.6}Rb₂Mo₁₅S₁₉ and ScTl₂Mo₁₅S₁₉ (Salloum *et al.*, 2004), have been obtained. Among the latter compounds, Rb₂Mo₁₅S₁₉ appears to be the first member of the series of compounds Rb₂ $_n$ Mo₉S₁₁Mo₆ $_n$ S_{6 $_{n+2}$} (n=1,2,3 and 4; Picard *et al.*, 2000). In addition to their interesting crystal structures, the $Rb_{2n}Mo_9S_{11}Mo_{6n}S_{6n+2}$ compounds become superconducting at low temperature. In an attempt to replace Tl with Rb in $ScTl_2Mo_{15}S_{19}$ ($In_3Mo_{15}Se_{19}$ type), we obtained the title new quaternary compound $Sc_{0.43}Rb_2Mo_{15}S_{19}$ belonging to the $In_2Mo_{15}Se_{19}$ structure type and constituting a partially Sc-filled variant of $Rb_2Mo_{15}S_{19}$. The insertion of Sc into Rb₂Mo₁₅S₁₉ is evident from the variations in the unit-cell parameters: the a axis increases by ca 0.08 Å, while the c axis decreases by about 0.27 Å. A view of the crystal structure of Sc_{0.43}Rb₂Mo₁₅S₁₉ is shown in Fig. 1. The Mo-S framework is similar to that of Rb₂Mo₁₅S₁₉ and is based on an equal mixture of Mo₆Sⁱ₈S^a₆ and Mo₉Sⁱ₁₁S^a₆ cluster units interconnected through Mo—S bonds (Fig. 2) [for details of the inner ('i') and apical ('a') ligand notation, see Schäfer & von Schnering (1964)]. The first unit can be described as an Mo₆ octahedron surrounded by eight face-capping inner Sⁱ (six S3 and two S5) and six apical S^a (S1) ligands. The Mo₉ core of the second unit results from the face-sharing of two octahedral Mo₆ clusters. The Mo₉ cluster is surrounded by 11 Sⁱ atoms (six S1, three S2 and two S4) capping the faces of the bioctahedron and six apical Sa ligands (S3) above the outer Mo atoms. The $Mo_6S_8^iS_6^a$ and $Mo_9S_{11}^iS_6^a$ units are centred at the 6b and 6a Figure 1 A view of $Sc_{0.43}Rb_2Mo_{15}S_{19}$ along [110]. Figure 2 A plot showing the atom-numbering scheme and the inter-unit linkage of the $Mo_9S_{11}S_6$ and $Mo_6S_8S_6$ cluster units. Displacement ellipsoids are drawn at the 97% probability level. positions and have point-group symmetries $\overline{3}$. and 32, respectively. The Mo–Mo distances within the Mo₆ clusters are 2.6783 (6) Å for the intratriangle distances (distances within the Mo₃ triangles formed by atoms Mo₃ related through the threefold axis) and 2.7393 (6) Å for the intertriangle distances. In Rb₂Mo₁₅S₁₉, the latter two values are 2.676 (2) and 2.767 (2) Å, respectively. These variations reflect the different cationic charge transfer towards the Mo₆ clusters in the two parent compounds. The Mo—Mo distances within the Mo₉ clusters are 2.6658 (5) and 2.6910 (8) Å for the distances in the triangles formed by atoms Mo1 and Mo2, respectively. In Rb₂Mo₁₅S₁₉, the corresponding distances are 2.680 (2) and 2.688 (3) Å. The distances between the triangles formed by atoms Mo1 and Mo2 are 2.6958 (4) and 2.7663 (4) Å, respectively, in Sc_{0.43}-Rb₂Mo₁₅S₁₉, compared with 2.719 (1) and 2.785 (2) Å, respectively, in Rb₂Mo₁₅S₁₉. Although the structural response of the Mo₉ cluster with respect to the increase in charge transfer is more complex, we observe that the Mo1-Mo1 and two Mo1-Mo2 intertriangle distances are shorter in the Sc-filled compound. On the other hand, a slight increase in the Mo2-Mo2 bond distances occurs in the median Mo₃ triangle [2.688 (3) Å in Rb₂Mo₁₅S₁₉]. In order to explain these variations, we performed