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Abstract—Several techniques have been proposed in the last
few years to address the multiagent patrolling task. They share
the assumption of a closed system setting (the set of agents
present in the system is constant, no agent joins or leaves),
which is a strong requirement and limits the applicability of
multiagent patrolling models. In this article, we propose to
revisit some of the techniques proposed in the literature to
adapt them to the open society setting, and to compare their
performances on a simple scenario where an agent decides to
quit the patrolling task.
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I. INTRODUCTION

The patrolling problem rises in the situation when an area

containing multiple points of interest needs to be supervised

as often and as thoroughly as possible by a team of people

or agents. Timed patrolling is a variation in which the task is

to visit each point of interest as frequently and as regularly

as possible, to optimize a metrics based on the temporal

distribution of the visits.

An example of a situation that can be modeled with timed

patrolling is inspired from disaster situations. A disaster

happens (e.g. earthquake or tsunami), and victims must be

found, then rescued. A team of agents is thus deployed on

the area, searching for signs of victims in the ruins. However,

with the typical patrolling problem, an agent finding a victim

can only signal it to a rescue team, then proceed with

patrolling. In our opinion, the agent should be able to stop

patrolling and begin the rescue operation, while the rest of

the patrolling agents reorganize to re-optimize the patrolling

task.

With this situation in mind, we study the problem of

patrolling with an open system, in which agents can join

or leave the task at will. Previous work has proposed a

broad range of coordination strategies for the patrolling task

with a closed system, so it seems natural to adapt and

compare some of them. However, we focus here mainly in

the transitional phases, i.e. the phases where the MAS has

to re-adapt to its new setting (fewer or more agents), as the

stable phases (where no agent joins or leaves) have been

already extensively studied. We propose here a framework

for the patrolling problem with an open system, with new

metrics to measure performances and results that can be used

as references.

In this paper, we first define precisely the patrolling task

and review previous work in this section; we then present in

Section 2 the adapted agents we chose to compare and the

new metrics associated with the open society problem. We

finally present the experimental results obtained and discuss

them in Section 3.

A. The Patrolling Task

The patrolling problem is formally defined as the tuple

〈G,S,M〉 where G is a graph, S a society of agents and

M a set of metrics. The graph G = 〈N,E〉 is composed

of a set of nodes N and a set of edges E. Each node ni is

associated with a priority pi and an instantaneous idleness

oi, which is the time since its last visit by an agent. Each

edge ej has a length lj , which is the distance between the

two connected nodes.

The society S = {ai}i∈NS
is a set of size NS of agents.

Each agent is characterized by a set of perceptions and

actions. Perceptions are about itself, the graph with a chosen

depth, the positions of the other agents and the communi-

cations. Actions are visiting, going to a chosen node, and

broadcasting with a chosen depth of perception.

M is composed of metrics based on the temporal distribution

of the visits that must be optimized. Patrolling is then the

task given to the agents of S to repeatedly visit all the nodes

of G with the goal of minimizing the metrics of M. Both G

and S can be static or evolve in the course of the simulation.

In this paper, we make the following assumptions: ∀i ≤
|N |, pi = 1 (all nodes are of equal interest), the graph is

static and simulations are cycled. There is also no restriction

on the depth of communication and perception of the graph.

These assumptions were made accordingly to the rescue

situation presented previously, and to focus on the impact

of the open system setting on the patrolling problem.

Finally, the open system implies that the number of agents

can change over time. With this setting, the way the agents

cope with these modifications becomes, in our opinion, a

part of the patrolling task. Hence, we propose two new

goals for the agents: minimizing the variations of the metrics

during the transitional phases, and minimizing the durations

of these phases.

B. Related Work

The criterion of idleness is the most widely used (e.g. in

[1]). Thus, we will present some of the proposed strategies,
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then summarize the results obtained with the average graph

idleness as criterion.

