
HAL Id: hal-00753526
https://inria.hal.science/hal-00753526

Submitted on 19 Nov 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Model-Based Design of Embeded Control Systems by
means of a Synchronous Intermediate Model

M. Alras, Paul Caspi, Alain Girault, Pascal Raymond

To cite this version:
M. Alras, Paul Caspi, Alain Girault, Pascal Raymond. Model-Based Design of Embeded Control
Systems by means of a Synchronous Intermediate Model. International Conference on Embedded
Systems and Software, ICESS’09, May 2009, Hangzhou, China. pp.3–10, �10.1109/ICESS.2009.36�.
�hal-00753526�

https://inria.hal.science/hal-00753526
https://hal.archives-ouvertes.fr

Model-Based Design of Embedded Control Systems by means of a Synchronous

Intermediate Model

Mouaiad Alras, Paul Caspi, Alain Girault, and Pascal Raymond

Verimag-CNRS and University of Grenoble – France

INRIA Grenoble Rhône-Alpes – France

Abstract

Model-based design (MBD) involves designing a model

of a control system, simulating and debugging it with dedi-

cated tools, and finally generating automatically code cor-

responding to this model. In the domain of embedded sys-

tems, it offers the huge advantage of avoiding the time-

consuming and error-prone final coding phase. The main is-

sue raised by MBD is the faithfulness of the generated code

with respect to the initial model, the latter being defined by

the simulation semantics. To bridge the gap between the

high-level model and the low-level implementation, we use

the synchronous programming language Lustre as an inter-

mediate formal model. Concretely, starting from a high-

level model specified in the de-facto standard Simulink, we

first generate Lustre code along with some structured “glue

code”, and then we generate embedded real-time code for

the Xenomai RTOS. Thanks to Lustre’s clean mathematical

semantics, we are able to guarantee the faithfulness of the

generated multi-tasked real-time code.

1 Introduction

1.1 Overview

A classical automatic control application consists of a

software controller interacting with the physical device/en-

vironment via dedicated input and output drivers. Ac-

cordingly, engineers use a design environment both to

model the physical environment, using continuous domain

paradigms (e.g., differential equations), and to design the

controller, using sampled discrete time paradigms (e.g., pe-

riodic clocks, multi-tasking, priorities). They simulate and

debug their application and, once satisfied with it, they im-

plement it over a target architecture consisting of a dis-

tributed hardware platform and a real-time operating sys-

tem (RTOS). One of the most popular such design environ-

ment is Simulink, a de-facto standard in industry (automo-

tive, robotics and automation, consumer electronics,...), and

our work is based on it.

For lack of adequate tools, past common practice in in-

dustry was to implement manually the controller, an opera-

tion that is both time-consuming and error-prone. Model-

based design (MBD) precisely attempts at replacing the

manual coding phase by an automatic code generation one.

MBD is a very active area of research, both in academia and

in private companies. The main assumptions it relies on are

that the designer is satisfied with his/her controller (thanks

to simulation and testing), that the software paradigms can

be implemented on the architecture, and that the libraries

of drivers are consistent with the physical device. Some

MBD solutions exist today, for instance in avionics with

SCADE [4], in automotive with Simulink-RTW [14], and

in robotics with Orccad [3, 13].

The core principle of MBD is that the designer wants to

obtain code that is faithful to his/her design; in other words,

what he/she simulates under Simulink must execute exactly

in the same manner on the target architecture. As a con-

sequence, MBD must derive as automatically as possible

code that is faithful to the design of the controller, and that

can be implemented on the target architecture. Of course,

since Simulink does not have a denotational semantics, it is

impossible to prove formally this faithfulness.

The main issue that stems from the faithfulness re-

quirement is that the semantics of a Simulink model de-

pends on the chosen simulation parameters. For instance,

some Simulink models may be accepted if one chooses

discrete-step simulation, and rejected if one chooses

variable-step, auto, or multi-threaded simulation. We

call those simulation artifacts.

