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Abstract

In this work we introduce a discrete functional space on general polygonal or polyhedral
meshes which mimics two important properties of the standard Crouzeix–Raviart space,
namely the continuity of mean values at interfaces and the existence of an interpolator
which preserves the mean value of the gradient inside each element. The construction
borrows ideas from both Cell Centered Galerkin and Hybrid Finite Volume methods. More
specifically, the discrete function space is defined from cell and face unknowns by introducing
a suitable piecewise affine reconstruction on a pyramidal subdivision of the original mesh.
This subdivision is fictitious in the sense that the original mesh is the only one that needs
to be manipulated by the end-user. Two applications are considered in which the discrete
space plays an important role, namely (i) the design of a locking-free primal (as opposed
to mixed) method for quasi-incompressible linear elasticity on general polygonal meshes;
(ii) the design of an inf-sup stable method for the Stokes equations on general polygonal
or polyhedral meshes for which the velocity approximation is unaffected by the presence of
large irrotational body forces. In both cases, the relation between the proposed method and
classical finite volume as well as finite element methods on standard meshes is investigated.
Finally, it is shown how similar ideas can be exploited to mimic key properties of the lowest-
order Raviart–Thomas space on general polygonal or polyhedral meshes.
Mathematics Subjects Classification. 65N08, 65N30, 74B05, 76D07

1 Introduction
In the context of industrial simulators, lowest-order methods for the discretization of diffusive
problems on general polygonal or polyhedral meshes have received an increasing attention over
the last few years. The reasons are multifold. On the one hand, allowing general polyhedral
elements may ease the discretization of complex domains, while supporting nonmatching in-
terfaces is a key ingredient for nonconforming h-adaptivity. On the other hand, disposing of
discretization methods applicable to general meshes is mandatory whenever the user cannot
adapt the mesh to the needs of the numerical scheme. This is the case, e.g., in the context
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of computational geosciences, where the discretization of the subsoil is developed in a separate
stage, and is focused on integrating physical and geometrical data resulting from the seismic
analysis. Fairly general meshes can thus be encountered, featuring, e.g., nonmatching interfaces
corresponding to geological faults or general polyhedral elements resulting from the degeneration
of hexahedral cells in eroded layers. Polyhedral elements may also be present in near wellbore
regions, where the use of radial meshes can be prompted by (qualitative) a priori knowledge
of the solution. Nonconforming h-refinement can also appear at specific locations where the
resolution needs to be increased or when moving fronts are present; cf., e.g., Chainais-Hillairet,
Enchéry, and Mamaghani [13]. In this context, the use of lowest-order methods is justified both
by the inherent uncertainty associated to physical data and by the need to keep computational
costs within affordable bounds.

Among the methods that have appeared in recent years, the most directly related to the
present work are the Mimetic Finite Difference (MFD) method of Brezzi, Lipnikov et al. [11, 9,
10], the Hybrid Finite Volume (HFV) method of Eymard, Gallouët and Herbin [24, 25], and the
Mixed Finite Volume (MFV) method of Droniou and Eymard [21]. The close relation between
these methods has recently been investigated in [22]. The main result of the present work is
the construction of a discrete space of piecewise affine functions which extends two important
properties of the classical Crouzeix–Raviart space [15] to general meshes, namely,

(CR1) the continuity of mean values at interfaces. Since we deal with piecewise affine functions,
this property is equivalent to the continuity at the faces barycenters;

(CR2) the existence of an interpolator which preserves the mean value of the gradient inside
each element. In the context of quasi-incompressible linear elasticity, this turns out to
be a key property to accurately approximate nontrivial solenoidal fields.

Let Kh denote a general polygonal or polyhedral mesh of the bounded domain Ω matching the
regularity requirements discussed in Section 2. In the spirit of Cell Centered Galerkin (ccG)
methods [16], the discrete space is constructed in three steps:

(i) we fix the vector space Vh of face- and cell-centered degrees of freedom (DOFs) on Kh;

(ii) we define a discrete gradient reconstruction operator Gh acting on Vh. The reconstructed
gradient is piecewise constant on a fictitious pyramidal submesh Ph obtained by subdivid-
ing each element using one interior point (the cell center), and it results from the sum of
two terms: a consistent part depending on face unknowns only plus a subgrid correction
involving both face- and cell-centered DOFs. The continuity of mean values at interfaces
is ensured by finely tuning the latter contribution;

(iii) we define an affine reconstruction operator Rh acting on Vh which maps every vector of
DOFs on a broken affine function on Ph. This function is obtained by perturbing the
(unique) face unknown associated to each pyramid with a linear correction based on the
discrete gradient Gh. The discrete space is then defined as

CRpKhq :“ RhpVhq Ă P1
d pPhq ,

with P1
d pPhq space of broken affine functions on Ph, cf. (4).

The pyramidal submesh is fictitious in the sense that all the relevant geometric information can
be computed on the primal mesh, which is therefore the only one that needs to be described
and manipulated by the end-user. In Appendix A it is shown how similar ideas can be used
to construct a Hpdiv; Ωq-conforming discrete space on general meshes which mimics two key
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properties of the lowest-order Raviart–Thomas space on matching simplicial meshes, namely
the (full) continuity of normal values at interfaces and the approximation of vector-valued fields.

The first application we consider is linear elasticity, which was also the original motivation
for this work. Our main result is the design of a primal (as opposed to mixed) discretization
method based on the CRpKhq space which is locking-free in the quasi-incompressible limit in
two space dimensions (the required regularity estimate for the continuous solution is still an
open problem in higher space dimensions). To the best of our knowledge, our method is the
first to achieve this result on general polygonal meshes without resorting to a (possibly more
expensive) mixed formulation.

It has been long known that the accuracy of H1-conforming lowest-order finite element
approximations deteriorates when quasi-incompressible materials are considered, i.e., for large
values of the first Lamé parameter λ; cf., e.g., [7, Section 11.3]. This is a consequence of the
fact that the convergence estimates are not uniform in λ, which, in turn, reflects the inability
of the discretization space to accurately represent nontrivial solenoidal fields. One classical way
of circumventing this problem is the use of a mixed formulation, where the solution is char-
acterized as the saddle point of a Lagrangian functional involving both discrete displacements
and stresses. The resulting methods converge uniformly in λ, but they are often computation-
ally more expensive than primal methods where the displacement is the sole unknown. In this
context, we recall, e.g., the PEERS method by Arnold, Brezzi and Douglas [4], the p-version
method of Vogelius [33] (which does not directly approximate the stresses, but whose study
relies on a stability condition for a saddle point problem), the mixed method of Stenberg [31],
the nonconforming methods of Falk [26], and the mixed methods of Chavan, Lamichhane and
Wohlmuth [14], and Lamichhane and Stephan [30]. All these methods require matching trian-
gular or quadrilateral meshes. General meshes matching regularity assumptions that are similar
to the ones proposed in this work have been recently considered by Beirão Da Veiga [5], who
introduces a mixed MFD method which does not lock in the quasi-incompressible limit.

The problem of locking has also been addressed without resorting to mixed formulations,
and several methods can be found in the literature. In this work we take inspiration, in par-
ticular, from the classical paper of Brenner and Sung [8], where the authors propose a locking-
free method on matching triangular meshes based on the nonconforming Crouzeix–Raviart
element [15] . Here, the properties (CR1) and (CR2) play an important role in deriving an
error estimate uniform in λ. Another source of inspiration is the work of Hansbo and Lar-
son [28, 29], where a locking-free Discontinuous Galerkin (dG) method on matching triangular
meshes is analyzed; see also Di Pietro and Nicaise [20] for an extension to composite materials.
In this case, the coercivity of the method is ensured by a least-square penalization of interface
jumps. In our method, a similar device is required in the case of mixed boundary conditions
to invoke Korn’s inequality on broken polynomial spaces [6] in the stability proof. For the pure
displacement problem, the more convenient and naturally coercive Navier–Cauchy formulation
allows to circumvent the use of Korn’s inequality.

An interesting property of our method that deserves to be mentioned is that, up to a suitable
treatment of the right-hand side, it is possible to recover a local conservation property similar to
those encountered in finite volume methods. In this case, the face unknowns can be interpreted
as Lagrange multipliers of the flux continuity constraint. Yet another treatment of the right-
hand side allows to recover the Crouzeix–Raviart method of Brenner and Sung [8] on matching
simplicial meshes.

The second application is inspired by the recent work of Galvin, Linke, Rebholz and Wil-
son [27], where the authors study the effect of large irrotational body forces on the numerical
solution of the Stokes equations. For the purposes of the present work, we consider the case
when a Helmholtz decomposition of the source term is available. At the continuous level, it is
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known that the velocity is unaffected by the irrotational component of body forces. A key point
to mimic this property at the discrete level is to have a tight control of the discrete divergence of
the velocity approximation as well as to carefully design the discretization of body forces. This
requires, in particular, an appropriate choice of the approximation spaces for the velocity and
the pressure. When working with matching simplicial meshes, these requirements can be met
using the classical Crouzeix–Raviart element to approximate the velocity components together
with a piecewise constant approximation of the pressure. The method proposed in this work
extends this formulation to general meshes by approximating the velocity components in the
space CRpKhq. The main properties of the resulting scheme are inf-sup stability and robustness
with respect to irrotational body forces on general polygonal or polyhedral meshes. Also in this
case, suitable modifications of the right-hand side allow to establish a link with finite volume
and standard finite element methods on matching simplicial meshes.

The paper is organized as follows. In Section 2 we introduce the notation and define the
concept of admissible mesh sequence and pyramidal submesh inspired by [17, 16]. The main
novelty of this section is the proof that the pyramidal submesh inherits the shape- and contact-
regularity properties of the original mesh provided a set of cell centers can be defined for the
latter. Section 3 details the construction of the space CRpKhq as well as the proofs of the
properties (CR1) and (CR2). In Section 4 we present two applications of the space CRpKhq,
namely the approximation of the linear elasticity problem for quasi-incompressible materials
and the discretization of the Stokes equations with large irrotational body forces. Finally, in
Appendix A we show how the ideas of Section 3 can be used to construct a discrete space
which mimics the properties of the lowest-order Raviart–Thomas space on general polygonal or
polyhedral meshes.

2 Admissible mesh sequences
Following [17, Chapter 1] and [16, Section 1], we introduce in this section the concept of admis-
sible mesh sequence of a bounded connected polygonal or polyhedral domain Ω Ă Rd, d ě 2.
For the sake of brevity, we only give the proofs of the new results, and refer to [17, 16] for
further details.