extended Hückel tight-binding (EHTB) calculations on Rb₂Mo₁₅S₁₉ using the program YaEHMOP (Landrum, 1997). The Mo and S extended Hückel parameters used by Picard et al. (2000) were considered. Total Mo6- and Mo₉-projected DOS (density of states) and COOP (crystal orbital overlap population) curves for the different bonds discussed above and obtained from 36 k points of the irreducible wedge of the Brillouin zone are sketched in Figs. 3 and 4, respectively. Assuming an ionic interaction between the inserted Sc atoms and the host material, the three electrons of the 3d transition metal should be transferred to the clusters. **Figure 3** EHTB calculations for Rb₂Mo₁₅S₁₉, showing (*a*) total (solid line) and Mo₆-projected (dotted line) DOS, and (*b*) total (solid line) and Mo₉-projected (dotted line) DOS. Assuming a rigid-band model, the Fermi level corresponding to the electron count of the title compound is slightly higher in energy (ca 0.02 eV) than that for Rb₂Mo₁₅S₁₉. The DOS at the Fermi level is mainly centred on Mo atoms belonging to both Mo₆ and Mo₉ clusters (Fig. 3). Therefore, both clusters should be affected by an increase in the anionic charge of the Mo–S network. As shown by the COOP curves of the Mo3—Mo3 intratriangle (solid line) and Mo3—Mo3 intertriangle (dotted line) bonds within the Mo₆ cluster, the increase in the metal electron count due to the insertion of Sc foresees a weak lengthening and a shortening of the Mo3—Mo3 bonds within the Mo₃ triangles and between the triangles, respectively. Such an evolution is in fact observed in Sc_{0.4}Rb₂Mo₁₅S₁₉, as mentioned above. Figure 4 EHTB calculations for Rb₂Mo₁₅S₁₉, showing (a) Mo3—Mo3 COOPs for interatomic distances within the Mo₃ triangle (solid line) and between triangles (dotted line) of the Mo₆ cluster, (b) COOPs for the intratriangle Mo1—Mo1 (solid line) and Mo2—Mo2 (dotted line) bonds in the Mo₉ cluster and (c) COOPs for the intertriangle Mo1—Mo2 bonds of 2.719 (solid line) and 2.785 Å (dotted line). A view of the environment of the Rb⁺ and Sc³⁺ cations. Displacement ellipsoids are drawn at the 97% probability level. Symmetry codes are as in Table 1. Regarding the Mo₉ cluster (Fig. 4), the lengthening of the Mo2—Mo2 bonds and the shortening of the Mo1—Mo1 and Mo1—Mo2 bonds can be envisioned theoretically when extra electrons are added, and this is what is observed experimentally in $Sc_{0.43}Rb_2Mo_{15}S_{19}$. The Mo—S distances are almost unaffected by the cationic charge, and range between 2.4198 (13) and 2.4736 (10) Å within the $Mo_6S^i_8S^a_6$ unit and between 2.4125 (10) and 2.6065 (7) Å within the $Mo_9S^i_{11}S^a_6$ unit, as usual. Finally, the three-dimensional packing arises from the interconnection of the $Mo_6S^i_8S^a_6$ and $Mo_9S^i_{11}S^a_6$ cluster units through Mo-S bonds. Indeed, each $Mo_6S^i_8S^a_6$ unit is interconnected to six $Mo_9S^i_{11}S^a_6$ units (and *vice versa*) *via* Mo3-S1 and Mo1-S3 bonds, respectively, to form the three-dimensional Mo-Se framework, the connective formula of which is $Mo_9S^i_{5}S^{i-a}_{6/2}S^{a-i}_{6/2}$, $Mo_6S^i_{2}S^{i-a}_{6/2}S^{a-i}_{6/2}$. The result of this arrangement is that the shortest intercluster Mo1-Mo3 distance between the Mo_6 and Mo_9 clusters is 3.2995 (4) Å, compared with 3.246 (2) Å in $Rb_2Mo_{15}S_{19}$, indicating