This is why we propose to use an intermediate formal

model, to bridge the gap between the high-level Simulink

model (i.e., the automatic control world) and the low-level

implementation (i.e., the computer science world). We

choose Lustre [10] to express formally the intermediate

model, because both Lustre and Simulink are data-flow lan-

guage that implement the synchronous model of computa-

tion, and because Lustre is equipped with a clean mathe-

matical semantics. Our workflow is therefore:

Simulink → Lustre → multiple tasks over a RTOS

Our target RTOS is Xenomai, chosen for usability, main-

tainability, and portability reasons.

We also generate some structured “glue code”, necessary

to express features of Simulink that do not exist in Lustre.

This is the case, for instance, of periodic clocks and spo-

radic events.

1.2 Contribution

Our goal is to develop a complete multi-tier MBD tool

that goes from a high-level Simulink model to a low-level

real-time implementation for the Xenomai RTOS. We in-

volve as well an early conformity analyzing stage.

We extend existing MBD methods also based on

Simulink and Lustre [6, 7, 11, 15] to integrate more fea-

tures of the high-level model. We extend Lustre with spe-

cific meta-operators, which are used to subsume these fea-

tures on the one hand, and to incarnate on the other hand

the real-time and system-level items of the Xenomai library.

We call the extended language Lustre++.

In addition to high-level restrictions that prevent un-

safe behaviors of Simulink, and in order to produce better

code, we propose some confinements and user guidelines in

two directions: Grouping tasks to generate the minimum

number of RTOS tasks, and using exclusive modes with

data sharing to generate more efficient and better structured

code.

Our translation is modular and preserves the hierarchical

structure of the Simulink model. It is implemented in a pro-

totype tool consisting of two steps. First, our tool translates

the Simulink model into our intermediate model Lustre++.

Then, this intermediate model can be used in two ways (see

Section 4): On the one hand it can be compiled into em-

bedded RTOS code, and on the other hand it can translated

into pure Lustre code for the simulation and validation of

the behavioral part of the system.

Some existing approaches in industry only handle the

mono-processor and mono-task case [14, 15]. Extensions

have been proposed for the multi-task case [5, 12], but they

are limited to periodic tasks where all the periods are a mul-

tiple of the smallest period. The method we present here

extends [15] in two directions: on the one hand we han-

dle sporadic tasks and arbitrary periodic tasks, and on the

other hand we generate embedded real-time code while [15]

stopped at the Lustre level. We use previously developed

theoretical results for the inter-task communication proto-

cols [7, 11].

2 The Intermediate Model

2.1 From a Simulink model to a synchronous pro­
gram

Between the high-level Simulink model and the actual

implementation, we use an intermediate model, based on

the synchronous programming language Lustre [10]. This

translation is hierarchical, that is, the structure of the re-

sulting synchronous model reflects the one of the Simulink

model. In order to obtain this structure, we must extract

from the Simulink model the following information:

• Subsystems involving features related to asynchronous

concepts, such as multi-tasking, periodic clocks, prior-

ities etc. We call this part of the hierarchy the asyn-

chronous architecture, and it is intended to be imple-

mented by using features of the target RTOS. This part

corresponds to the tree-like structure of the intermedi-

ate model.

• Subsystems that can be considered as “functional”:

they correspond to synchronous tasks, which can be

straightforwardly translated into Lustre, and then into

classical sequential programs using the Lustre code

generator. Those subsystems are considered as atomic

in our framwork: they are the leaves of the intermedi-

ate model structure.

Figure ?? shows an example of a hierachical Simulink

model, together with the corresponding intermediate model

structure. In this example, the top-level is made of three

concurrent subsystems: the H and G blocks have been iden-

tified as “functional” (typically because they only involve

simple computations, not detailed here). On the contrary,

the F block contains non-purely functional features: a Data

Store, and two subsystems triggered by a clock-enable con-

dition: F is then identified as a non-functional node in the

intermediate structure. Finally, F is itself made of two sys-

tems that are identified as atomic.