2.1 Shape- and contact-regularity

Let H Ă R`˚ denote a countable set having 0 as its unique accumulation point. We consider
mesh sequences KH :“ pKhqhPH where, for all h P H, Kh denotes a finite collection of nonempty
disjoint open polyhedra Kh “ tKu such that Ω “

Ť

KPKh
K and h “ maxKPKh

hK (hK denotes
here the diameter of the element K P Kh). We say that a hyperplanar closed connected subset
F of Ω is a mesh face if it has positive pd´1q-dimensional measure and if either there exist
K1, K2 P Kh such that F Ă BK1 X BK2 (and F is called an interface) or there exists K P Kh

such that F Ă BK X BΩ (and F is called a boundary face). Interfaces are collected in the set
F i

Kh
, boundary faces in Fb

Kh
and we let FKh

:“ F i
Kh
YFb

Kh
. The diameter of a face F P FKh

, is
denoted by hF . Moreover, we set, for allK P Kh, FK :“ tF P FKh

| F Ă BKu. According to the
context, the notation |¨| is used for the d- or the pd´1q-dimensional Lebesgue measure. In the
rest of this section, we discuss some fairly general regularity conditions on the mesh sequence
KH that allow to prove basic results such as trace and inverse inequalities and polynomial
approximation properties.

Definition 1 (Shape- and contact-regularity). The mesh sequence KH is shape- and contact-
regular if for all h P H, Kh admits a matching simplicial submesh Th such that
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Figure 1: Mesh Kh (solid lines) and pyramidal submesh Ph (dashed lines)

(i) Shape-regularity. There exists a real %1 ą 0 independent of h such that, for all h P H and
all simplex T P Th of diameter hT and inradius rT , there holds %1hT ď rT ;

(ii) Contact-regularity. There exists a real %2 ą 0 independent of h such that, for all h P H,
all K P Kh, and all T P TK :“ tT P Th | T Ă Ku, there holds %2hK ď hT .

2.2 Cell centers and pyramidal submesh

The discrete space introduced in this work requires to identify a set of points which play a
pivotal role in the construction.

Definition 2 (Cell centers). The mesh sequence KH admits a set of cell centers if

(i) for all h P H and all K P Kh, there exists a point xK such that K is star-shaped with
respect to xK (the cell center);

(ii) there exists a real %3 ą 0 independent of h such that for all h P H, all K P Kh, and all
F P FK , denoting by dK,F the orthogonal distance between xK and F ,

dK,F ě %3hK . (1)

Let KH denote a mesh sequence which admits a set of cell centers. We define for all h P H
the pyramidal submesh

Ph “ tKF uKPKh, FPFK
,

where, for all K P Kh and all F P FK , KF denotes the open pyramid of apex xK and base
F . An example of mesh Kh and associated pyramidal submesh Ph is provided in Figure 1.
Each element of Ph is associated to a unique element K P Kh and a unique face F P FK .
When this link is irrelevant, the generic element of Ph is noted P instead of KF . The pyramids
tKF uKPKh, FPFK

are nondegenerated owing to assumption (1). In the two-dimensional case, Ph
is a matching simplicial mesh while, in higher dimension, it is in general not simplicial. Owing
to the planarity of faces, there holds for all K P Kh and all F P FK ,

|KF | “
|F | dK,F

d
. (2)

The set of faces of Ph (including the mesh faces in FKh
as well as the lateral faces of the

pyramids) is denoted by FPh
and we let F i

Ph
:“ FPh

zFb
Kh

and Fb
Ph

:“ Fb
Kh

. Additionally, for all
P P Ph, we introduce the set FP :“ tF P FPh

| F Ă BP u. The following result shows that the
pyramidal mesh sequence PH :“ pPhqhPH inherits the shape- and contact-regularity properties
of the original mesh sequence KH.
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Lemma 3 (Shape- and contact-regularity of the pyramidal submesh). Let KH admit a set of
cell centers. Then, if KH is shape- and contact-regular, the same holds for PH.

Proof. Let h P H. By assumption, Kh admits a matching simplicial submesh Th. A matching
simplicial submesh Th of the pyramidal submesh Ph can be constructed as follows: For all
K P Kh and all F P FK (i) a pd´1q-simplicial mesh SF of F is obtained taking the trace
of Th on F ; (ii) a d-simplicial mesh TKF

of the pyramid KF is then obtained connecting the
(hyperplanar) elements in SF to the cell center. A matching simplicial submesh of Ph is
obtained by setting

Th :“
ď

KPKh, FPFK

TKF
.

(i) Shape-regularity. We have to prove that there exists a real %11 independent of h such that
%11hT ď rT for all T P Th. Let KF P Ph and T P TKF

be given. Denoting by rT the inradius of
T , letting AT :“ |BT | and σ :“ BT X F , there holds d |T | “ rTAT “ |σ| dK,F , hence

rT “
|σ| dK,F

AT
. (3)

Since the pd´1q-dimensional measure of each face of T is bounded by hd´1
K and T has pd`1q faces,

there holds AT ď pd ` 1qhd´1
K . Let now S P Th be the unique simplex such that BS X F “ σ

and S Ă K. Denoting by rσ the inradius of σ and observing that rσ ě rS by a simple
argument based on the Pythagorean theorem, it is inferred |σ| ě |Bd´1| r

d´1
σ ě |Bd´1| r

d´1
S ě

|Bd´1| p%1%2q
d´1hd´1

K owing to the shape- and contact-regularity of Kh (Bd´1 denotes here the
pd´1q-dimensional unit ball). Plugging these inequalities into (3), it is inferred

rT ě
|Bd´1| p%1%2q

d´1

d` 1 dK,F ě %3
|Bd´1| p%1%2q

d´1

d` 1 hT ,

and the conclusion follows with %11 “ %3 |Bd´1| p%1%2q
d´1{pd` 1q.

(ii) Contact-regularity. We have to prove that there exists a real %12 independent of h such that,
for all KF P Ph and all T P TKF

, %12hKF
ď hT . To this end, we invoke (1) to infer, for all

KF P Ph and all T P TKF
, hT ě dK,F ě %3hK ě %3hKF

, where hKF
denotes the diameter of

KF . The conclusion follows with %12 “ %3.

2.3 Broken function spaces

For Sh P tKh,Phu and an integer k ě 0, we introduce the broken polynomial space

Pkd pShq :“ tv P L2pΩq | @S P Sh, v|S P Pkd pSqu, (4)

where Pkd denotes the space of polynomial functions of total degree at most k. Broken polynomial
spaces are a special instance of broken Sobolev spaces: For an integer l ě 1,

H lpShq :“ tv P L2pΩq | @S P Sh, v|S P H lpSqu.

For further use, we define the broken gradient denoted by ∇h and acting on functions v P H1pShq
such that p∇hvq|S :“ ∇pv|Sq, for all S P Sh. We also define the broken divergence of a field
v P H1pShq

d denoted by ∇h¨v and the broken symmetric tensor-gradient εhpvq respectively
as the trace and as the symmetric part of the broken tensor-gradient ∇hv. The shape- and
contact-regularity of the mesh sequences KH and PH are instrumental to prove the following
result, see [17, Lemmata 1.46 and 1.49].
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Lemma 4 (Trace inequalities). Let KH be a shape- and contact-regular mesh sequence admitting
a set of cell centers and denote by PH the corresponding sequence of pyramidal submeshes. Then,
there exist two reals Ctr and Ctr,c independent of h (but depending on the polynomial degree)
such that, for all h P H with Sh P tKh,Phu,

@vh P Pkd pPhq , @P P Ph, @F P FP , }vh}L2pF q ď Ctrh
´1{2
F }vh}L2pP q, (5)

@v P H1pShq, @S P Sh, @F P FS , }v}L2pF q ď Ctr,c

´

h´1
S }v}

2
L2pSq ` hS |v|

2
H1pSq

¯1{2
. (6)

We next define some trace operators commonly used in the context of nonconforming finite
element methods. For every interface F P F i

Sh
, Sh P tKh,Phu, we introduce an arbitrary but

fixed ordering of the elements S1 and S2 such that F Ă BS1XBS2 and let nF :“ nS1,F “ ´nS2,F ,
where nSi,F , i P t1, 2u, denotes the unit normal to F pointing out of Si. The orientation of the
normal remains coherent when F P F i

Kh
is regarded as an element of F i

Ph
. For all S P Sh, we

also introduce the symbol nS to denote the vector-valued field such that nS |F “ nS,F for all
F P FS . On boundary faces F P Fb

Ph
, nF denotes the unit normal pointing out of Ω.

Definition 5 (Jumps and averages). Let v denote a scalar-valued function defined on Ω smooth
enough to admit on all F P FPh

a possibly two-valued trace. Then, if F P F i
Ph

with F Ă

BP1 X BP2, the jump and average of v at F are defined for a.e. x P F as

JvKF pxq :“ v|P1pxq ´ v|P2pxq, tvuF pxq :“ 1
2
`

v|P1pxq ` v|P2pxq
˘

.

If F P Fb
Ph

with F “ BP X BΩ, we conventionally set JvKF pxq “ tvuF pxq :“ v|P pxq.

When applied to vector-valued functions, both the jump and average operators act component-
wise. Whenever no confusion can arise, we omit the subscript F and the variable x and simply
write JvK, tvu.

2.4 Polynomial approximation

The last requirement on the mesh sequence is that regular functions can be optimally approxi-
mated by broken polynomial functions.

Definition 6 (Optimal polynomial approximation). The mesh sequence KH has optimal poly-
nomial approximation properties if for all h P H, all K P Kh, all polynomial degree k ě 0, all
s P t0, . . . , k ` 1u and all v P HspKq, there holds

|v ´Πk
hv|HmpKq ď Capph

s´m
K |v|HspKq @m P t0, . . . , su, (7)

where Capp is independent of both K and h, and Πk
h denotes the L2-orthogonal projector on

Pkd pKhq.

A sufficient condition for a shape- and contact-regular mesh sequence KH to have optimal
approximation properties is that every element K P Kh is star-shaped with respect to a ball
whose diameter is uniformly comparable to hK , cf. [7, Chapter 4]. Note that under this assump-
tion, the mesh clearly admits a set of cell centers. In what follows, we only need polynomial
approximation for polynomial degrees 0 and 1.

Definition 7 (Admissible mesh sequence). We say that the mesh sequence KH is admissible if it
is shape- and contact-regular, it admits a set of cell centers, and it possesses optimal polynomial
approximation properties.
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The regularity of an admissible mesh sequence is described by the reals %1, %2, and %3, which
are therefore collectively referred to as mesh regularity parameters. Admissible mesh sequences
include general polyhedral discretizations with possibly nonmatching interfaces, see Figure 1
for an example.

Proposition 8 (Approximation on mesh faces). For an admissible mesh sequence KH there
holds for all h P H, all K P Kh, all F P FK , all polynomial degree k ě 0, all s P t0, . . . , k ` 1u,
and all v P HspKq,

}v ´Πk
hv}L2pF q ď Ch

s´1{2
K |v|HspKq,

where C “ Ctr,cCapp with Ctr,c defined as in (6) and Capp as in (7).

Proof. The result is an immediate consequence of the trace inequality (6) with Sh “ Kh and of
the approximation properties of the L2-orthogonal projector.

3 Mimicking the properties of the lowest-order Crouzeix–Raviart
space on general meshes

In this section we present a piecewise affine functional space obtained in the spirit of [16] that
extends some important properties of the Crouzeix–Raviart space [15] to general polygonal or
polyhedral meshes.

