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A strategy-based proof of the existence of the value in zero-sum dierential games

The value of a zero-sum dierential games is known to exist, under Isaacs condition, as the unique viscosity solution of a Hamilton-Jacobi-Bellman equation. In this note we provide a new proof via the construction of ε-optimal strategies, which is inspired in the extremal aiming method from [3].

Introduction

Let U and V be compact subsets of some euclidean space, let • be the euclidean norm in R n , and let f :

[0, 1] × R n × U × V → R n . Assumption 1:
1a. f is uniformly bounded, i.e. f := sup (t,x,u,v) f (t, x, u, v) < +∞, 1b. ∃c ≥ 0 such that ∀(u, v) ∈ U × V, ∀s, t ∈ [0, 1], ∀x, y ∈ R n :

f (t, x, u, v) -f (s, y, u, v) ≤ c |t -s| + x -y ,
The directional game For any (t, x) ∈ [0, 1] × R n and any ξ ∈ R n , consider the one-shot game Γ(t, x, ξ), with actions sets U and V and payo function:

(u, v) → ξ, f (t, x, u, v) .

Let H -(t, x, ξ) and H + (t, x, ξ) be its maxmin and minmax respectively: These functions satisfy H -≤ H + . If the equality H + (t, x, ξ) = H -(t, x, ξ) holds, the game Γ(t, x, ξ) has a value. Assumption 2: ∀(t, x, ξ) ∈ [0, 1]×R n ×R n , the game Γ(t, x, ξ) has a value H(t, x, ξ).

An important Lemma

Introduce the sets of controls:

U = {u : [0, 1] → U, measurable}, V = {v : [0, 1] → V, measurable}. Let (u, v) ∈ U ×V, t 0 ∈ [0, 1], (x 0 , w 0 ) ∈ (R n ) 2
and let (u * , v * ) be a couple of optimal actions in Γ(t 0 , x 0 , x 0 -w 0 ). Dene two continuous trajectories in R n , x : [t 0 , 1] → R n and w : [t 0 , 1] → R n , by:

x(t 0 ) = x 0 , and ẋ(t) = f (t, x(t), u(t), v * ), a.e. w(t 0 ) = w 0 , and ẇ(t) = f (t, w(t), u * , v(t)), a.e.

The following lemma is inspired by Lemma 2.3.1 in [START_REF] Krasovskii | Game theoretical control problems[END_REF].

Lemma 1. Under Assumptions 1 and 2, there exists A, B ≥ 0 such that ∀t ∈ [t 0 , 1]:

x(t) -w(t) 2 ≤ (1 + (t -t 0 )A) x 0 -w 0 2 + B(t -t 0 ) 2 .
Proof. Notation: let d 0 := x 0 -w 0 and d(t) := x(t)w(t) . Then:

d 2 (t) = (x 0 -w 0 ) + t t 0 f (s, x(s), u(s), v * ) -f (s, x(s), u * , v(s))ds 2 . (1.1)
The boundedness of f implies that

t t 0 f (s, x(s), u(s), v * ) -f (s, w(s), u * , v(s))ds 2 ≤ 4 f 2 (t -t 0 ) 2 .
(1.2)

Claim: For all s ∈ [t 0 , 1], and for all (u, v) ∈ U × V :

x 0 -w 0 , f (s, x(s), u, v * ) -f (s, w(s), u * , v)ds ≤ 2C(s)d 0 + cd 2 0 , (1.3) 
where C(s)

:= c(1 + f )(s -t 0 ).
Let us prove this claim. Assumption 1 implies x(s) -x 0 ≤ (s -t 0 ) f , and then:

f (s, x(s), u, v * ) -f (t 0 , x 0 , u, v * ) ≤ c (s -t 0 ) + f (s -t 0 ) = C(s).
Then, using Cauchy-Schwartz inequality, and the optimality of v * :

x 0 -w 0 , f (s, x(s), u, v * ) ≤ x 0 -w 0 , f (t 0 , x 0 , u, v * ) + C(s)d 0 , ≤ H + (t 0 , x 0 , x 0 -w 0 ) + C(s)d 0 .
Similarly, Assumption 1 implies w(s) -x 0 ≤ d 0 + (s -t 0 ) f , and then:

f (s, w(s), u * , v) -f (t 0 , x 0 , u * , v) ≤ C(s) + cd 0 .
Using Cauchy-Schwartz inequality, and the optimality of u * :

x 0 -w 0 , f (s, x(s), u * , v) ≥ x 0 -w 0 , f (t 0 , x 0 , u * , v) -(C(s) + cd 0 )d 0 , ≥ H -(t 0 , x 0 , x 0 -w 0 ) -C(s)d 0 -cd 2 0 .
The claim follows from Assumption 2. In particular, it holds for (u, v) = (u(s), v(s)).