Indeed, the distinction between atomic and non-atomic

subsystems is not always obvious, this is why we propose

guidelines for the design of Simulink models: those guide-

lines, presented in Sections 2.3 and 2.4 are intended to help

the extraction of the intermediate structure. If the Simulink

model does not obey the guidelines, we are still able to gen-

erate faithful, but less efficient, code.

Since Lustre is notsuited to the expression of the asyn-

chronous features of Simulink (clocks, priorities, and so

on), we introduce a set of meta-operators to keep track

of these informations in the intermediary nodes of the tree

structure. In previous solutions, we used to encode thses

features with non-structured annotations (e.g., pragmas);

we find the meta-operators solution better structured and

more elegant.

2

1

2

3

out

1

1

out

1

in

in out

F2

A

Data Store
Memory

in

inH

H T=20

Atomic subsystem

+

+

+

Sum

in

inG

G T=40

in

inF

out

out

out

F

in>0

else
in

if out

F1

Merge

Figure 1. A hierarchical Simulink model.

2.2 Meta­operators

Meta-operators are introduced in order to extend the Lus-

tre language with the most common features one can find

in a classical RTOS: triggered tasks, triggers, data buffers.

Each meta-operator has a set of static parameters (given be-

tween << and >>) for expressing extra-functional informa-

tion. We call Lustre++ the language extended with meta-

operators.

Figure 3 shows the Lustre++ nodes generated for the ex-

ample of Figure 1. It uses three different meta-operators:

• clock has two static parameters called p and h; it cre-

ates a periodic clock of period p and phase h.

• condact has three static parameters called f, c, and d;

it invokes the function f at each tick of the clock c; the

parameter d is the default value of f’s output

• switch is a structured collection of condact opera-

tors, where the clocks are guaranteed to be exclusive.

The meta-operators are designed in order to allow the

generation of RTOS code. They can also be translated into

pure Lustre code as shown in Figure 4: this program corre-

sponds to the node main of the example in Figure 3. The

pure Lustre code is not used for embedded code generation

because it abstracts away the real-time features. We only

use it for testing and model-checking purpose.

H G F

main

F1 F2

Figure 2. The intermediate model structure

corresponding to the Simulink model of Fig-

ure 1.

node main (inH,inG,inF:int)

returns (out:int);

var

ck_20, ck_40: alarm;

let

ck_20 = clock<<20,0>>(_);

ck_40 = clock<<40,0>>(_);

out = condact<<H,ck_20,1>>(inH)

+ condact<<G,ck_40,1>>(inG)

+ F(inF);

tel

node F(in:int) returns(out:int);

const

mem_A: int ref = ref 0;

let

out = if (in > 0)

then F1<<mem_A>>(_)

else F2<<mem_A>>(in);

tel

Figure 3. Lustre++ code for the model of Fig-

ure 1.

3

node main (inH, inG, inF:int)

returns (out:int);

var

cnt_20, cnt_40 : int;

ck_20, ck_40 : bool;

let

cnt_20 = (0 -> pre(cnt_20) + 1) mod 20;

ck_20 = (0 = cnt_20);

cnt_40 = (0 -> pre(cnt_40) + 1) mod 40;

ck_40 = (0 = cnt_40);

outH = if(ck_20)

then current(H(inH when ck_20))

else 1 -> pre (outH);

outG = if(ck_40)

then current(G(inG when ck_40))

else 1 -> pre (outG);

out = outH + outG + F(inF);

tel

Figure 4. Lustre code for the model of Fig-

ure 3.

2.3 Atomic subsystem guideline

The default heuristic is to consider that a Simulink sub-

system triggered by a clock-enable condition must be im-

plemented by an RTOS task. However, this is not always a

good solution, since it may lead to a large number of context

switches during the execution that may dramatically slow

down the system.

However, we also propose a guideline that allows the

user to choose how to regroup computation into a single

RTOS task. This is achieved by labeling a block as a

Simulink Atomic Subsystem. For instance in Figure 1, the

subsystem H is marked as an Atomic Subsystem: this will

enforce the code generator to group all hierarchical subsys-

tems contained in H into single RTOS task.