3.1 Construction

Our goal is to extend two key properties of the classical Crouzeix–Raviart space to admissible
polygonal or polyhedral meshes, namely (i) the continuity of the mean value (or, equivalently,
the barycentric value) of discrete functions at interfaces; (ii) the existence of an interpolator
that preserves the mean value of the gradient inside each element. In the spirit of ccG methods,
the discrete space is obtained in three steps by prescribing (i) the vector space of degrees of
freedom Vh; (ii) a gradient reconstruction Gh, i.e., a linear operator which maps every vector
of DOFs onto a vector field piecewise constant on Ph; (iii) a piecewise affine reconstruction Rh

defined from a point value and a linear perturbation based on the gradient reconstruction which
maps every vector of DOFs onto a piecewise affine function on the pyramidal submesh Ph. In
the spirit of HFV methods [25], the vector space of DOFs contains cell and face unknowns and
is defined by

Vh :“
!

vh “ ppvK P RqKPKh
, pvF P RqFPFKh

q P RKh ˆ RFKh

)

.

The gradient operator generalizes the one introduced in [24], and is composed of a consistent
contribution piecewise constant on the primal mesh Kh plus a subgrid correction piecewise
constant on the pyramidal submesh Ph. More precisely, Gh : Vh Ñ P0

d pPhq
d realizes the

mapping Vh Q vh ÞÑGhpvhq with

Ghpvhq|KF
“ GKF

pvhq :“ GKpvhq `RKF
pvhq, @K P Kh, F P FK , (8)

where

GKpvhq :“ 1
|K|

ÿ

FPFK

|F | vFnK,F , RKF
pvhq :“ η

dK,F
pvF´vK´GKpvhq¨pxF ´ xKqqnK,F ,

(9)
and η ą 0 is a user-dependent parameter. With a slight abuse in notation, the symbols GKF

pvhq,
GKpvhq, and RKF

pvhq will also be used to denote the corresponding constant fields on KF , K,
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and KF respectively. The choice η “ d1{2 is proposed in [25] to recover the classical two-point
finite volume method on superadmissible meshes; cf. [25, Lemma 2.1]. In our case, the choice
η “ d is a key ingredient to prove the continuity of mean values at interfaces; cf. Lemma 10.
The reconstruction operator Rh realizes the mapping Vh Q vh ÞÑ Rhpvhq P P1

d pPhq with

Rhpvhq|KF
pxq “ vF `Ghpvhq|KF

¨px´ xF q, @KF P Ph, @x P KF , (10)

where xF :“ xxyF denotes the barycenter of F P FPh
and, for a function ϕ integrable on F ,

we have introduced the notation xϕyF :“
ş

F ϕ{ |F |. By construction, there holds ∇hRh “ Gh.
We are now ready to introduce the discrete space

CRpKhq :“ RhpVhq. (11)

Remark 9 (Choice of the starting point in (10)). The affine reconstruction in KF is obtained
by perturbing the face unknown vF , unlike [16], where the cell unknown vK is used instead. As a
consequence, letting vh :“ Rhpvhq, there holds, for all K P Kh and all F P FK , vh|KF

pxF q “ vF .
Since the reconstruction is piecewise affine, this implies the continuity of mean values for all
F P F i

Kh
.

3.2 Continuity of mean values at interfaces

In this section we extend Remark 9 by proving that the choice η “ d in (9) yields the continuity
of the mean values (or, equivalently, the barycentric values) of discrete functions across all the
interfaces in F i

Ph
(including lateral pyramidal faces).

Lemma 10 (Continuity of mean values at interfaces). Let Kh belong to an admissible mesh
sequence and, if Kh is not matching simplicial, assume η “ d in (9). Then, there holds for all
vh P CRpKhq,

@F P F i
Ph
, xJvhKyF “ 0.

Proof. Let F P F i
Ph

, vh P Vh, and let vh :“ Rhpvhq P CRpKhq. We distinguish two cases.
(i) If F P F i

Kh
is a face of the primal mesh Kh, the fact that xJvhKyF “ 0 is an immediate

consequence of Remark 9; (ii) if F P F i
Ph
zF i

Kh
is a lateral pyramidal face, there exist a unique

element K P Kh and two faces F1, F2 P FK such that F Ă BKF1 X BKF2 (cf. Figure 2a). There
holds for i P t1, 2u (cf. Figure 2b),

pxF ´ xFiq¨nK,Fi “ pxF ´ xKq¨nK,Fi ` pxK ´ xFiq¨nK,Fi “

ˆ

d´ 1
d

´ 1
˙

dK,Fi “ ´
dK,Fi

d
,

where we have used the fact that xF is the barycenter of F to treat the term pxF´xKq¨nK,Fi .
Using the above result together with (9) it is inferred for i P t1, 2u,

αi :“ RKFi
pvhq¨pxF ´ xFiq “ ´

η

d
pvFi ´ vK ´GKpvhq¨pxFi ´ xKqq .

Using the definition of the jump operator and substituting the expression (10) for the barycentric
values vh|KFi

pxF q, i P t1, 2u, we obtain

xJvhKyF “ vh|KF1
pxF q ´ vh|KF2

pxF q

“ vF1 ´ vF2 ´GKpvhq¨pxF1 ´ xF2q ` α1 ´ α2

“

´

1´ η

d

¯

pvF1 ´ vF2 ´GKpvhq¨pxF1 ´ xF2qq .

(12)

If Kh is a matching simplicial mesh, GKpvhq coincides by definition with the standard Crouzeix–
Raviart gradient (cf. also Proposition 11), hence the second factor in (12) vanishes, otherwise
the assumption η “ d is needed to conclude that xJvhKyF “ 0. This concludes the proof.

9
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(a) Element K (solid line), elementary pyra-
midal submesh (dashed line), and lateral
pyramidal face F shared by the pyramids
KF1 and KF2 (thick dashed line)
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dK,F2
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xF´xK

(b) Zoom on the pyramid KF2

Figure 2: Notation for the proof of Lemma 10

3.3 The matching simplicial case

To gain further insight, we examine the case when Kh is matching simplicial and prove a result
that links the space CRpKhq with the classical Crouzeix–Raviart space CRpKhq. Let

W pPhq :“ tv P H1pPhq | xJvKyF “ 0 for all F P F i
Ph
u,

and denote by ICR
h : W pPhq Ñ CRpKhq the interpolator that maps a function v P W pPhq on

the function vh :“ ICR
h pvq P CRpKhq such that vhpxF q “ xvyF for all F P FKh

. Defining ICR
h for

functions in W pPhq is necessary for the discussion in Sections 4.2.4 and 4.3.3.

Proposition 11 (The matching simplicial case). Assume that Kh is a matching simplicial mesh.
Then, for all η ą 0 in (9) there holds

CRpKhq Ă CRpKhq. (13)

Proof. Let vh P CRpKhq and set vh :“ ppvhpxKqqKPKh
, pvhpxF qqFPFKh

q. By definition there
holds (cf. (9)) GKpvhq “ p∇hvhq|K for all K P Kh. Using the linearity of vh inside each element
it is inferred RKF

pvhq “ 0, hence GKF
pvhq “ GKpvhq “ p∇hvhq|K for all F P FK . As a

consequence, we conclude that vh “ Rhpvhq P CRpKhq.

3.4 Approximation

In this section we introduce a suitable interpolator on the CRpKhq space and study its ap-
proximation properties. Let ICR

h : H1pΩq Ñ CRpKhq be such that, for all v P H1pΩq,
ICR
h pvq “ Rhpvhq with

Vh Q vh “ ppΠ1
hvpxKqqKPKh

, pxvyF qFPFKh
q. (14)

When applied to vector-valued fields, ICR
h acts component-wise.

10



Lemma 12 (Approximation in CRpKhq). For all η ą 0 in (9) and all v P H1pΩq there holds
with vh :“ ICR

h pvq P CRpKhq,
Π0
hp∇hvhq “ Π0

hp∇vq, (15)

where Π0
h denotes the L2-orthogonal projector on P0

d pKhq
d. Moreover, there exists a real C ą 0

independent of the meshsize such that, for all h P H, all K P Kh, all v P H1pΩq XH l`1pKhq,
l P t0, 1u, there holds with vh :“ ICR

h pvq

}v ´ vh}L2pKq ` hK}∇v ´∇hvh}L2pKqd ď Chl`1
K |v|Hl`1pKq. (16)

Proof. To avoid naming generic constants, we use the notation a À b for the inequality a ď Cb
with C ą 0 independent of the meshsize.
(i) Equality (15). For a given v P H1pΩq, let vh be defined as in (14). We start by noting the
following orthogonality relation (cf. [25, eq. (27)]) valid for all wh P Vh and all K P Kh:

ÿ

FPFK

|KF |RKF
pwhq “ 0. (17)

As a consequence, for all K P Kh there holds

x∇hvhyK “ GKpvhq “
1
|K|

ÿ

FPFK

|F | xvyFnK,F “
1
|K|

ż

BK
vnK “ x∇vyK ,

where we have used the planarity of faces and Green’s formula. Relation (15) follows.
(ii) Inequality (16). Let K P Kh and define vh as in (14). We first estimate }∇v ´∇hvh}L2pKqd .
Using (8) together with the previous point and the triangular inequality it is inferred

}∇v ´∇hvh}L2pKqd ď }∇v ´Π0
hp∇vq}

L2pKqd `

˜

ÿ

FPFK

|KF | |RKF
pvhq|

2

¸
1
2

:“ T1 ` T2.

Using the approximation properties of the L2-orthogonal projector it is readily inferred T1 À hlK |v|Hl`1pKq.
To estimate the second term, we preliminarily observe that there holds for all F P FK with
wh :“ Π1

hv (Π1
h denotes here the L2-orthogonal projector on P1

d pKhq),

RKF
pvhq “

η

dK,F
pxvyF ´ whpxKq ´GKpvhq¨pxF ´ xKqqnK,F “

η

dK,F
pαK,F ` βK,F qnK,F ,

(18)
where αK,F :“ xvyF ´ xwh|KyF , βK,F :“

`

∇wh|K ´GKpvhq
˘

¨pxF ´xKq, and we have used the
fact that wh|K is affine in K to infer whpxKq “ xwh|KyF ´∇wh|K ¨pxF ´ xKq. There follows
from equation (18)

T2
2 À

ÿ

FPFK

|KF |

d2
K,F

|αK,F |
2 `

ÿ

FPFK

|KF |

d2
K,F

|βK,F |
2 :“ T2,1 ` T2,2.

Using (2), the Cauchy–Schwarz inequality, the mesh regularity assumption (1), the fact that
cardpFKq is bounded uniformly in h (cf. [17, Lemma 1.41]), and Proposition 8 it is inferred,

T2,1 “
1
d

ÿ

FPFK

1
dK,F |F |

ˆ
ż

F
v ´ wh

˙2
ď

1
d%3

ÿ

FPFK

1
hK
}v ´ wh}

2
L2pF q À h2l

K |v|
2
Hl`1pKq.