only weak metal–metal interaction. This variation is consistent with the Mo-Mo intercluster antibonding nature of the bands that lie in the vicinity of the Fermi level. The Sc atoms occupy highly flattened octahedral sites [2.1718 (10) (\times 2), 2.7983 (3) (\times 2) and 2.9200 (10) Å (\times 2)] located near the Rb1 sites around the threefold axes. The alkali metal cation occupies a pentacapped trigonal prismatic site of S atoms, similar to that observed in Rb₂Mo₁₅S₁₉ (Fig. 5). The Rb—S distances are spread over the wide range 3.2512 (10)–3.7554 (11) Å, while in Rb₂Mo₁₅S₁₉ they are in the range 3.222 (3)–3.730 (3) Å. Thus, the insertion of Sc only leads to a slight decrease (ca 0.020 Å) of the Rb1—S4 and Rb1—S5 distances along the threefold axis, while the other distances are slightly increased (ca 0.027 Å). #### **Experimental** Single crystals of $Sc_{0.43}Rb_2Mo_{15}S_{19}$ were prepared from a mixture of Sc_2S_3 , Rb_2MoS_4 , MoS_2 and Mo with the nominal composition $ScRb_2Mo_{15}S_{19}$. Rubidium thiomolybdate was obtained by sulfuration of Rb_2MoO_4 at 723 K for 2 d under CS_2 gas carried by flowing argon. The molybdate Rb_2MoO_4 was synthesized by heating an equimolar ratio of Rb_2CO_3 and MoO_3 in an alumina vessel at 1073 K in air over a period of 2 d. Sc_2S_3 was prepared from the elements heated in a sealed evacuated silica tube at 1073 K for 2 d. All handling of materials was carried out in an argon-filled glove-box. The initial mixture (ca 5 g) was cold pressed and loaded into a molybdenum crucible, which was sealed under a low argon pressure using an arcwelding system. The charge was heated at a rate of 300 K h⁻¹ to 1773 K and the temperature held for 48 h. The charge was then cooled at a rate of 100 K h⁻¹ to 1373 K before being finally furnace cooled. #### Crystal data | $Sc_{0.43(2)}Rb_2Mo_{15}S_{19}$ | Z = 6 | |---------------------------------|---| | $M_r = 2238.37$ | Mo $K\alpha$ radiation | | Trigonal, $R\overline{3}c$ | $\mu = 10.92 \text{ mm}^{-1}$ | | a = 9.5173 (1) Å | T = 293 K | | c = 56.0061 (9) Å | $0.13 \times 0.12 \times 0.09 \text{ mm}$ | | $V = 4393.33 (10) \text{ Å}^3$ | | #### Data collection | Nonius KappaCCD area-detector | 13057 measured reflections | |--------------------------------------|--| | diffractometer | 1431 independent reflections | | Absorption correction: analytical | 1383 reflections with $I > 2\sigma(I)$ | | (de Meulenaer & Tompa, 1965) | $R_{\rm int} = 0.069$ | | $T_{\min} = 0.298, T_{\max} = 0.463$ | | #### Refinement | $R[F^2 > 2\sigma(F^2)] = 0.029$ | 64 parameters | |---------------------------------|--| | $wR(F^2) = 0.062$ | $\Delta \rho_{\text{max}} = 1.09 \text{ e Å}^{-3}$ | | S = 1.25 | $\Delta \rho_{\min} = -0.88 \text{ e Å}^{-3}$ | | 1431 reflections | | The site-occupancy factor of the Sc1 atom was refined freely. Because the $U_{\rm eq}$ parameter of atom Rb1 was larger than that of the other atoms, the site-occupancy factor of Rb1 was also refined. It converged to 1.011 (5) and was consequently fixed to unity in the final refinement. It is interesting to note that Rb atoms often present large $U_{\rm eq}$ values (see, for example, Picard *et al.*, 2000; Solodovnikova & Solodovnikov, 2006; Liang *et al.*, 2009; Zhao *et al.