2.4 Exclusive modes guideline

The notion of multi-modes is particularly important in

control system design: it corresponds to the case where a

state variable is computed according to different control-

laws (called the modes) depending on the state of the sys-

tem.

Muli-mode programming is not a built-in paradigm in

Simulink, but rather an (expected) consequence of the de-

sign. The system F in Figure 1 is a typical example of multi-

modes design: F1 and F2 are triggered by exclusive condi-

tions, and their outputs are merged into a single variable

“out”.

Recognizing this kind of organization in the simulink

model is very important in our approach, since it allows to

produce better implementation:

• it is not necessary to protect the access to shared vari-

ables, since these accesses are guaranteed to be exclu-

sive,

• instead of generating a system task for each mode, we

can produce a single task that dynamically select the

right mode.

We propose a guideline that guarantees efficient gener-

ated code; a set of n blocks are recognized as exclusive

modes of computation if:

1. Each block is triggered by an activation condition and

the n activation conditions are produced by a single

switch block.

2. Each output of these n block that is common to at least

two blocks must be common to the n blocks and must

be combined into a merge block.

We illustrate this guideline in the next section by a complete

example.

2.5 Example

The example in Figure 5 is based on the controller part of

the automotive power train model designed at Ford Motors

Company [9, 8] to study the 1-2 gearshift. This Simulink

model contains five triggered subsystems (first, second,

change of mind, torque 12, and inertia 12) witch all

read the same input T t to calculate differently the same

outputs tc1 and tc2. Some subsystems need additional in-

puts and may also be connected internally to other subsys-

tems. For instance, the inertia 12 subsystem receives its

last torque and last omega inputs from torque 12.

The merge operator is used in Simulink when the same

variable is computed by different modes of computation.

We restrict the usage of the merge operator to exlusive

modes of computation (Section 2.4).

Goto/From Tags are used in Simulink as connectors to

avoid crossing signal lines . For instance in Figure 5,

this is the case of the reset inertia output of block

mode control that is connected to the inertia 12 block.

We restrict the use of such tags to be scoped only locally

(in other words, Goto/From Tags that span over hierarchy

levels are forbidden). Figure 6 shows the Lustre++ code

corresponding to this example.

Another way to share variables between subsystems

could be achieved by the use of Data Stores. We chose to

take into account only local Data Stores declared explicitly

using the Memory Block of the Simulink Library (see, e.g,

the Data Store A in Figure 1, block F).

4

2

3

4

[w_t]

[w_cr]

1

[reset]

3

[do_t]

[tc2_t]

[tc1_i]

[tc2_i]

[do_i]

[w_t]

[w_cr]

[reset]

[do_1]

[tc1_1]

[tc2_1]

[do_2]

[tc1_2]

[tc2_2]

[do_c]

[tc1_c]

[tc2_c]

[tc1_t]

[do_1]

[do_2]

[do_c]

[do_t]

[do_i]

case[2]

case[3]

case[4]

case[5]

case[1]

switch mode

5
[w_t]

[l_tc2]

[l_tc2]

to_gear

w_cr

w_t

to_gear

w_cr

w_t

mode_control

gear

do_control

to_gear

tc1

tc2

tc2

tc1

T_t

w_cr

reset_inertia

torque_12

inertia_12

torque

omega

tc1

tc2

T_t

second

tc1

tc2

T_t

tc1

tc2

w_t

change_of_mind

first

T_t

Merge_tc2

Merge
tc2

omega

torqueMerge_tc1

Merge
tc1

T_t

w_t

T_t

last_tc2

last_tc2

do

do

do

do

do

mode

do_control

reset_inertia

[tc1_i]

[tc2_t]

[tc2_i]

[tc1_2]

[tc1_1]

[tc1_c]

[tc1_t]

[tc2_1]

[tc2_2]

[tc2_c]

[l_tc2]

1

2

Figure 5. Gear Shift Control Example.