On the other hand, since |xF ´ xK | ď hK and both ∇wh|K and GKpvhq are constant on K,
there holds

T2,2 ď
ÿ

FPFK

|KF |
h2
K

d2
K,F

|∇wh|K ´GKpvhq|
2 ď

1
%2

3
}∇wh|K ´Π0

hp∇vq}2
L2pKqd

À h2l
K |v|

2
Hl`1pKq,

11



where we have used the mesh regularity assumption (1) together with (15), and concluded using
the approximation properties of the L2-orthogonal projector. Gathering up the bounds on T1
and T2 it is inferred

}∇v ´∇hvh}L2pKqd À hlK |v|Hl`1pKq. (19)

To complete the proof of inequality (16) it only remains to estimate }v ´ vh}L2pKq. To this end,
letting again wh :“ Π1

hv, we apply the triangular inequality to infer

}v ´ vh}L2pKq ď }v ´ wh}L2pKq ` }wh ´ vh}L2pKq :“ T1 ` T2.

The approximation properties of the L2-orthogonal projector readily yield T1 À hl`1
K |v|Hl`1pKq.

For the second term, we notice that for all F P FK and all x P KF , the linearity of both wh|K
and vh|KF

yields

wh|Kpxq “ xwh|KyF `∇wh|K ¨px´ xF q, vh|KF
pxq “ xvyF `∇vh|KF

¨px´ xF q.

As a consequence,

}wh ´ vh}
2
L2pKF q

À

ż

KF

pxwh|K ´ vyF q
2 `

ż

KF

“

p∇wh|K ´∇vh|KF
q¨px´ xF q

‰2 :“ T2,1 ` T2,2.

Using (2), the Cauchy–Schwarz inequality, and Proposition 8 it is inferred

T2,1 “
|F | dK,F

d
pxwh|K ´ vyF q

2 ď
dK,F
d
}wh|K ´ v}

2
L2pF q À h

2pl`1q
K |v|2Hl`1pKq.

Since |x ´ xF | ď hK for all x P KF and both ∇wh|K and ∇vh|KF
are constant on KF , the

estimate (19) yields

T2,2 ď h2
K}∇wh|K ´∇vh|KF

}2
L2pKF q

d À h
2pl`1q
K |v|2Hl`1pKq.

Summing over F P FK , using the bounds for T2,1 and T2,2 together with the fact that cardpFKq

is bounded uniformly in h, it is inferred T2 À hl`1
K |v|Hl`1pKq, thereby yielding }v ´ vh}L2pKq À

hl`1
K |v|Hl`1pKq and therefore concluding the proof.

Remark 13 (The matching simplicial case). When Kh is matching simplicial, the proof of
Lemma 12 can be simplified exploiting the result of Proposition 11 to infer

inf
vhPCRpKhq

}v ´ vh}H1pKq ď inf
vhPCRpKhq

}v ´ vh}H1pKq,

and conclude using the approximation properties of the standard Crouzeix–Raviart space.
We next examine the approximation of the divergence of a vector-valued field. For all

w P Hpdiv; Khq :“ tv P L2pΩqd | @K P Kh,∇¨pv|Kq P L2pKqu we introduce the following
discrete divergence piecewise constant on Kh:

Dhpwq :“ Π0
hp∇h¨wq. (20)

An immediate consequence of the the first point in Lemma 12 is that the discrete vector space
CRpKhq

d possesses the following approximation property.

Corollary 14 (Divergence approximation). Let v P H1pΩqd and vh :“ ICR
h pvq. There holds

Dhpvhq “ Π0
hp∇¨vq.

Moreover, there exists a real C ą 0 independent of the meshsize such that, for all h P H, all K P

Kh, and all v P H1pΩqd XH1pdiv; Khq with H1pdiv; Khq :“ tv P Hpdiv; Ωq | ∇h¨v P H
1pKhqu

and vh :“ ICR
h pvq,

}∇¨v ´Dhpvhq}L2pKq ` hK |∇¨v ´Dhpvhq|H1pKq ď ChK |∇¨v|H1pKq.
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4 Applications
In this section we present two examples of applications where the properties of the extended
Crouzeix–Raviart space (11) are instrumental in designing a suitable numerical approximation,
namely linear elasticity for quasi-incompressible materials and the Stokes equations with large
irrotational sources.

4.1 Discrete H1
0 pΩq-norm

For problems naturally set in H1
0 pΩq, boundary conditions can be accounted for in a strong

manner by introducing the discrete space

CR0pKhq :“ RhpVh,0q, Vh,0 “ tvh P Vh | vF “ 0, @F P Fb
Kh
u. (21)

In the following proposition we show that the L2-norm of the broken gradient is a norm on
CR0pKhq by proving uniform discrete equivalence with the usual dG norm, cf. [17, Section 5.1]:

}vh}
2
dG :“ }∇hvh}

2
L2pΩqd ` |vh|

2
J, |vh|

2
J :“

ÿ

FPFPh

1
hF
}JvhK}2L2pF q. (22)

Proposition 15 (Discrete norm). Assume η “ d in (9). Then, there exists a real C ą 0
independent of the meshsize such that, for all vh P CR0pKhq,

}∇hvh}L2pΩqd ď }vh}dG ď C}∇hvh}L2pΩqd .

Proof. The notation a À b stands for a ď Cb with C ą 0 independent of the meshsize. Clearly,
}∇hvh}L2pΩqd ď }vh}dG for all vh P CR0pKhq. To prove that }vh}dG À }∇hvh}L2pΩqd for all
vh P CR0pKhq, it suffices to show that |vh|J À }∇hvh}L2pΩqd . Let P P Ph and F P FP . Owing
to the linearity of vh inside P there holds for all x P P , vh|P pxq “ xvh|P yF `∇vh|P ¨ px´ xF q.
This together with Lemma 10 and the discrete trace inequality (5) yields

}JvhK}L2pF q “ }JvhK ´ xJvhKyF }L2pF q ď hF }J∇hvhK}L2pF qd À h
1{2
F

ÿ

PPPF

}∇vh|P }L2pP qd , (23)

where we have set PF :“ tP P Ph | F Ă BP u. Using (22) together with (23) and the Cauchy–
Schwarz inequality it is inferred

|vh|
2
J “

ÿ

FPFPh

1
hF
}JvhK ´ xJvhKyF }

2
L2pF q À

ÿ

FPFPh

ÿ

PPPF

}∇vh|P }
2
L2pP qd

À }∇hvh}
2
L2pΩqd , (24)

where the last bound is a consequence of the fact that the maximum number of faces of a pyramid
is bounded uniformly in h since Ph is shape- and contact-regular, cf. [17, Lemma 1.41].

4.2 Quasi-incompressible linear elasticity

We tackle here the question of the accurate approximation of the linear elasticity equations in
the quasi-incompressible limit on general polygonal or polyhedral meshes. The main sources of
inspiration are the classical works of Brenner and Sung [8], and Hansbo and Larson [28, 29].
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4.2.1 Setting

We consider a homogeneous elastic material occupying the polygonal/polyhedral domain Ω Ă

Rd, and whose mechanical properties are described by the real Lamé parameters λ and µ with
0 ă µ ă `8 and 0 ă λ ď `8. The mechanical behavior of the material is governed by the
linear elasticity equations,

´∇¨σpuq “ f in Ω,

u “ 0 on BΩ,
(25)

where u denotes the vector-valued displacement field, f P L2pΩqd the forcing term, and the
Cauchy stress tensor is defined for all v P H1pΩqd by Hooke’s law,

σpvq :“ 2µεpvq ` λ∇¨vId, εpvq :“ 1
2p∇v `∇vT q.

Setting U :“ H1
0 pΩq

d, the weak formulation of problem (25) reads: Find u P U such that

ãpu,vq “ pf ,vq
L2pΩqd @v P U , (26)

where ãpu,vq :“ pσpuq, εpvqq
L2pΩqd,d . The well-posedness of the weak formulation (26) relies on

Korn’s inequality in U (cf., e.g., [1, Lemma 5.3.2]),

}∇v}
L2pΩqd,d ď

?
2}εpvq}

L2pΩqd,d @v P U . (27)

The use of Korn’s inequality can be circumvented for the pure displacement problem using the
following alternative Navier–Cauchy formulation: Find u P U such that

apu,vq :“ pµ∇u,∇vq
L2pΩqd,d ` ppµ` λq∇¨u,∇¨vqL2pΩq “ pf ,vqL2pΩqd @v P U . (28)

This naturally coercive formulation is equivalent to (26) for homogeneous materials and pure
Dirichlet boundary conditions. Throughout the rest of this section we focus on this alternative
form. The treatment of mixed Dirichlet/Neumann boundary conditions is briefly addressed in
Section 4.2.5. We recall the following regularity result for problem (25) in d “ 2; cf.,e.g., [8,
Lemma 2.2].

Lemma 16 (Regularity). Let d “ 2 and assume that Ω is convex. Then, problem (25) has a
unique solution u P U˚ :“ U XH2pΩqd. Moreover, there exists a real Cµ ą 0 only depending
on Ω and µ but not on λ, such that, for λ large enough,

Nelpuq :“ }u}
H2pΩqd ` |λ∇¨u|H1pΩq ď Cµ}f}L2pΩqd . (29)

This a priori estimate implies that, if λ Ñ `8, the divergence of the displacement field
approaches zero, corresponding to a quasi-incompressible material. A generalization of this
result to composite materials with piecewise constant mechanical properties is proved in [20],
where a locking-free dG discretization on matching triangular meshes is introduced. Note that
the regularity estimate (29) is stronger than a simple bound on |λ1{2∇¨u|H1pΩq.

4.2.2 Discretization

Let Kh belong to an admissible mesh sequence in the sense of Definition 7. We consider an
approximation of the displacement field in the space

Uh :“ CR0pKhq
d,
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with CR0pKhq defined by (21). Henceforth we assume the choice η “ d in (9), so that the
continuity of mean values stated in Lemma 10 holds. Lowest-order, locking-free discretizations
of (25) satisfy an estimate of the form

}u´ uh}el ď Ch}f}
L2pΩqd , (30)

where }¨}el is a (discrete) energy norm and C ą 0 is a constant possibly depending on µ and on
the mesh regularity parameters but independent of h, λ, and u. The key point is here that the
multiplicative constant in the right-hand side of (30) does not blow up in the limit λ Ñ `8,
i.e., the method converges uniformly with respect to λ. To obtain (30) we prove that in general
space dimension there holds with Nelpuq defined by (29),

}u´ uh}el ď CelhNelpuq,

where Cel ą 0 has the same dependencies as C, and then invoke the regularity estimate
in Lemma 16 to conclude in d “ 2. The discrete problem reads: Find uh P Uh such that

ahpuh,vhq “ pf ,vhqL2pΩqd @vh P Uh, (31)

with discrete bilinear form ah such that

ahpw,vq :“ pµ∇hw,∇hvq
L2pΩqd,d ` pµ∇h¨w,∇h¨vqL2pΩq ` pλDhpwq, DhpvqqL2pΩq. (32)

The last term in the right-hand side is treated using the discrete divergence Dh defined in
Corollary 14. The approximation properties of Dh are instrumental to ensure that λ only
appears in terms of the form |λ∇¨u|H1pΩq in the right-hand side of the error estimate (cf., in
particular, the bound for the consistency term in the proof of Theorem 20).