1) description of the existing strategies: Many different

strategies have been proposed over the past ten years. [1]

made a comparative study of agents: reactive/cognitive, with

or without communication, etc. Among these strategies are

the following ones, which we will use in this paper : (i) the

Random Reactive Agent (RR): Reactive, chooses the next

node to go to randomly amongst those directly connected to

the current node; (ii) the Conscientious Reactive Agent (CR):

Reactive, chooses the next node to go to by taking the high-

est instantaneous idleness amongst those directly connected

to the current node; (iii) the Cognitive Coordinated Agent

(CC): Cognitive, communication with a global coordinator

that chooses as the next node for the agent requesting a goal,

the node currently with the highest idleness in the graph.

They added to this comparison the Heuristic Pathfinding

Cognitive Coordinated Agent (HPCC), which is the same

as the previous CC, but where the time to reach a node

is taken into account in addition to its idleness to choose

heuristically which node to go to, as well as the projected

sum of the idlenesses of the nodes on the possible paths to

choose how to reach the goal node (pathfinding).

[2] proposed the Single-Cycle agent (SC): the shortest cycle

using the nodes of the graph is calculated, then the agents are

distributed evenly and revolve around it. To ensure this even

distribution, one agent is started first, then each agent passed

by this first agent counts an increasing amount of time before

starting (an interval being the length of the cycle on the

number of agent, the first agent waits 1 interval, the second

2, etc.). This strategy has been used since as a reference

for comparing the efficiency of other strategies (the SC is

not adaptive, but is the highest ranked strategy possible on

a static problem, given complete knowledge a priori and the

use of Average Graph Idleness).

Other strategies involve for exemple the use of reinforce-

ment learning in [3]. Finally, swarm approaches have been

proposed (e.g. in [4]), as well as robotic approaches (e.g.

[5]).

2) Published results: Keeping in mind that these results

are based on the Average Graph Idleness, we can summarize

that cognitive agents and coordinated agents have a clear

advantage on the others. The second result was that using

the proposed heuristic and path-finding always improved the

strategy it was used with.

Finally, the following ordering appeared on the idleness

criterion: (i) Chevaleyre’s SC is, as expected, a clear winner;

(ii) reinforcement learning, bidding techniques and HPCC

are on an equal ground, with slight differences depending

on the general topology of the graph (see [1] for the

various graphs proposed as test environments); (iii) the first

strategies proposed, though interesting as starting points, do

not match the performances of the more recent strategies.

II. GENERALYSING THE PROBLEM TO AN OPEN SYSTEM

SETTING

The open system setting, in which agents can join or

quit the task, is an important modification to the original

multiagent patrolling problem. In this new problem, we are

interested in understanding how the different strategies can

be adapted to be able to cope with the changes of agents

in the system, and how these adaptations effectively cope

with these changes. Thus, we first propose new evaluation

criteria to evaluate the various strategies, then show how we

modified some of the agents described earlier to fit this new

task.

A. Evaluation Criteria

In order to study the duration of the transitional phases

and their shapes (i.e. how fast the strategies return to a

stable phase), we propose to use the following metrics:

(i) stabilization time: how long (counted in cycles) does it

take for the simulation to reach a stable state? For this, we

propose to calculate a mean over a long stabilized phase

on one of the criterion, then to compare short averages on

a hundred cycle to this value, starting from the time at

which the event occurred (change in the agents number) and

stopping when the short average is less than 1% different

of the stable value; (ii) amplitude of variations: how high

are the variations of performances during the transition? We

propose to use the ratio between the maximum value of the

instantaneous idleness during the transition and its average

value during the stable phase.

B. Adapting the agents

In this work, we focused on a few of the agents proposed

in earlier work, with the intention of providing some basic

results that could be used as reference in further works. With

this in mind, we used the following agents: the RR, CR, CC,

HPCC and SC, which description can be found in I-B.