Note that t t 0 2C(s)ds = (t -t 0 )C(t). Thus, integrating (1.3) over [t 0 , t] yields:

t t 0 x 0 -w 0 , f (s, x(s), u(s), v * ) -f (s, w(s), u * , v(s))ds ≤ (t -t 0 )(C(t)d 0 + cd 2 0 ).
(1.4) Go back to (1.1) using the estimates (1.2) and (1.4). We have proved:

d 2 (t) ≤ d 2 0 + 4 f 2 (t -t 0 ) 2 + 2(t -t 0 )C(t)d 0 + 2c(t -t 0 )d 2 0 .
Finally, use the relations

d 0 ≤ 1 + d 2 0 , C(t) ≤ c(1 + f ) and (t -t 0 )C(t) = c(1 + f )(t-t 0 ) 2 to obtain the result, with A = 3c+2 f and B = 4 f 2 +2c(1+ f ).

Consequences

In this section, we give three direct consequences of Lemma 1.

Let d : R n ×P(R n ) → R denote the usual distance to a set in R n . 1. Consider some sequence of times Π = {t 0 < t 1 < • • • < t N } in [0, 1],
and let Π := max{t m -t m-1 , m = 1, . . . , N }. Let (u, v) ∈ U × V be a xed pair of controls. Dene the trajectories x and w on [t 0 , t N ] inductively. Let x(t 0 ) = x 0 , w(t 0 ) = w 0 and suppose that x(t) and w(t) are already dened on

[t 0 , t m ]. Let (u * m , v * m ) ∈ U × V be a couple of optimal actions in Γ(t m , x(t m ), x(t m ) -w(t m )).
Then, on [t m , t m+1 ], let x and w be the unique absolutely continuous solutions of:

ẋ(t) = f (t, x(t), u(t), v * m ), ẇ(t) = f (t, w(t), u * m , v(t)).
Corollary 1.1. Under Assumptions 1 and 2:

x(t N ) -w(t N ) 2 ≤ e A ( x 0 -w 0 2 + B Π ).
Proof. For any 0 ≤ m ≤ N , let d m := x(t m )w(t m ) . Lemma 1 yields:

d 2 m ≤ (1 + (t m -t m-1 )A)d 2 m-1 + B(t m -t m-1 ) 2 .
Then, by induction:

d 2 N ≤ exp(A N m=1 t m -t m-1 )(d 2 0 + B N m=1 (t m -t m-1 ) 2 ). The result follows, since t N -t 0 ≤ 1 and N m=1 (t m -t m-1 ) 2 ≤ Π . 2. For any (t 0 , x 0 ) ∈ [0, 1] × R n and (u, v) ∈ U × V, let x = x[t 0 , x 0 , u, v]
be the unique absolutely continuous solution in [t 0 , 1] of:

x(t 0 ) = x 0 , and ẋ(t) = f (t, x(t), u(t), v(t)), a.e.

That is, x[t 0 , x 0 , u, v] is the trajectory induced by the initial position (t 0 , x 0 ) and the controls (u, v). For any u ∈ U , let x[t 0 , x 0 , u, v] be the trajectory induced by (t 0 , x 0 , v) and the constant control u ≡ u.

Dene two properties for sets W ⊂ [t 0 , 1] × R n . 

d 2 (x[t 0 , x 0 , u, v * ](t), W(t)) ≤ (1 + (t -t 0 )A)d 2 (x 0 , W(t 0 )) + B(t -t 0 ) 2 .
Proof. Let w 0 ∈ argmin w∈W(t 0 ) x 0 -w be some closest point (which exists by P1). Let (u * , v * ) be optimal in Γ(t 0 , x 0 , x 0 -w 0 ). By P2, ∀ε > 0, ∃v ε such that

w ε (t) := x[t 0 , w 0 , u * , v ε ](t) satises d(w ε (t), W(t)) ≤ ε.
The triangular equality implies d(x(t), W(t)) ≤ x(t)w ε (t) + ε. Taking the limit, as ε → 0:

d 2 (x(t), W(t)) ≤ lim ε→0 x(t) -w ε (t) 2 ,
where x(t)w ε (t) 2 ≤ (1 + (t -t 0 )A) x 0 -w 0 2 + B(t -t 0 ) 2 for any ε > 0, by Lemma 1, and where x 0 -w 0 = d(x 0 , W(t 0 )) by denition. 

Π = {t 0 < • • • < t N }
be a sequence of times, and let x 0 ∈ W(t 0 ). Under Assumptions 1 and 2, there exist

v * 0 , . . . , v * N -1 ∈ V such that, for v ≡ v * m , on [t m , t m+1 ],
and for all u ∈ U:

d 2 (x[t 0 , x 0 , u, v](t N ), W(t N )) ≤ e A B Π .

