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Constitutive modelling of fibre-reinforced composites with
unidirectional plies using a plasticity-based approach

G.M. Vyasa,∗, S.T. Pinhoa, P. Robinsona

aDepartment of Aeronautics, Imperial College London, Prince Consort Road, South Kensington,
London

SW7 2AZ, UK.

Abstract

This paper presents the development of a constitutive model able to accurately repre-

sent the full non-linear mechanical response of polymer-matrix fibre-reinforced com-

posites with unidirectional (UD) plies under quasi-static loading. This is achieved

by utilising an elasto-plastic modelling framework. The model captures key features

that are often neglected in constitutive modelling of UD composites, such as the

effect of hydrostatic pressure on both the elastic and non-elastic material response,

the effect of multiaxial loading and dependence of the yield stress on the applied

pressure.

The constitutive model includes a novel yield function which accurately repre-

sents the yielding of the matrix within a unidirectional fibre-reinforced composite by

removing the dependence on the stress in the fibre direction. A non-associative flow

rule is used to capture the pressure sensitivity of the material. The experimentally

observed translation of subsequent yield surfaces is modelled using a non-linear kine-

matic hardening rule. Furthermore, evolution laws are proposed for the non-linear

hardening that relate to the applied hydrostatic pressure.
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Multiaxial test data is used to show that the model is able to predict the non-

linear response under complex loading combinations, given only the experimental

response from two uniaxial tests.

Keywords: Polymer-matrix Composites (PMCs), Stress/strain curves, Non-linear

behaviour, Modelling

1. Introduction

1.1. Background

With the increasing use of fibre-reinforced composites with unidirectional plies as

primary structural parts in aerospace, it is of increasing importance to predict how

and when composites will fail. Precise failure predictions are only possible provided

the stress state is accurately known. This requires an accurate representation of

the constitutive response of the material under a variety of uniaxial and combined

loading conditions, within both unidirectional and multidirectional laminates.

1.2. Constitutive Response of Materials

Hydrostatic pressure can cause significantly greater changes in the mechanical

properties of polymers and polymer-matrix composites than in metals or rocks.

Furthermore, polymers and polymer-matrix composites yield at different stresses

in tension and compression, while the elastic modulus increases with hydrostatic

pressure [1–3].

Although pressure can inhibit crack initiation in polymers, it also raises the yield

stress, inhibiting local yielding [4]. As the yield and fracture mechanisms compete

for failure, it has been reported that polymers undergo a ductile-brittle transition, as

shown in figure 1. With further pressure increases, crack growth is suppressed and
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Figure 1: Shear strength as a function of hydrostatic pressure for a polymer (PMMA) [5]

additional transitions may be observed, as failure may again be caused by yielding

[5].

The presence of fibres in composite materials alters the material dependence

on hydrostatic pressure; the effect is still significant and, importantly, non-isotropic.

Pressure increases interfacial normal and shear stresses, resulting in greater adhesion

between fibres and matrix, whilst reducing the influence of flaws such as microcracks

and voids [2]. The effects of hydrostatic pressure on the non-linear response of a

UD composite are shown in figure 2a and b, indicating a change in the post-yield

behaviour and an increase in elastic modulus.
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Figure 2: Effect of increasing hydrostatic pressure on shear response and modulus of a UD com-
posite [3, 6]

Another significant effect is the interaction between different stress components

under multiaxial loading also affects the material response. Figure 3 shows that

stress components are coupled, as the shear response of a UD composite is influenced

by the introduction of a stress in the transverse direction.

1.3. Plasticity Modelling
1.3.1. Isotropic Yield Criteria

Several criteria have been proposed to model yielding in polymers. The yield

function for the linear Drucker-Prager criterion, one of the most widely used in the

literature, reads:

f =
√
J2D + µσvm − σ0 (1)

where µ is the hydrostatic pressure sensitivity, σ0 is the yield stress, σvm = 1
3(σv11 +

σv22+σv33) is the hydrostatic pressure, and J2D is the second invariant of the deviatoric
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Figure 3: Effect of multiaxial loading on shear response [7, 8]

stress tensor. Yield is considered to occur when f ≥ 0.

The linear Drucker-Prager criterion is widely used for computational implemen-

tation as it produces a smooth yield surface, avoiding the numerical instability

that can arise from modelling the vertices of discontinuous criteria, such as the

Mohr-Coulomb. In addition, it has been argued that these vertices are only ap-

propriate for metals and are unsuitable for frictional and quasi-brittle materials [9].

Finally, the linear Drucker-Prager criterion is also considered to be more suitable

than Mohr-Coulomb for modelling materials in which the deformation cannot be

well represented by frictional sliding on failure planes [10].