5

type modes_shift = enum {
do_1, do_2, do_c, do_t, do_i

};

node shift_control(

i_do_control: bool,i_to_gear: int,

i_w_t: real, i_w_cr: real, i_T_t: real

)

returns(o_tc1:real, o_tc2:real, o_gear:int)

var

t_mode: modes_shift;

t_reset: bool;

const

tc2 : real = 0;

omega : real = 0;

torque : real = 0;

let

(o_gear, t_mode, t_reset) =

condact<<mode_control, in_do_control>>

(i_omega_t, i_omega_cr, i_to_gear);

(o_tc1, o_tc2)

= switch<<

[

first,

seconde,

change_of_mind<<tc2>>,

torque_12<<tc2,torque,omega>>,

inertia_12<<torque,omega>>

],

[

do_1,

do_2,

do_c,

do_t,

do_i

]

>>

(w_t, w_cr, reset_inertia, T_t);

tel

Figure 6. Lustre++ code for the model of Fig-

ure 5.

3 The Xenomai Real-Time Operating System

Several RTOS have been considered: Xenomai1,

RTLinux2, and PaRTiKle3. For usability, maintainability,

and portability reasons, we have chosen Xenomai, running

on top of RTAI4. We use it as a platform for implementing

the embedded code generated from the Simulink models.

This RTOS provides a considerably useful set of services

for the implementation of real-time systems.

In Xenomai, the basic object performing actions is a task,

a logically complete piece of application code. The Xeno-

mai scheduler ensures that concurrent tasks are run accord-

ing to some chosen scheduling policy. The two supported

scheduling policies are the fixed priority-based FIFO and

the round-robin policies.

Any Xenomai task may create any number of watchdog

timers, called alarms: once the specified delay has elapsed,

a user-defined handler is run. An alarm can be either peri-

odic or “one-shot”; in the former case, the real-time kernel

automatically reprograms the alarm for the next iteration,

according to the user-defined interval value.

To insure the synchronization between tasks, Xenomai

offers condition variables, which allow tasks to suspend

their execution until some predicate on condition variables

is satisfied. A condition variable must always be associated

with a mutex (mutual exclusion section), to avoid race con-

ditions occurring when one task is waiting for a condition

variable while another task signals the condition just before

the first task waits for it.

For instance, a portion of the Xenomai real-time code

generated for the model of Figure 1 is shown in Figure 7.

The information required to set the task parameters is as-

sumed to be known from the high level model and given by

the user.

The ck 40 object is created (rt alarm create)

to be triggered every 40 milliseconds and is started

(rt alarm start) without any offset. It will fire the

task object task G created (rt task create) and as-

sociated to the corresponding body function calc G

which can be seen as a wrapper of G’s step function.

This portion of code corresponds to the meta-operator

condact<<G,ck_40,1>>(in2). The step function is a C

code function generated automatically from the correspond-

ing functional Lustre node by the tool lus2C (Figure 8).

Xenomai implements the notion of time base, by which

timers may be clocked separately according to distinct fre-

quencies given in number of ticks; the duration of a tick

is specified by the time base. Such a periodic time base is

managed to be compatible with the timing mechanisms of

1http://www.xenomai.org
2http://www.rtlinuxfree.com
3http://www.e-rtl.org/partikle
4https://www.rtai.org

6

rt_task task_G;

rt_alarm ck_40;

rt_alarm_create(&ck_40,"ck_40");

rt_alram_start(&ck_40, 0, ns2ticks(40 * TICK));

rt_task_create(&task_G, "task_G", SIZE, PRIO, MODE);

ctx->out1 = 1; //initial value

rt_task_start(&task_G, &calc_G, ctx);

void calc_G(void* ctx){

while(1){

rt_alarm_wait(&ck_40);

...

call_step(ctx);

...

}

}

Figure 7. Xenomai code for the Simulink

model of Figure 1.

alarm task

step

nodeclock
Lus2C

call
wait

xenomai

Lustre

Figure 8. From Lustre to Xenomai example.

simulation in Lustre.