Dierential Games

For any (t 0 , x 0 ) ∈ [0, 1]×R n , consider now the zero-sum dierential with the following two-controlled dynamic

x(t 0 ) = x 0 , and ẋ(t) = f (t, x(t), u(t), v(t)), a.e. on [t 0 , 1].

Denition 2.1. A strategy for player 2 is a map β : U → V such that, for some

nite partition t 0 < t 1 < • • • < t N = 1 of [t 0 , 1], ∀u 1 , u 2 ∈ U: u 1 ≡ u 2 a.e. on [t 0 , t m ] =⇒ β(u 1 ) ≡ β(u 2 ) a.e. on [t 0 , t m+1 ∧ 1].
These strategies are called nonanticipative strategies with delay (NAD) in [START_REF] Cardaliaguet | Deterministic dierential games under probability knowledge of initial condition[END_REF], in contrast to the classical nonanticipative strategies. The strategies for player 1 are dened in a dual manner. Let B (resp. A) the set of strategies for Player 2 (resp. 1). For any pair of strategies (α, β) ∈ A × B, [START_REF] Cardaliaguet | Deterministic dierential games under probability knowledge of initial condition[END_REF] establishes the following crucial result: there exists a unique pair (u, v) ∈ U × V such that α(v) = u, and β(u) = v.

Denote by x[t 0 , x 0 , α, β] the trajectory induced by the pair (u, v).

Let g : R n → R some function. The dierential game with initial time t 0 , initial state x 0 , and terminal payo g is denoted by G(t 0 , x 0 ). Introduce the upper and lower value functions:

V -(t 0 , x 0 ) := sup α∈A inf β∈B g(x[t 0 , x 0 , α, β](1)), V + (t 0 , x 0 ) := inf β∈B sup α∈A g(x[t 0 , x 0 , α, β](1)).
The inequality V -≤ V + holds everywhere. If V -(t 0 , x 0 ) = V + (t 0 , x 0 ), the game G(t 0 , x 0 ) has a value. Notice that its lower and upper Hamiltonian of are precisely the maxmin and the minmax of the directional games dened in Section 1. Consequently, Assumption 2 is precisely Isaacs' condition. Assumption 3: g is c-Lipschitz continuous, i.e. |g(x)-g(y)| ≤ c x-y , ∀x, y ∈ R n .

2.1

Existence and characterization of the value Let φ : [t 0 , 1] × R n → R be a real function satisfying the following properties:

(i) x → φ(t, x) is lower semicontinuous, ∀t ∈ [t 0 , 1], (ii) ∀(t, x) ∈ [t 0 , 1] × R n , ∀t 1 ∈ [t, 1]: φ(t, x) ≥ sup u∈U inf v∈V φ t 1 , x[t, x, u, v](t 1 ) , (iii) φ(1, x) ≥ g(x), ∀x ∈ R n .
For any ℓ ∈ R, dene the ℓ-level set of φ by:

W φ ℓ = {(t, x) ∈ [t 0 , 1] × R n | φ(t, x) ≤ ℓ}, (2.1) 
Lemma 2. For any ℓ ≥ φ(t 0 , x 0 ), the ℓ-level set of φ satises P1 and P2.

Proof. Note that

W φ ℓ (t 0 ) is nonempty, since x 0 ∈ W φ ℓ (t 0 ). (i) implies that W φ ℓ (t)
is a closed set, ∀t ∈ [0, 1]. On the other hand, by (ii) for all (t, x)

∈ [t 0 , 1] × R n , t 1 ∈ [t, 1]
, u ∈ U , and n ∈ N * , there exists v n ∈ V such that:

φ(t, x) ≥ φ t 1 , x[t, x, u, v n ](t 1 )) - 1 n . 
(2.

2)

The boundedness of f implies that x n := x[t, x, u, v n ](t 1 ) belongs to some compact set. Consider a subsequence (x n ) n such that lim n→∞ φ(t 1 , x n ) = lim inf n→∞ φ(t 1 , x n ), and such that (x n ) n converges to some x ∈ R n . Then, taking the limit, as n → ∞, in (2.2) implies, using (i) and ℓ ≥ φ(t, x):

φ(t 1 , x) ≤ lim n→∞ φ(t 1 , x n ) ≤ φ(t, x) ≤ ℓ. Hence x ∈ W φ ℓ (t 1 ), and inf n∈N * d x[t, x, u, v n ](t 1 ), W φ ℓ = 0. In particular, W φ ℓ (t 1 )
is nonempty, and P1 and P2 hold.