Remark 17 (Implementation). In the practical implementation of (31) cell-centered unknowns
can be eliminated from the global linear system by solving an inexpensive local problem inside
each element in the spirit of [3]. This is the case since, for each element, the cell unknown is
only linked with the face unknowns located on the boundary of the element.

The energy norm associated to the bilinear form ah is

}v}2el :“ ahpv,vq “ }µ
1{2∇hv}2

L2pΩqd,d ` }µ
1{2∇h¨v}

2
L2pΩq ` }λ

1{2Dhpvq}
2
L2pΩq. (33)

Lemma 18 (Coercivity). There holds for all vh P Uh,

ahpvh,vhq “ }vh}
2
el ě µ}∇hvh}

2
L2pΩqd,d .

The well-posedness of the discrete problem (31) then follows from the Lax–Milgram Lemma
and Proposition 15. Let now U˚h :“ U˚ `Uh with U˚ defined in Lemma 16, and extend the
bilinear form ah to U˚h ˆ U˚h. Assuming that the exact solution belongs to the augmented
space U˚ ensures that the boundary terms in the expression of the consistency error are well-
defined, cf. Lemma 19. This additional regularity is verified, e.g., under the assumptions of
Lemma 16.

Lemma 19 (Weak consistency). Let u P U denote the solution to (28) and additionally assume
that u P U˚. Then, there holds for all vh P Uh,

ahpu,vhq “ pf ,vhqL2pΩqd ` Ehpvhq,

where, letting τpuq :“ µ∇u` pµ` λqp∇¨uqId,

Ehpvhq :“
ÿ

FPFPh

pτpuqnF , JvhKqL2pF qd ` pλpDhpuq ´∇¨uq,∇h¨vhqL2pΩq. (34)
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Proof. Observing that pλDhpuq, DhpvhqqL2pΩq “ pλDhpuq,∇h¨vhqqL2pΩq, summing and sub-
tracting pλ∇¨u,∇h¨vhqL2pΩq from the right-hand side of (32) with pw,vq “ pu,vhq there holds

ahpu,vhq “ pτpuq,∇hvhqL2pΩqd,d ` pλpDhpuq ´∇¨uq,∇h¨vhqL2pΩq.

Integrating by parts the first term element-wise, rearranging the boundary contributions, and
using the fact that JτpuqKFnF “ 0 and tτpuquFnF “ τpuqnF for all F P F i

Ph
, it is inferred

pτpuq,∇hvhqL2pΩqd,d “ ´p∇¨τpuq,vhqL2pΩqd `
ÿ

PPPh

pτpuqnP ,vh|P qL2pBP qd

“ pf ,vhqL2pΩqd `
ÿ

FPF i
Ph

pJτpuqKnF , tvhuqL2pF qd `
ÿ

FPFPh

ptτpuqunF , JvhKqL2pF qd

“ pf ,vhqL2pΩqd `
ÿ

FPFPh

pτpuqnF , JvhKqL2pF qd ,

where we have used the fact that ´∇¨τpuq “ f almost everywhere in Ω as a consequence
of (28). This concludes the proof.

In the following theorem the continuity of mean values at interfaces plays an important role
in estimating the boundary contribution in the consistency error.
Theorem 20 (Error estimate for (31)). Let u P U denote the solution to (28) and additionally
assume that u P U˚. Then, there exists Cel ą 0 independent of the meshsize, of λ, and of u
such that, denoting by uh P Uh the solution to (31), there holds

}u´ uh}el ď CelhNelpuq. (35)

Proof. We use the notation a À b for the inequality a ď Cb where C ą 0 has the same
dependence as the constant Cel in (35). The Cauchy–Schwarz inequality yields boundedness in
the form ahpw,vq ď }w}el}v}el for all pw,vq P U˚h ˆ U˚h. This together with Lemmata 18
and 19 and the Second Strang Lemma [32] (cf. also [23, Lemma 2.25]) yields:

}u´ uh}el À inf
vhPUh

}u´ vh}el ` sup
vhPUhzt0u

|Ehpvhq|
}vh}el

:“ T1 ` T2. (36)

The first term in the right-hand side depends on the approximation properties of the discrete
space in the }¨}el-norm, whereas the second is linked to the consistency error. Let wh :“
ICR
h puq P Uh. Using Lemma 12 twice and Corollary 14 respectively to treat the three terms in

the right-hand side of (33) with v “ u´wh there holds,

T1 ď }u´wh}el À h}u}
H2pΩqd ` h|λ

1{2∇¨u|H1pΩq. (37)

To treat the consistency error, denote by T2,1 and T2,2 the two terms in the right-hand side
of (34). Let

φµ :“ µp∇u´Π0
hp∇uqq, ψs :“ sp∇¨u´Π0

hp∇¨uqq, with s P tµ, λu.

Clearly, ψµ “ trpφµq. Using the continuity of mean values at interfaces together with the fact

that both tµΠ0
hp∇uquF and tsΠ0

hp∇¨uquF , s P tµ, λu, are constant on every F P FPh
, it is

inferred
T2,1 “

ÿ

FPFPh

ptτpuq ´Π0
hpτpuqqunF , JvhK ´ xJvhKyF qL2pF qd

“
ÿ

FPFPh

ptφµ ` ψµIdunF , JvhK ´ xJvhKyF qL2pF qd `
ÿ

FPFPh

ptψλunF , JvhK ´ xJvhKyF qL2pF qd .
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(a) Triangular (b) Kershaw (c) Trapezoidal (d) Hexagonal

Figure 3: Members of the mesh families for the numerical test of Section 4.2.3.

The Cauchy–Schwarz inequality followed by the trace inequality (5), the fact that the maximum
number of faces of a pyramid is bounded uniformly in h, the approximation properties of the
L2-orthogonal projection, and (24) yield

T2,1 À

#

ÿ

PPPh

h

ˆ

}φµ|P }
2
L2pBP qd,d ` }ψλ|P }

2
L2pBP q

˙

+
1
2

ˆ

#

ÿ

FPFPh

h´1
F }JvhK ´ xJvhKyF }

2
L2pF qd

+
1
2

À hNelpuq}vh}el,
(38)

where the bound }∇hvh}L2pΩqd,d À }vh}el is a consequence of Lemma 18. Finally, using the
Cauchy–Schwarz inequality together with the approximation properties of the L2-orthogonal
projection and Lemma 18 it is inferred,

T2,2 ď }λpΠ0
hp∇¨uq ´∇¨uq}L2pΩq}∇h¨vh}L2pΩq À h|λ∇¨u|H1pΩq}vh}el. (39)

Using inequalities (37), (38), and (39) to bound the right-hand side of (36) the conclusion
follows.

Corollary 21 (Uniform convergence with respect to λ in d “ 2). If d “ 2 the locking-free error
estimate (30) holds with C “ CelCµ.

Remark 22 (Use of Lemma 16). In the proof of Theorem 20, the a priori bound on |λ∇¨u|H1pΩq
is only required to bound T2. For T1, the weaker regularity estimate }u}

H2pΩqd`|λ
1{2∇¨u|H1pΩq À

}f}
L2pΩqd is sufficient.

Remark 23 (L2-error estimate). Optimal error estimates for the L2-error on the displacement
can be derived using the Aubin–Nitsche trick based on the symmetry of the method.

4.2.3 A numerical example: the closed cavity problem

To assess the robustness of the method (31) in the quasi-incompressible limit we consider the
closed cavity problem of Hansbo and Larson [29]. The implementation relies on the general
framework recently introduced in [18], to which we refer for further details. We let Ω :“ p0, 1q2,
f ” 0, and prescribe a horizontal displacement u “ p1, 0q on the upper side and u “ p0, 0q
on the remaining three. The elastic modulus and Poisson’s ratio are chosen as E “ 1000 and
ν “ 0.4999 respectively. The Lamé parameters can be derived from the following relations:

λ “ νE
p1`νqp1´2νq , µ “ E

2p1`νq .
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(a) Coarse meshes
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(b) Fine meshes

Figure 4: Results for the closed cavity problem on a coarse and a fine mesh extracted from the
mesh families of Figure 3. Solid lines: horizontal displacement uh,1 along the vertical centerline.
Dashed lines: vertical displacement uh,2 along the horizontal centerline.

From the first relation it is apparent that λÑ `8 as ν Ñ 1{2. Although this problem does not
exhibit the regularity required by Theorem 20, it is included as it is one of the simplest bench-
marks for numerical locking. The discrete problem (31) is solved on the four mesh sequences
depicted in Figure 3. From each mesh family, a coarse and a fine meshes are selected featuring
roughly the same number of elements. Figure 4 depicts the values of the horizontal displacement
uh,1 along the vertical centerline x “ 1{2 as well as the values of the vertical displacement uh,2
along the horizontal centerline y “ 1{2. The results of the (more expensive) dG method of [20]
on the matching triangular mesh are also included for comparison. As predicted, no sign of
numerical locking is observed.

4.2.4 Variations and links with finite volume and nonconforming finite element
methods

Flux formulation and local conservation Following [25, Section 2.4] it is possible to
reformulate the discrete bilinear form (32) in terms of numerical fluxes. More specifically,
let wh, vh P Uh be two discrete functions and denote by wh “ pwh,iq1ďiďd P Vdh,0 and vh “

pvh,iq1ďiďd P Vdh,0 the corresponding vectors of DOFs, where, for all i P t1, . . . , du, wh,i and
vh,i are the vectors of DOFs associated to the ith components of wh and vh respectively.
Our goal is to show that there exists a family of numerical fluxes pΦK,F pwhqqKPKh, FPFK

with
ΦK,F pwhq “ pΦK,F,ipwhqq1ďiďd such that

ahpwh,vhq “
d
ÿ

i“1

ÿ

KPKh

ÿ

FPFK

ΦK,F,ipwhqpvF,i ´ vK,iq, (40)

with ah defined by (32). The main interest of this alternative formulation is that it allows
to prove a local conservation property similar to those encountered in standard finite volume
methods. Recalling the expression (40) for the bilinear form ah and using the cell center as a
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quadrature node to approximate the right-hand side in each element, the discrete problem (31)
in algebraic form reads: Find uh P Vdh,0 such that for all vh P Vdh,0 there holds,

d
ÿ

i“1

ÿ

KPKh

ÿ

FPFK

ΦK,F,ipuhqpvF,i ´ vK,iq “
d
ÿ

i“1

ÿ

KPKh

|K| fipxKqvK,i, (41)

where Vh,0 is defined by (21). Consider now an interface F P F i
Kh

such that F Ă BK1 X BK2,
and let vh,i be such that vF,i “ 1, vF 1,i “ 0 for all F 1 P FKh

ztF u, and vK,i “ 0 for all K P Kh.
There follows from (41),

ΦK1,F,ipuhq “ ´ΦK2,F,ipuhq, (42)

i.e., the method is locally conservative. An important remark is that the loading term does not
appear in (42) since its approximation in (41) only involves cell DOFs.