We chose these agents for the following reasons: RR is a

known worst strategy, and SC a known best strategy. They

will be used as references. CR is a simple reactive, yet

idleness-driven agent: it is an interesting strategy to see how

reactive agents behave in an open system. CC is a simple

coordinated agent, and can be used as an indication of how a

coordinator can cope with agents coming and going. Finally

the HPCC will allow us to see if the HP techniques still

provide an advantage.

Reactive agents did not need any change, as they are

unaware of the other agents in the system. In the coordinated

strategies, the coordinator alone had to be modified to detect

that the number of agents had changed. If an agent quits the

task, the coordinator removes the current goal node of this

agent from the current goals, allowing it to be reassigned

to another agent later. Finally, adapting the SC asked more

questions: the cycle does not need to be recalculated (since
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the graph did not change) but the agents need to be rear-

ranged around it. Three situations are possible:

• an agent leaves the task: the coordinator stops all

agents, then asks each agent to wait an increasing

amount of time before restarting, in order to respect

the new length of the interval between agents. The first

agent (which does not wait) is the agent right behind

the one that left. We call this the SC_fast strategy

• an agent enters the task: the coordinator stops all agents,

then uses the original SC algorithm. We made two

versions of it: (i) SC_slow_1 : the first agent waits N-1

intervals, the second N-2, etc. This way, all the agents

start around the same time, which makes a shorter but

rougher transitional phase; (ii) SC_slow_2 : the first

agent waits 1 interval, the second 2, etc. This way, the

agents restart one after another, making a transitional

phase longer but with smoother variations of the metrics

• an agent enters the task at the same time that an agent

leaves it: the coordinator fills the hole left by the leaving

agent with the new agent.

The new protagonists having been described, we will now

present and discuss the experiments realized.

III. EXPERIMENTAL RESULTS AND DISCUSSION

We chose as environment base map A described in [1]),

which has 50 nodes and 106 edges. For each number of

agents in the society at the beginning of the simulation,

30 simulations were run from random start positions and

a length of 3000 cycles.

For N agents, N taken in 2, 5, 10, 15 and 25, we ran three

scenarios: one with a closed system of N agents, one with a

closed system of N-1 agents, and finally one with an open

system of N agents where an agent leaves at cycle 1000.

A. Results

We first compared the performances of our modified

agents to those of the original agents on stable phase. We

found that modified agents showed the same performances

as the original agents within a 5% margin on the average

graph idleness criterion.

Once established that the adapted agents perform as well as

the original agents on stable phases, we study the transitional

phase itself. For this, we first analyze the duration of

the transitional phase for the various agents, then study

the shape of these transitions. Using the stabilization time

presented in II-A, the Fig.1 presents the results obtained

for the various sizes of system. From this Figure we can

extract the following results: (i) the quickest solutions are

the SC_fast and the HPCC, followed by the CR, then the

CC and RR, and finally the two SC_slow; (ii) the SC_fast

and SC_slow_1 slightly improve with an increasing number

of agents, whereas the SC_slow_2 is slower to stabilize; (iii)

the SC (all), HPCC and CR variations are proportional (or

inversely proportional, for the SC_slow_2) to the number of

Figure 1. Stabilization time for various scenarios.

agents, whereas the RR and CC get worse until there are

enough agents in the system to get them to increase.

These observations can be explained by the strategies used

by the agents. RR is completely random: when an agent

leaves, it takes some time for an agent to accidentally "fill

the hole" left by the agent leaving. As the size of the system

increases, this time will get statistically smaller. CR is a

local solution: when an agent leaves, the nodes not visited

quickly attracts a neighboring agent. The bigger the system

is, the smaller the overall instantaneous idleness gets, and the

quicker the abandoned nodes attract an agent. The difference

between CC and HPCC can be explained the same way: the

heuristic favors local moves, which makes HPCC a local

solution. On the con trary, CC is global: when the nodes

become attractive, they will be attributed one after another

to all the agents of the system, until all the agents end

up in the same region. This is the main reason for a bad

overall performance. However, if the size of the system is

high (the number of nodes by agent is small), some agents

will continue to patrol the rest of the graph.