When generating real-time code for automatic control

systems, one of the difficult issues concerns blocks that

have different periods and that communicate together. Ac-

cordingly, there are three cases for a given pair of com-

municating tasks: high to low priority, high to low prior-

ity with unit delay, and low to high priority with unit de-

lay5 [11]. The difficulty is to guarantee the zero-delay se-

mantics of Simulink. This is achieved thanks to a set of

buffers and pointers to these buffers [7]. The principle is

that the pointers to the buffers are manipulated upon the ar-

rival of the events triggering the tasks instead of during the

execution of the tasks. In that way, the order of arrivals can

be memorized and the original Simulink semantics can be

preserved [11].

5The low to high priority without unit delay is impossible.

4 Work flow

Our MBD approach is based on a three-phase process.

First, Simulink models are parsed thanks to the transla-

tor MDL2XML. It extends the existing similar compiler from

Sofronis [15] to handle periodic clocks, data stores, atomic

subsystems, and exclusive modes of computation.

The MDL2XML translator first involves a filtering and

checking stage. Models that contain global data stores or

global connectors will be rejected. The output of this stage

is a transformed XML file, which is the entry point of the

backend code generation.

Second, this XML-encoded Simulink model is trans-

lated into an intermediate formal model thanks to the

tool XML2LUS. It performs the clock inference, type infer-

ence, and conformity analysis. The purpose of this anal-

ysis is twofold: to detect combinatorial loops and non-

deterministic behaviors (non exclusive data sharing), and to

recognize patterns respecting the guidelines in order to gen-

erate more efficient code (exclusive modes and tasks group-

ing).

The XML2LUS tool then generates, for each Simulink

block and subsystem, the corresponding Lustre node, and

external function code for every “unknown” and “user-

defined” block. In addition, glue-code is generated for

the meta-operators by retrieving information from the high-

level model.

Third, the intermediate model is compiled into actual

RTOS code thanks to the tool LUS2XEN. It generates, for

each Lustre node, the corresponding real-time task or sys-

tem call, and for each meta-operator the corresponding real-

time object from the native library of Xenomai. Periodic

tasks are triggered by alarm objects, sporadic tasks are trig-

gered by event objects, buffers are implemented by con-

dition variables and mutex services. Additional Xenomai

glue code is generated to manage the master time base,

which serves as the specification basis for delays and time-

outs. Moreover, the intermediate model can also be trans-

lated into a purely functional model that can be used for

formal validation (model-checking, test case generation ...).

This is a distinctive feature of our approach and would

not be achievable with a direct C code generation such as

Simulink-RTW [14].

5 Conclusion and Future Work

We have presented a Model-Based Design (MBD)

method for embedded control systems specified in

Simulink. Once the model has been simulated and the

designer is satisfied with it, we transform it into an in-

termediate formal model, for which we have chosen the

synchronous programming language Lustre. Lustre and

Simulink are both synchronous data-flow programming

7

Behavioral model

Intermediary model

Simulink

(pure Lustre)

(Lustre++)

test and model checking

LUS2XEN

XML2LUS

Executable code

(functional + OS glue)

implementation

Figure 9. Our work flow with the intermediate

model.

languages, so this choice is natural. Besides, Lustre is

equipped with a clean mathematical semantics, so our in-

termediate model allows the designer to use formal valida-

tion tools, e.g., model-checkers and test-case generators, to

validate his/her Simulink model. More importantly, our in-

termediate formal model serves as a starting point to gen-

erate multi-task real-time code to be executed on the Xeno-

mai RTOS. Thanks to the formal semantics of Lustre, the

low-level RTOS code is faithful to the high-level Simulink

model. This faithfulness is the central feature of our MBD

method.

Our intermediate formal model consists of two parts: on

the one hand classical Lustre nodes that encode the purely

functional part of the Simulink model, and on the other hand

ad-hoc meta-operators that encode the asynchronous fea-

tures of the Simulink model, such as the periodic clocks,

the priorities, and so on. The meta-operators are struc-

tured hierarchically to reflect the hierarchical structure of

the Simulink model. During the real-time code generation

phase, the functional part (i.e., the classical Lustre nodes)

are translated into RTOS tasks whose C code is directly ob-

tained via the usual Lustre to C compiler. Concerning the

meta-operators, they are translated into RTOS code thanks

to the services offered by Xenomai (i.e., tasks, alarms, con-

dition variables, mutexes, and so on).