Proposition 24 (Flux formulation). For all wh, vh P Uh, the flux formulation (40) is obtained
setting for all K P Kh, F P FK , and i P t1, . . . , du,

ΦK,F,ipwhq:“
ÿ

F 1PFK

|KF 1 |

«

µGKF 1
pwh,iq¨y

K
F 1,F`

˜

d
ÿ

j“1
µGKF 1

pwh,jq`λGKpwh,jq

¸

¨ej
`

yKF 1,F ¨ei
˘

ff

,

where wh, vh P Vdh,0 are the vectors of DOFs associated to wh and vh respectively, peiq1ďiďd
denotes the canonical basis of Rd, and

yKF 1,F :“

$

&

%

|F |
|K|nK,F `

η
dK,F

´

1´ |F |
|K|nK,F ¨pxF ´ xKq

¯

nK,F if F “ F 1,
|F |
|K|nK,F ´

η
dK,F 1 |K|

|F |nK,F ¨pxF 1 ´ xKqnK,F 1 otherwise.
(43)

Proof. For all vh P Vh, all K P Kh, and all F 1 P FK there holds with GKF 1
pvhq defined by (8)

(cf. [25, eq. (26) et seq.]),
GKF 1

pvhq “
ÿ

FPFK

yKF 1,F pvF ´ vKq . (44)

Using (8) and (10), and observing that pλDhpwhq, DhpvhqqL2pΩq “ pλDhpwhq,∇h¨vhqL2pΩq ow-
ing to (20) together with the properties of the L2-orthogonal projector, it is inferred

ahpwh,vhq “

d
ÿ

i“1

ÿ

KPKh

ÿ

F 1PFK

|KF 1 |

«

µGKF 1
pwh,iq `

˜

d
ÿ

j“1
µGKF 1

pwh,jq¨ej ` λGKpwh,jq¨ej

¸

ei

ff

¨GKF 1
pvh,iq.

The conclusion follows using the expression (44) for GKF 1
pvh,iq and exchanging the sums of

indices F and F 1.

Link with the Crouzeix–Raviart solution on matching simplicial meshes Assume
that Kh is a matching simplicial mesh and let

CR0pKhq :“ tvh P CRpKhq | vhpxF q “ 0, @F P Fb
Kh
u.

We show in this section that a suitable modification of the right-hand side allows to recover the
Crouzeix–Raviart solution ûh P CR0pKhq

d such that (cf. [8]),

ahpûh,vhq “ pf ,vhqL2pΩqd @vh P CR0pKhq
d. (45)
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We consider the following variation of (31): Find uh P Uh such that

ahpuh,vhq “ pf , ICR
h pvhqqL2pΩqd @vh P Uh, (46)

where the sole difference with respect to (31) lies in the treatment of the right-hand side.

Lemma 25 (Relation between (45) and (46)). There holds uh “ ûh.

Proof. Let Vdh,0 Q ûh “ pûh,iq1ďiďd be such that, for i P t1, . . . , du,

ûh,i “ ppûh,ipxKqqKPKh
, pûh,ipxF qqFPFKh

q P Vh,0.

Clearly, for all K P Kh, all F P FK , and all i P t1, . . . , du, RKF
pûh,iq “ 0, hence GKF

pûh,iq “
GKpûh,iq “ p∇hûh,iq|K . As a consequence, ûh “ Rhpûhq. Accounting for this fact, there holds
for all vh P Uh such that vh “ Rhpvhq with vh P Vdh,0,

ahpûh,vhq “
d
ÿ

i“1

ÿ

KPKh

ÿ

FPFK

|KF |

!

µGKpûh,iq¨GKF
pvh,iq ` µGKpûh,iq¨eiDKF

pvhq

` λGKpûh,iq¨eiDKpvhq
)

“

d
ÿ

i“1

ÿ

KPKh

|K|
!

µGKpûh,iq¨GKpvh,iq ` pµ` λqGKpûh,iq¨eiDKpvhq
)

“ ahpûh, ICR
h pvhqq “ pf , ICR

h pvhqqL2pΩqd ,

where the first passage is a consequence of (17) and we have let, for the sake of conciseness
DKpvhq :“

řd
j“1 GKpvh,jq¨ej and DKF

pvhq :“
řd
j“1 GKF

pvh,jq¨ej . Owing to the coercivity of
ah, problem (46) admits a unique solution and we therefore conclude that ûh “ uh.

4.2.5 Mixed boundary conditions

For the sake of completeness, we briefly address here the case of mixed boundary conditions for
the linear elasticity problem. For simplicity of exposition, we focus on the homogeneous case,
the generalization to the nonhomogeneous one being straightforward. The continuous problem
reads

´∇¨σpuq “ f in Ω,

u “ 0 on BΩD,

σpuqn “ 0 on BΩN,

(47)

where BΩD and BΩN are such that BΩD ‰ ∅, BΩD X BΩN “ ∅ and BΩD Y BΩN “ BΩ. Let
U :“ H1

DpΩq
d with H1

DpΩq :“ tv P H1pΩq | v|BΩD “ 0u. When dealing with mixed Dirich-
let/Neumann boundary conditions, the weak formulation (28) is no longer equivalent to the
continuous problem (47), and (26) must be used instead: Find u P U such that

ãpu,vq “ pf ,vq
L2pΩqd @v P U . (48)

The well-posedness of the weak formulation (48) relies on Korn’s inequality (27), which is still
valid on the spaceH1

DpΩq
d. Likewise, the regularity estimate of Lemma 16 holds for problem (47)

in the case of a convex polygonal domain, with the above definition of U and U˚ :“ UXH2pΩqd.
We introduce the following H1

DpΩq-like discrete space to approximate the displacement field:

CRDpKhq :“ RhpVh,Dq, Vh,D “ tvh P Vh | vF “ 0, @F P Fb,D
Kh
u,
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where Fb,D
Kh

:“ tF P Fb
Kh
| F Ă BΩDu. We also introduce the set Fb,N

Kh
:“ Fb

Kh
zFb,D

Kh
. Note that

}∇hvh}L2pΩqd is still a norm on CRDpKhq. With Uh :“ CRDpKhq
d the discrete problem reads:

Find uh P Uh such that

ãhpuh,vhq “ pf ,vhqL2pΩqd @vh P Uh, (49)

with discrete bilinear form ãh such that

ãhpw,vq :“ p2µεhpwq, εhpvqqL2pΩqd,d`pλDhpwq, DhpvqqL2pΩq`
ÿ

FPFPh
zFb,N

Kh

h´1
F p2µJwK, JvKq

L2pF qd .

(50)
The least-square stabilization of the jumps, inspired from [29], is necessary to ensure the co-
ercivity of the bilinear form ãh based on the following discrete Korn’s inequality, which is a
variant of [6, eq. (1.12)].

Lemma 26 (Discrete Korn’s inequality). There exists a real CK ą 0, independent of the mesh-
size but depending on the mesh regularity parameters and on Ω, such that there holds for all
v “ pviq1ďiďd P H

1pPhq
d,

}∇hv}
L2pΩqd,d ď CK

ˆ

}εhpvq}
2
L2pΩqd,d ` |v|

2
J,D

˙
1
2
,

where |v|2J,D :“
řd
i“1 |vi|

2
J,D and |v|2J,D :“

ř

FPFPh
zFb,N

Kh

h´1
F }JvK}

2
L2pF q.

Remark 27 (Penalty term). We stress that in this case it is not possible to integrate the penalty
term in (50) using the face barycenter as a quadrature point, since this would yield a vanishing
contribution. A quadrature rule exact for polynomials of degree at least 2 must be used instead.

The energy norm associated to the bilinear form ãh is

}v}2el :“ ãhpv,vq “ }p2µq
1{2εhpvq}

2
L2pΩqd,d ` }λ

1{2Dhpvq}
2
L2pΩq ` |p2µq

1{2v|2J,D. (51)

Lemma 28 (Coercivity). There holds for all vh P Uh,

ãhpvh,vhq “ }vh}
2
el ě 2µC´2

K }∇hvh}
2
L2pΩqd,d .

The well-posedness of problem (49) is now straightforward. Defining U˚h :“ U˚ `Uh and
extending ãh to U˚h ˆU˚h, the convergence analysis can be carried out in a similar way as in
Section 4.2.2. Assuming u P U˚, the consistency error becomes, for all vh P Uh,

Ehpvhq :“
ÿ

FPFPh
zFb,N

Kh

pσpuqnF , JvhKqL2pF qd ` pλpDhpuq ´∇¨uq,∇h¨vhqL2pΩq.

Using the same notation as in the proof of Theorem 20, with wh :“ ICR
h puq P Uh, the term T1

can be handled as
T1 ď }u´wh}el À h}u}

H2pΩqd ` h|λ
1{2∇¨u|H1pΩq,

using Lemma 12, Corollary 14, and the trace inequality (6) with Sh “ Ph combined with
Lemma 12, respectively to treat the three terms in the right-hand side of (51) with v “ u´wh.
The terms T2,1 and T2,2 can be treated by using exactly the same arguments as in the proof of
Theorem 20. Finally, if d “ 2, we again obtain a locking-free error estimate of the form (30).
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4.3 Stokes: inf-sup stability and large irrotational body forces

We address in this section the questions of the discrete inf-sup stability and the numerical
treatment of large irrotational body forces in the approximation of the Stokes problem on
general polygonal or polyhedral meshes. This section also contains the proofs of some results
announced but not proved by the authors in [19].

4.3.1 Setting

We consider the viscous flow of a Newtonian fluid of constant viscosity taken equal to 1 for the
sake of simplicity. The Stokes equations governing the motion of the fluid read

´4u`∇p “ f in Ω,
∇¨u “ 0 in Ω,

u “ 0 on BΩ,
ż

Ω
p “ 0,

(52)

where f P L2pΩqd represents the volumic body force acting on the fluid. Let U :“ H1
0 pΩq

d,
P :“ L2

0pΩq with L2
0pΩq :“ tq P L2pΩq |

ş

Ω q “ 0u, and set X :“ U ˆP . The weak formulation
of problem (52) reads: Find pu, pq P X such that

apu,vq ` bpv, pq ´ bpu, qq “ pf ,vq
L2pΩqd @pv, qq P X, (53)

where
apu,vq “ p∇u,∇vq

L2pΩqd,d , bpv, pq “ ´p∇¨v, pqL2pΩq. (54)

4.3.2 Discretization

Let Kh belong to an admissible mesh sequence. We consider an approximation based on the
following spaces for the velocity and pressure respectively:

Uh :“ CR0pKhq
d, Ph :“ P0

d pKhq X L
2
0pΩq.