Proof. By (2.3), it is enough to prove that V -satises (i), (ii) and (iii), where (iii) is immediate. Assumption 1, and Gronwall's lemma imply that ∀t ∈ [t 0 , 1], ∀(u, v) ∈ U × V, and ∀x, y ∈ R n :

x[t 0 , x, u, v](t)x[t 0 , y, u, v](t) ≤ e c(t-t 0 ) x -y .

Assumption 2 gives then, ∀(u, v) ∈ U × V, and ∀x, y ∈ R n :

g x[t 0 , x, u, v](1) -g x[t 0 , y, u, v](1) ≤ ce c(1-t 0 ) x -y .

Thus, by standard arguments, x → V -(t, x) is ce c -Lipschitz continuous ∀t ∈ [t 0 , 1] and, in particular, V -satises (i). On the other hand, (ii) is a weak version of the classical dynamic programming principle (see [START_REF] Evans | Dierential games and representation formulas for solutions of hamilton-jacobi-isaacs equations[END_REF], for nonanticipative strategies, and [START_REF] Cardaliaguet | Deterministic dierential games under probability knowledge of initial condition[END_REF] for NAD strategies, dened above): ∀(t, x) ∈ [t 0 , 1] × R n , ∀t 1 ∈ [t, 1]:

V -(t, x) = sup α∈A inf v∈V V -t 1 , x[t,
x, α(v), v](t 1 ) .

Finally, let β(V, Π) be an extremal strategy. By Corollary 2.1:

g x[t 0 , x 0 , u, β(V, Π)(u)](1) ≤ V(t 0 , x 0 ) + C Π , ∀u ∈ U.

Consequenly, for any ε > 0, β(V, Π) is ε-optimal for suciently small Π .

H

  -(t, x, ξ) := max u∈U min v∈V ξ, f (t, x, u, v) , H + (t, x, ξ) := min v∈V max u∈U ξ, f (t, x, u, v) . * The authors are particularly indebted with Pierre Cardaliaguet, Marc Quincampoix and Sylvain Sorin for their careful reading and comments on earlier drafts. This work was partially supported by the Commission of the European Communities under the 7th Framework Programme Marie Curie Initial Training Network (FP7-PEOPLE-2010-ITN), project SADCO, contract number 264735.

  where d is the usual distance in R n . Corollary 1.2. Let W ⊂ [t 0 , 1] × R n satisfy P1 and P2. Under Assumptions 1 and 2, there exists v * ∈ V such that, ∀t ∈ [t 0 , 1], ∀u ∈ U:

	sup u∈U	inf v∈V	d(x[t, x, u, v](t 1 ), W(t 1 )) = 0,

• P1: For any t ∈ [t 0 , 1], W(t) := {x ∈ R n | (t, x) ∈ W} is closed and nonempty.

• P2: For any (t, x) ∈ W and any t 1 ∈ [t, 1]:

2.1.1

Extremal strategies in G(t 0 , x 0 ) Let Π = {t 0 < • • • < t N = 1} be partition of [t 0 , 1], let Π = max{t m -t m-1 , m = 1, . . . , N }, and let W φ ⊂ [t 0 , 1] × R n be the φ(t 0 , x 0 )-level set of φ. Denition 2.2. An extremal strategy β = β(φ, Π) is dened inductively: suppose β is already dened on [t 0 , t m ] and let x m = x[t 0 , x 0 , u, β](t m ). Then, ∀u ∈ U:

•

x m -w m be some closest point, and let v * m be some optimal action in the directional game

). These strategies are inspired by the extremal aiming method of Krasovskii and Subbotin (see Section 2.4 in [START_REF] Krasovskii | Game theoretical control problems[END_REF]). Notice that β is dened up to some selection rule since V , the set of closest points and the set of minimizers may have more than one element.

Proposition 2.1. Under Assumptions 1, 2 and 3, ∃C ≥ 0 such that:

for any extremal strategy β = β(φ, Π).

Proof. W φ satsies P1 and P2 by Lemma 2. Applying Corollary 1.3:

Now, by (iii), and since t N = 1:

Let w N ∈ argmin w∈W φ [START_REF] Cardaliaguet | Deterministic dierential games under probability knowledge of initial condition[END_REF] x N -w be some closest point. By Assumption 3:

The result follows, recalling that

Proposition 2.1 applies to any function satisfying (i), (ii) and (iii). Consequently, under Assumptions 1, 2 and 3:

Theorem 2.3. Under Assumptions 1, 2 and 3, the dierential game G(t 0 , x 0 ) has a value, characterized as:

V(t 0 , x 0 ) = min φ satisfying (i),(ii),(iii) φ(t 0 , x 0 ).

(2.4)

The strategies β(V, Π) are asymptotically optimal for player 2, as Π → 0.