Concerning the SC solutions, it is explained by the coordi-

nation method. For the SC_fast, as the size of the system

increases, the interval between agents around the circular

path decreases. The system thus takes less time to readapt to

the new configuration. In the SC_slow strategies, one agent

is used as reference agent and restarted first, while the other

agents wait a number of intervals corresponding to their new

place after they detect the reference agent passing them. For

SC_slow_1, they all restart around the same time because

the first agent passed waits the most. However, as the size of

the system increases, the reference agent gets quicker to the

position where all agents restart. Thus, the system stabilizes

quicker. For slow 2, on the contrary, the last agent passed is

the one that waits the most. Since the interval between the

first and the last agent grows with the number of agents, the
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Figure 2. Max transitional instantaneous idleness (T) over stable average
idleness (S) for various scenarios.

system takes more time to get to a stabilized state.

Regarding the amplitude of variations, Fig.2 shows the

results associated with this criterion. It shows clearly that

there is a small loss of performance for RR and CR during

the transition, small to no loss for CC and HPCC, but a

huge impact on performances for SC: ratios of 1.6 to 3.2

for SC_fast, 4.1 to 23.7 for SC_slow_1 and 3.5 to 18.1 for

SC_slow_2.

These results point to a clear observation: the transitional

phase is very difficult for the SC_slow strategies. They

are both slow to re-adapt and present huge loss in per-

formances during the transition. The situation is however

a little brighter for SC_fast, which compensates for its loss

of performances by being the fastest strategy to re-adapt.

This leads to the conclusion that the transitional phase for

the N → N − 1 scenario separates the agents into three

groups: RR, CR and CC which performances are not really

interesting for this problem, HPCC and SC_fast which are

the two solutions that are the most adapted, and SC_slow_1

and 2 which are obviously not adapted to this problem.

B. Discussion

We have shown in III-A that we can distinguish clearly

between two groups of agents: one where the order of

preference is clear in terms of both stabilized metrics and

transitional time (CC > CR > RR), and another where the

strategies are better than those of the first group but where

choosing one depends directly on which characteristic is the

most important for the system.

When the key is to have a very small and smooth transition

phase, at the possible cost of a slightly worse overall metrics

performance, then HPCC is the choice to make. If a loss of

performance is allowed during transition phase, then SC_fast

is the highest ranked choice.

All the adaptations presented here are also good for the

scenarios N → N + 1, with the exception of the SC_fast

which works only with the loss of an agent. For this reason,

studying SC_slow_1 and 2 gives us a comparative behavior

of the SC solution for a N → N + 1 scenario. With this

in mind, we can make a generalization of our results to

any scenario involving the loss or gain of an agent, and

probably of more than 1 agent: If the important point of

the system is to remain as stable as possible, whatever the

phase, then it would be a better choice to accept a small loss

in performance during stable phases and choose the HPCC

solution; if the system must provide the best performances

during stable phases, but is allowed some time and a loss of

performance for transition, then the SC_slow is the solution

(or a coupling SC_fast/SC_slow).

IV. CONCLUSION

In this paper, we presented a new variation of the timed

patrolling problem that we believe is a step to modeling

several new interesting situations and problems: the open

system setting. We proposed new metrics to compare so-

lutions on this new problem, and adapted the five first

solutions historically proposed to the timed patrolling in

closed society. We showed that among these solutions, the

adapted Heuristic Pathfinding Cognitive Coordinated and

Single Cycle are clearly better than the others, and that

choosing one or the other will depend on the characteristics

one wishes to see in the system.

In future work, we plan to extend the span of our studies,

in particular by adapting learning-based and bidding-based

strategies, which are really decentralized. Another point of

interest is to make more complicated scenarios, which would

represent better the open society model we chose. Finally, we

are also very interested in defining an entry and leaving cost

for the open society patrol, in order to be able to interface

it with a more global decision-making architecture.
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