We assume the choice η “ d in (9), so that the continuity of mean values stated in Lemma 10
holds. As for the discretization of the linear elasticity problem discussed in Section 4.2, this
property is exploited to estimate the consistency error; cf. the proof of Theorem 33. We equip
Uh with the norm }v}U :“ }∇hv}

L2pΩqd,d , see Proposition 15, and Ph with the norm }q}P :“
}q}L2pΩq. Finally, we introduce the product space Xh :“ Uh ˆ Ph equipped with the norm

}pv, qq}2sto :“ }v}2U ` }q}2P . (55)

We consider the following discrete problem: Find puh, phq P Xh such that

ahpuh,vhq ` bhpvh, phq ´ bhpuh, qhq “ pf ,vhqL2pΩqd @pvh, qhq P Xh, (56)

where
ahpw,vq “ p∇hw,∇hvq

L2pΩqd,d , bhpv, qq “ ´p∇h¨v, qqL2pΩq. (57)

Alternatively, problem (56) can be formulated as: Find puh, phq P Xh such that

chppuh, phq, pvh, qhqq “ pf ,vhqL2pΩqd @pvh, qhq P Xh,

with bilinear form chppw, rq, pv, qqq “ ahpw,vq`bhpv, rq´bhpw, qq. The stability of the discrete
problem (56) relies on the coercivity of the bilinear form ah (readily following from Proposi-
tion 15) and on the inf-sup stability of the bilinear form bh.
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Lemma 29 (inf-sup stability for bh). There exists β ą 0 independent of the meshsize, such
that, for all qh P Ph,

β}qh}P ď sup
whPUhzt0u

bhpwh, qhq

}wh}U
. (58)

Proof. The notation a À b stands for a ď Cb with C ą 0 independent of the meshsize. Let
qh P Ph Ă P . We invoke the surjectivity of the divergence operator from U to P to infer
the existence of v P U and a real CΩ ą 0 solely depending on Ω such that ∇¨v “ qh and
}v}

H1pΩqd ď CΩ}qh}L2pΩq. Let vh :“ ICR
h pvq P Uh. Using the triangular inequality followed

by (16) with l “ 0, it is inferred

}vh}U ď }∇v ´∇hvh}L2pΩqd,d ` }∇v}
L2pΩqd,d À }v}H1pΩqd ,

which can be interpreted as a H1-stability property for the ICR
h interpolator. Moreover, using

the fact that qh is piecewise constant, there follows from the definition of the L2-orthogonal
projector together with Corollary 14,

bhpvh, qhq “ ´p∇h¨vh, qhqL2pΩq “ ´pΠ0
hp∇h¨vhq, qhqL2pΩq “ ´pΠ0

hp∇¨vq, qhqL2pΩq “ bhpv, qhq.

Finally, denoting by $ the supremum in (58) and using the previous intermediate results,

}qh}
2
L2pΩq “ p∇¨v, qhqL2pΩq “ ´bhpv, qhq “ ´bhpvh, qhq ď $}vh}U À $}v}

H1pΩqd À $}qh}L2pΩq,

which concludes the proof.

The following inf-sup condition for ch is a classical consequence of Lemma 29 together with
the coercivity of ah.

Lemma 30 (inf-sup stability for ch). There exists a real γ ą 0 independent of the meshsize
such that, for all pvh, qhq P Xh,

γ}pvh, qhq}sto ď sup
pwh,rhqPXhzt0u

chppvh, qhq, pwh, rhqq

}pwh, rhq}sto
.

The well-posedness of the discrete problem (56) follows. Let now U˚ :“ U X H2pΩqd,
P˚ :“ P XH1pΩq, X˚ :“ U˚ ˆ P˚, and define the augmented spaces

U˚h :“ U˚ `Uh, P˚h :“ P˚ ` Ph, X˚h :“ U˚h ˆ P˚h.

The bilinear forms ah, bh, and ch are extended to U˚h ˆ U˚h, U˚h ˆ P˚h, and X˚h ˆ X˚h

respectively. As in Lemma 19, we assume additional regularity for the exact solution to ensure
that the boundary terms in the expression of the consistency error are well-defined. Sufficient
conditions for the regularity pu, pq P X˚ to hold are studied, e.g., by Cattabriga [12] and
Amrouche and Girault [2].

Lemma 31 (Weak consistency). Let pu, pq P X denote the solution of (53), and additionally
assume pu, pq P X˚. Then, there holds, for all pvh, qhq P Xh,

ahpu,vhq ` bhpvh, pq ´ bhpu, qhq “ pf ,vhqL2pΩqd ` Ehpvhq,

with consistency error

Ehpvhq :“
ÿ

FPFPh

p∇unF ´ pnF , JvhKqL2pF qd .
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Proof. Element-wise integration by parts of the terms in the discrete momentum equation to-
gether with the fact that bhpu, qhq “ ´p∇¨u, qhqL2pΩq “ 0 yields

ahpu,vhq ` bhpvh, pq ´ bhpu, qhq “ p´4u`∇p,vhqL2pΩqd

`
ÿ

FPF i
Ph

pJ∇u´ pIdKnF , tvhuqL2pF qd `
ÿ

FPFPh

pt∇u´ pIdunF , JvhKqL2pF qd .

The conclusion follows using the continuity of the flux for the continuous problem to infer
J∇u´ pIdKFnF “ 0 and t∇u´ pIduFnF “ p∇u´ pIdqnF for all F P F i

Ph
.

The following result is obtained applying several times the Cauchy–Schwarz inequality and
recalling (55).

Lemma 32 (Boundedness). There exists a real Cbnd ą 0 independent of the meshsize such
that, for all pv, qq P X˚h and all pwh, rhq P Xh,

chppv, qq, pwh, rhqq ď Cbnd}pv, qq}sto}pwh, rhq}sto.

Theorem 33 (Error estimate for (56)). Under the assumptions of Lemma 31, there holds with
C ą 0 independent of the meshsize, of u, and of p, and Nstopu, pq :“ }u}

H2pΩqd ` }p}H1pΩq,

}pu´ uh, p´ phq}sto ď ChNstopu, pq.

Proof. The notation a À b stands for a ď Cb with C ą 0 independent of the meshsize. Lem-
mata 30, 31, and 32 together with the Second Strang Lemma yield the following estimate:

}pu´ uh, p´ phq}sto À inf
pvh,qhqPXh

}pu´ vh, p´ qhq}sto ` sup
vhPUhzt0u

|Ehpvhq|
}vh}U

:“ T1 ` T2.

The first term in the right-hand side of the error estimate is related to the approximation
properties of Xh with respect to the }¨}sto-norm, whereas the second term is linked to the
consistency error. Letting pwh, rhq :“ pICR

h puq,Π0
hpq P Xh (the fact that rh has vanishing

mean value on Ω results from the properties of the L2-orthogonal projector), there holds

T1 ď }pu´wh, p´ rhq}sto ď }u´wh}U ` }p´ rh}P À hNstopu, pq,

where the last inequality results from (16) together with the approximation properties of the
L2-orthogonal projector. To treat the second term we use a similar argument as in Theorem 20.
Let

φ :“ ∇u´Π0
hp∇uq, ψ :“ p´Π0

hp.

Invoking the continuity of mean values at interfaces together with the fact that both tΠ0
hp∇uquF

and tΠ0
hpuF are constant on every F P FPh

yields for all vh P Uh,

Ehpvhq “
ÿ

FPFPh

ptφunF , JvhK ´ xJvhKyF qL2pF qd ´
ÿ

FPFPh

ptψunF , JvhK ´ xJvhKyF qL2pF qd .

Proceeding as in the proof of Theorem 20 gives T2 À hNstopu, pq, thereby concluding the
proof.

Remark 34 (L2-error estimate for the velocity). Optimal error estimates for the L2-error on
the velocity can be derived proceeding as in [17, Section 6.1.3.3].
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4.3.3 Variations and links with finite volume and nonconforming finite element
methods

Flux formulation and local conservation In this section we reformulate the discrete
problem (56) in terms of numerical fluxes and identify a local conservation property. Let
pwh, rhq, pvh, qhq P Xh be two discrete functions, and denote by pwh, rhq P Xh and pvh, qhq P Xh
the corresponding vectors of DOFs, where we have set

Ph :“ tqh P RKh |
ř

KPKh
|K| qK “ 0u, Xh :“ Vdh,0 ˆ Ph.

The vector of DOFs for each component of the velocity is denoted by a subscript as in Sec-
tion 4.2.4. Our goal is to show that there exist two families of numerical fluxes pΦK,F pwh, rhqqKPKh, FPFK

with ΦK,F pwh, rhq “ pΦK,F,ipwh, rhqq1ďiďd and pφF pwhqqFPFKh
such that

ahpwh,vhq ` bhpvh, rhq “
d
ÿ

i“1

ÿ

KPKh

ÿ

FPFK

ΦK,F,ipwh, rhqpvF,i ´ vK,iq,

´bhpwh, qhq “
ÿ

FPFKh

φF pwhqJqhKF ,
(59)

where ah and bh are defined by (57) and, with a slight abuse in notation, we have set for
all F P FKh

JqhKF :“ JqhKF . Using the cell center as a quadrature node in each element
to approximate the right-hand side, the discrete problem (56) in algebraic form reads: Find
puh,phq P Xh such that for all pvh, qhq P Xh there holds,

d
ÿ

i“1

ÿ

KPKh

ÿ

FPFK

ΦK,F,ipuh,phqpvF,i ´ vK,iq `
ÿ

FPFKh

φF puhqJqhKF “
d
ÿ

i“1

ÿ

KPKh

|K| fipxKqvK,i.

Proceeding as in Section 4.2.4, we can prove that for every interface F P F i
Kh

such that F Ă

BK1 X BK2 there holds,
ΦK1,F puh,phq “ ´ΦK2,F puh,phq.

Moreover, the mass flux φF puhq is single-valued, and therefore conservative.
Proposition 35 (Flux formulation). For all pwh, rhq, pvh, qhq P Xh, the flux formulation (59)
is obtained setting for all K P Kh and all F P FK ,

ΦK,F,ipwh, rhq :“
ÿ

F 1PFK

|KF 1 |
`

GKF 1
pwh,iq ` rKei

˘

¨yKF 1,F @i P t1, . . . , du, (60a)

φF pwhq :“ |F |
d
ÿ

i“1
wF,inF,i @F P FKh

, (60b)

where pwh, rhq, pvh, qhq P Xh are the vectors of DOFs associated to pwh, rhq and pvh, qhq respec-
tively, peiq1ďiďd denotes the canonical basis of Rd, and the family of vectors pyKF 1,F qKPKh, F, F 1PFK

is defined by (43).
Proof. The proof of (60a) is similar to that of Proposition 24 and is not detailed for the sake
of conciseness. To prove (60b) we observe that integration by parts yields

´bhpwh, qhq “ ´pwh,∇hqhqL2pΩqd`
ÿ

FPF i
Kh

pJwhK¨nF , tqhuqL2pF q`
ÿ

FPFKh

ptwhu¨nF , JqhKqL2pF q.