Even if we don’t address, in this paper, classical real-

time problems (WCET analysis, scheduling feasibility,

etc...), we are aware of these orthogonal problems. Faith-

ful translation can be guaranteed only under the condition

that all real-time constraints are satisfied [2, 1].

In future work, we will generalize our MBD method to a

wider class of meta-operators to cover more RTOS sevices,

and we will enhance the intermediate model with fault tol-

erance and distribution annotations.

References

[1] A. N. Audsley, A. Burns, M. Richardson, and K. Tindell.

Applying New Scheduling Theory to Static Priority Pre-

emptive Scheduling. Software Engineering Journal, pages

284–292, 1993.

[2] N. C. Audsley, A. Burns, M. F. Richardson, and A. J.

Wellings. Hard Real-Time Scheduling: The Deadline

Monotonic Approach. In Proceedings 8th IEEE Workshop

on Real-Time Operating Systems and Software, Atalanta,

1991.

[3] J.-J. Borrelly, E. Coste-Manière, B. Espiau, K. Kapellos,

R. Pissard-Gibollet, D. Simon, and N. Turro. The Orccad

architecture. Int. J. on Robotic Research, 17(4):338–359,

Apr. 1998.

[4] D. Brière, D. Ribot, D. Pilaud, and J.-L. Camus. Meth-

ods and specifications tools for Airbus on-board systems.

In Avionics Conference and Exhibition, London, UK, Dec.

1994. ERA Technology.

[5] J.-L. Camus, P. Vincent, O. Graff, and S. Poussard. A verifi-

able architecture for multi-task, multi-rate synchronous soft-

ware. In International Conference on Embedded Real-Time

Software, ERTS’08, Paris, France, Jan. 2008.

[6] P. Caspi, A. Curic, A. Maignan, C. Sofronis, S. Tripakis,

and P. Niebert. From Simulink to Scade/Lustre to TTA: A

layered approach for distributed embedded applications. In

LCTES’03, pages 153–162. ACM, New-York, June 2003.

[7] P. Caspi, N. Scaife, C. Sofronis, and S. Tripakis. Semantics-

preserving multitask implementation of synchronous pro-

grams. ACM Trans. Embedd. Comput. Syst., 7(2), Feb. 2008.

[8] Ford Motor Company. Structured Analysis Using Mat-

lab/Simulink/Stateflow - Modeling Style Guidelines, 1999.

[9] Ford Research Laboratory. Hybrid Models for Automotive

Powertrain System - Revisiting a Vision, 2000.

[10] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The

synchronous data-flow programming language Lustre. Pro-

ceedings of the IEEE, 79(9):1305–1320, Sept. 1991.

[11] N. Scaife and P. Caspi. Integrating model-based design and

preemptive scheduling in mixed time- and event-triggered

systems. In Euromicro Conference on Real-Time Systems,

ECRTS’04, pages 119–126, Catania, Italy, June 2004. Ver-

imag research report TR-2004-12.

[12] D. Simon and F. Benattar. Design of real-time periodic

control systems through synchronisation and fixed priorities.

Int. J. on of Systems Science, 36(2):57–76, Feb. 2005.

[13] D. Simon and A. Girault. Synchronous programming of au-

tomatic control applications using Orccad and Esterel. In

IEEE Conference on Decision and Control, CDC’01, Or-

lando (FL), USA, Dec. 2001. Invited Session.

[14] The MathWorks, Inc. Automatic Code Generation Technol-

ogy For Embedded Control Applications, Nov. 2002.

[15] S. Tripakis, C. Sofronis, P. Caspi, and A. Curic. Translat-

ing discrete-time simulink to Lustre. ACM Trans. Embedd.

Comput. Syst., 4(4):779–818, Nov. 2005.

8