*, 2011). Data collection: COLLECT (Nonius, 1998); cell refinement: COLLECT; data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1996); software used to prepare material for publication: SHELXL97. Table 1 Selected bond lengths (Å). | Rb1-S1 | 3.2512 (10) | Mo1-Mo2 ⁱⁱⁱ | 2.6958 (4) | |-----------------------|-------------|-------------------------|-------------| | $Rb1-S5^{i}$ | 3.3263 (19) | Mo1-Mo2 | 2.7663 (4) | | Rb1-S4 ⁱⁱ | 3.5475 (19) | Mo2-S1 | 2.4125 (10) | | Rb1-S2 | 3.7306 (8) | Mo2-S1 ^v | 2.4126 (10) | | Rb1-S3 | 3.7554 (11) | Mo2-S2 | 2.4715 (11) | | Sc1-S3 | 2.1718 (10) | $Mo2-S2^{iv}$ | 2.4715 (11) | | Sc1-S4 | 2.7983 (3) | Mo2-Mo2 ⁱⁱⁱ | 2.6910 (8) | | Sc1-S1 | 2.9200 (11) | Mo3-S5 | 2.4198 (13) | | Mo1-S4 | 2.4336 (14) | Mo3-S3 | 2.4513 (10) | | Mo1-S1 | 2.4408 (10) | Mo3-S1 ⁱⁱ | 2.4577 (10) | | Mo1-S1 ⁱⁱⁱ | 2.4786 (10) | $Mo3-S3^{vi}$ | 2.4641 (10) | | Mo1-S3 | 2.5189 (10) | Mo3-S3 ^{vii} | 2.4736 (10) | | Mo1-S2 | 2.6065 (7) | Mo3-Mo3 ^{viii} | 2.6783 (6) | | Mo1-Mo1 ^{iv} | 2.6658 (5) | Mo3-Mo3 ^{vii} | 2.7393 (6) | | | | | | Symmetry codes: (i) $-x + y - \frac{1}{3}$, $y + \frac{1}{3}$, $z - \frac{1}{6}$; (ii) $-x - \frac{1}{3}$, $-y + \frac{1}{3}$, $-z + \frac{1}{3}$; (iii) -x + y - 1, -x, z; (iv) -y, x - y + 1, z; (v) $x - y + \frac{1}{3}$, $-y + \frac{2}{3}$, $-z + \frac{1}{6}$; (vi) $x - y - \frac{1}{3}$, $x + \frac{1}{3}$, $-z + \frac{1}{3}$; (vii) $y - \frac{1}{3}$, $-x + y - \frac{2}{3}$, $-z + \frac{1}{3}$; (viii) -x + y - 1, -x - 1, z. ### inorganic compounds Intensity data were collected on the Nonius KappaCCD X-ray diffactometer system of the 'Centre de diffractométrie de l'Université de Rennes I' (http://www.cdifx.univ-rennes1. fr). Supplementary data for this paper are available from the IUCr electronic archives (Reference: FN3104). Services for accessing these data are described at the back of the journal. #### References - Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. - Brandenburg, K. (1996). *DIAMOND*. University of Bonn, Germany. Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). *J. Appl. Cryst.* **36**, 220–229. - Gougeon, P., Potel, M. & Sergent, M. (1989). Acta Cryst. C45, 1285–1287. Grüttner, A., Yvon, K., Chevrel, R., Potel, M., Sergent, M. & Seeber, B. (1979). Acta Cryst. B35, 285–292. - Landrum, G. A. (1997). YAeHMOP (Yet Another Extended Hückel Molecular Orbital Package). Cornell University, Ithaca, New York, USA. - Liang, Z.-H., Tang, K.-B., Chen, Q.-W. & Zheng, H.-G. (2009). Acta Cryst. E65, i44. - Meulenaer, J. de & Tompa, H. (1965). Acta Cryst. 19, 1014-1018. - Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands. - Picard, S., Gougeon, P. & Potel, M. (2002). Acta Cryst. E58, i12-i14. - Picard, S., Saillard, J.-Y., Gougeon, P., Noel, H. & Potel, M. (2000). J. Solid State Chem. 155, 417–426. - Picard, S., Salloum, D., Gougeon, P. & Potel, M. (2004). Acta Cryst. C60, i61-i62 - Potel, M., Chevrel, R. & Sergent, M. (1981). *Acta Cryst.* B**37**, 1007–1010. Salloum, D., Gougeon, P., Roisnel, T. & Potel, M. (2004). *J. Alloys Compd*, **383**, - Schäfer, H. & von Schnering, H. G. (1964). *Angew. Chem.* **76**, 833–845. Sheldrick, G. M. (2008). *Acta Cryst.* A**64**, 112–122. - Solodovnikova, Z. A. & Solodovnikov, S. F. (2006). *Acta Cryst.* C**62**, i53–i56. Zhao, D., Li, F. F., Qiu, S., Jiao, J. & Ren, J. (2011). *Acta Cryst.* E**67**, i32.