The first and the second terms in the right-hand side vanish owing to the fact that p∇hqhq|K “
0 for all K P Kh and to Lemma 10 respectively. For the last term we use the fact that
JqhKF P P0

d pF q for all F P FKh
to infer ptwhuF ¨nF , JqhKF qL2pF q “ |F | xwhyF ¨nF JqhKF “

|F |
řd
i“1wF,inF,iJqhKF . This concludes the proof.
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Link with the Crouzeix–Raviart solution on matching simplicial meshes Assume
that Kh is a matching simplicial mesh. The classical Crouzeix–Raviart/P0

d method consists in
finding pûh, p̂hq P X̂h with X̂h :“ CR0pKhq

d ˆ Ph such that

ahpûh,vhq ` bhpvh, p̂hq ´ bhpûh, qhq “ pf ,vhqL2pΩqd @pvh, qhq P X̂h. (61)

We consider the following variation of (56): Find puh, phq P Xh such that

ahpuh,vhq ` bhpvh, phq ´ bhpuh, qhq “ pf , ICR
h pvhqqL2pΩqd @pvh, qhq P Xh, (62)

where the sole difference lies in the treatment of the right-hand side. The proof of the following
result is similar to that of Lemma 25 and is omitted for the sake of conciseness.

Proposition 36 (Relation between (62) and (61)). There holds uh “ ûh.

4.3.4 Large irrotational body forces

The method of the previous section can be adapted to problems featuring volumic body forces
with large irrotational components, as it is the case in natural convection with large Rayleigh
numbers. As recently pointed out in Galvin, Linke, et al. [27], a careful design of the numerical
method is required in this case to preserve an accurate approximation of the velocity field. We
assume here the following Helmholtz decomposition of the volumic body forces in (52):

f “ Ψ´∇ϕ, (63)

where Ψ P H0pdiv; Ωq :“ tv P Hpdiv; Ωq | ∇¨v “ 0u is a solenoidal vector field and ϕ P
H1pΩq X L2

0pΩq is a scalar potential. The weak formulation of problem (52) with right-hand
side given by (63) reads: Find pu, pq P X such that

apu,vq ` bpv, pq ´ bpu, qq “ lpvq @pv, qq P X, (64)

with bilinear forms a and b defined by (54) and lpvq :“ pΨ,vqL2pΩqd ´ bpv, ϕq. Denoting by
puΨ, pΨq the solution to (64) with ϕ ” 0 (no irrotational body forces), there holds

u “ uΨ, p “ pΨ ´ ϕ. (65)

As pointed out in [27, 19], mimicking or approaching property (65) at the discrete level is a
key ingredient to design a discretization method yielding an accurate approximation of the
velocity field for large values of }ϕ}H1pΩq. We consider the following approximation to (64):
Find puh, phq P Xh such that

ahpuh,vhq ` bhpvh, phq ´ bhpuh, qhq “ lhpvhq @pvh, qhq P Xh, (66)

with bilinear forms ah and bh defined by (57) and lhpvhq :“ pΨ,vhqL2pΩqd ´ bhpvh,Π0
hϕq. The

sole difference with respect to (56) lies in the treatment of the source term, which is designed
so that the following property holds true.

Proposition 37 (Discrete counterpart of property (65)). Denote by puΨ,h, pΨ,hq the solution
to problem (66) with ϕ ” 0. There holds

uh “ uΨ,h, ph “ pΨ,h ´Π0
hϕ.
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Proof. There holds

ahpuh,vhq ` bhpvh, ph `Π0
hϕq ´ bhpuh, qhq “ pΨ,vhqL2pΩqd , @pvh, qhq P Xh.

Hence, owing to the well-posedness of the discrete problem (56), puΨ,h, pΨ,hq “ puh, ph`Π0
hϕq.

The conclusion follows.

Theorem 38 (Error estimate for (66)). Under the assumptions of Lemma 31 there holds with
real numbers C1 ą 0 and C2 ą 0 independent of the meshsize, of u, and of p but depending on
the mesh regularity parameters and on Ω,

}u´ uh}U ď C1hNstopuΨ, pΨq, }p´ ph}P ď C2h
`

NstopuΨ, pΨq ` }ϕ}H1pΩq
˘

.

Proof. Using the estimate in Theorem 33 for the approximate solution to problem (64) with
ϕ ” 0 we infer

}uΨ ´ uΨ,h}U ` }pΨ ´ pΨ,h}P ď ChNstopuΨ, pΨq, (67)

where we have used the notation of Proposition 37 and C ą 0 has the same dependencies as C1
and C2. The estimate for }u´ uh}U is an immediate consequence of (65) and Proposition 37.
To estimate }p´ ph}P we invoke again (65) and Proposition 37 to infer

}p´ ph}P ď }pΨ ´ pΨ,h}P ` }ϕ´Π0
hϕ}P ,

and conclude using (67) and the approximation properties of the L2-orthogonal projector.

Remark 39 (Robustness with respect to large irrotational body forces). An important conse-
quence of Theorem 38 is that the velocity approximation is not affected by the irrotational part
of the source term, which yields the robustness of the method.

A Mimicking the properties of the lowest-order Raviart–Thomas
space on general meshes

In the spirit of Section 3.1, it is possible to extend two classical properties of the lowest-
order Raviart–Thomas space to general polygonal or polyhedral meshes, namely (i) the (full)
continuity of normal components of discrete functions at interfaces and (ii) the existence of an
interpolator which preserves the mean value of the divergence inside each element. Since the
construction as well as the proofs are similar to the ones presented in Section 3, only the main
points are detailed.

For a matching simplicial mesh, the standard lowest-order Raviart–Thomas space is defined
as

RT0
d pKhq :“ P0

d pKhq
d
` xP0

d pKhq , (68)

i.e., RT0
d pKhq is spanned by vector-valued functions obtained by a linear perturbation of a

piecewise constant vector-valued field based on a piecewise constant, isotropic gradient. To
perform a similar construction on general polygonal or polyhedral meshes, we consider the
following space of DOFs, composed of vector cell unknowns and scalar face unknowns associated
to the normal component of the discrete vector field:

Vh :“ tvh “ ppvK P RdqKPKh
, pvnF P RqFPFKh

qu.

As it is the case for the extension of the Crouzeix–Raviart space discussed in Section 3, cell
unknowns are used to define a piecewise constant subgrid correction on the pyramidal submesh.
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The main difference with respect to the construction of Section 3 is that we now define an
isotropic instead of a full gradient operator. More specifically, we introduce the operator Gh :
Vh Ñ P0

d pPhq which realizes the mapping Vh Q vh ÞÑ Ghpvhq P P0
d pPhq with

Ghpvhq|KF
“ GKpvhq `RKF

pvhq, @K P Kh, @F P FK ,

where

GKpvhq :“ 1
d |K|

ÿ

FPFK

vnFnF ¨nK,F , RKF
pvhq :“ η

dK,F
pvnFnF ´ vK ´GKpvhqpxF ´ xKqq¨nK,F ,

(69)
and η ą 0 is a user-dependent parameter. Extending the definition (68) to general nonsimplicial
meshes, we define the reconstruction operator Rh : Vh Ñ RT0

d pPhq which realizes the mapping
Vh Q vh ÞÑRhpvhq P RT0

d pPhq with

Rhpvhq|KF
pxq “ vK `Ghpvhq|KF

px´ xKq, @KF P Ph, @x P KF . (70)

Unlike (10), for all K P Kh and all F P FK , there holds vK “ RhpvhqpxKq, i.e., the cell
unknown can now be interpreted as the value of the reconstruction at the cell center. This is
a consequence of selecting the cell center as a starting point in (70). We consider the discrete
space

RTpKhq :“RhpVhq.

Lemma 40 (Hpdiv; Ωq-conformity). Assume η “ 1 in (69). Then, for all vh P RTpKhq and
all F P F i

Ph
, there holds for all x P F ,

JvhKF pxq¨nF “ 0.

Proof. Let vh PRTpKhq with vh “Rhpvhq, F P F i
Ph

, and x P F . We distinguish two cases.
(i) F P F i

Kh
is an interface of the primal mesh Kh. Let K1, K2 P Kh be the elements such that

F Ă BK1 X BK2 and, for i P t1, 2u let, for the sake of brevity, Gi :“ GKipvhq, Ri :“ RKiF
pvhq,

di :“ dKi,F pnKi,F ¨nF q, and

αi :“ Ripx´ xKiq¨nF “ Ridi “ η pvnFnF ´ vKi ´GipxF ´ xKiqq ¨nF ,

where we have used the fact that x P F to infer px ´ xKiq¨nF “ di and the fact that nF “

nK1,F “ ´nK2,F to infer pnKi,F ¨nF qnKi,F “ nF . Algebraic manipulations yield

α1 ´ α2 “ ´η rpvK1 ´ vK2q¨nF `G1d1 ´G2d2s .

Using the previous relation in the definition of the jump at x P F it is inferred,

JvhKF pxq¨nF “ vh|K1F
pxq¨nF ´ vh|K2F

pxq¨nF

“ pvK1 ´ vK2q¨nF `G1d1 ´G2d2 ` α1 ´ α2

“ p1´ ηq rpvK1 ´ vK2q¨nF `G1d1 ´G2d2s .

As a consequence, the jump vanishes provided η “ 1.
(ii) F P F i

Ph
zF i

Kh
is a lateral pyramidal face. In this case, there exist a unique element K P Kh

and two faces F1, F2 P FK such that F Ă BKF1 X BKF2 (cf. Figure 2a). There holds letting for
the sake of brevity Ri :“ RKFi

pvhq, i P t1, 2u,

JvhKF pxq¨nF “ vh|KF1
pxq¨nF ´ vh|KF2

pxq¨nF “ pR1 ´R2qpx´ xKq¨nF “ 0,

since px´ xKq and nF are orthogonal by definition. This concludes the proof.

28



Remark 41 (Role of η in the proof of Lemma 40). Unlike Lemma 10, the subgrid correction
parameter is here used to enforce the continuity of the normal component across interfaces
belonging to the primal mesh rather than across lateral pyramidal faces. This is a consequence
of choosing the cell center instead of the face barycenter as a starting point in (70).

Let IRT
h : Hpdiv; Ωq Ñ RTpKhq be such that, for all v P Hpdiv; Ωq, IRT

h pvq :“ Rhpvhq
with

Vh Q vh “ ppΠ1
hvpxKqqKPKh

, pxvyF ¨nF qFPFKh
q.

The following result summarizes the most relevant approximation properties of IRT
h . The proof

is omitted as it closely resembles that of Lemma 12.

Lemma 42 (Approximation in RTpKhq). For all η ą 0 in (69) and all v P Hpdiv; Ωq there
holds with vh :“ IRT

h pvq,
Dhpvhq “ Π0

hp∇¨vq.

Moreover, there exists a real C ą 0 independent of the meshsize such that, for all h P H, all
K P Kh, and all v P Hpdiv; Ωq XH1pdiv; Khq with vh :“ IRT

h pvq, there holds

}v ´ vh}L2pKqd ` }∇¨v ´Dhpvhq}L2pKq ď ChK

´

|v|
H1pKqd ` |∇¨v|H1pKq

¯

.

Remark 43 (The matching simplicial case). When Kh is matching simplicial, in the spirit of
Proposition 11, we can prove that the standard Raviart–Thomas space is a subspace of RTpKhq.
This can then be accounted for in the proof of Lemma 42 as in Remark 13. Note that, unlike
Lemma 10, the assumption η “ 1 in Lemma 40 is here mandatory also in the matching simplicial
case, since the cell unknown has been chosen as a starting point of the reconstruction, see
Remark 41.
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