The linear Drucker-Prager criterion predicts a linear increase in the shear yield

stress with increasing hydrostatic pressure. However, experimental observations [11]

suggest the dependence is slightly convex. The hyperbolic and exponent forms of

the Drucker-Prager are able to predict this convexity, but require the calculation of

many material constants [12]. However, the Raghava criterion [13, 14] produces a
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similar yield surface to the hyperbolic Drucker-Prager and requires only two material

constants. It is stated as:

f = J2D + 2 (C − T ) (σ11 + σ22 + σ33)− 2CT (2)

where C and T are the absolute values of the compressive and tensile yield strengths

respectively.

The Raghava criterion is not, however, considered suitable for modelling all ma-

terials; prompting the proposal of many yield criteria for different materials, some

of which can also be applied to polymers. Zhang et al. [15] proposed a criterion

similar to the Drucker-Prager criterion, but with a dependence on the square of the

hydrostatic pressure. The criterion by Altenbach and Tushtev [1] is also suitable for

modelling materials with different strengths in tension and compression. The cri-

terion developed by Bigoni and Piccolroaz [9] is suitable for modelling a variety of

different pressure sensitive, frictional, ductile and brittle-cohesive materials, as the

yield surface is allowed to change shape. It can be considered as a generalisation of

several different criteria, including Drucker-Prager and Mohr-Coulomb. The crite-

rion used by Mahnken and Schlimmer [16] can also be reduced to the Drucker-Prager

or Von Mises criteria, whilst Kolling and Haufe [17] use a yield criterion consisting

of two Drucker-Prager yield surfaces.

As the criteria above are for isotropic materials, they are unsuitable for the

modelling of fibre-reinforced composites. However, they can be modified to account

for the presence of fibres. The linear Drucker-Prager and the Raghava appear to

be the best choices for this as they are fairly simple, hence can be manipulated

mathematically. More complex criteria such as that of Altenbach and Tushtev [1]

are more difficult to handle computationally as their derivatives will be required in
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a computational algorithm.

1.3.2. Yield criteria for Unidirectional Composites

Several authors have previously attempted to modify isotropic yield criteria for

use with unidirectional composites. Xie and Adams [18] modified a quadratic yield

criterion that does not consider hydrostatic pressure by imposing ∂f
∂σ11

= 0, where

11 denotes the fibre direction, obtaining:

2f = F (σ22 − σ33)2 + 2σ2
23 + 2M

(
σ2

31 + σ2
12

)
(3)

where F and M are material constants. It should be noted that using this approach

with an associated flow rule implies that dεp11 = 0, so that the response in the fibre

direction remains linear elastic.

Goldberg et al. [19, 20] use laminate theory and a ’fibre structuring’ approach

for the micromechanical modelling of the composite. In this approach, the authors

first characterise the matrix using the linear Drucker-Prager criterion, then the fibre,

then the whole composite. This approach is used as it is easier to test a polymer

than perform an equivalent test on a composite. The in-situ matrix properties and

deformation response are assumed to be equivalent to those of the bulk polymer.

Alternatively, the polymer properties can be adjusted such that test data from

composite specimens matches the analytical predictions [19].

Cazacu et al. [21] have produced a transversely isotropic yield criterion for rocks,

which can also be adapted for UD composites. If used to model an isotropic material,

the Cazacu criterion reduces to a form similar to the Raghava criterion, but is not

able to represent the linear elastic response of a UD composite when loaded in the

fibre direction. For modelling composites, the criterion of Bigoni and Piccolroaz [9]

is of a similar form to the Drucker-Prager criterion.
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Spencer [22] has suggested two criteria for the yielding of transversely isotropic

materials; the first is analogous to the von Mises criterion and the second is a

maximum shear stress criterion analogous to the Tresca criterion. However, neither

of the criteria are pressure dependent, although this has been used as a basis for

modelling of UD composites by Vogler et al. [23].

As none of the criteria discussed are simultaneously hydrostatically sensitive and

suitable to model unidirectional composites, this work will develop a yield criterion

that can be used to capture the dependence of the yield stress on hydrostatic pres-

sure, allow a linear elastic response of the fibres and account for the presence of

multiaxial loading.

1.3.3. Flow Rule and Hardening

The flow rule determines the increment in plastic strain, dεp. It is stated as:

dεp = dλ∂g
∂σ

(4)

where dλ is the plastic multiplier and ∂g
∂σ

determines the direction of plastic flow,

where g is the ’plastic potential’ function. If the yield criterion is used as the plastic

potential function, the flow is termed ’associated’, else it is termed ’non-associated’.

Many plasticity models in the literature use associated flow, but for the modelling

of pressure sensitive materials the flow rule should be defined based on experimental

observations [24]. Generally, the flow rule for hydrostatically sensitive materials is

defined by modifying the value of the hydrostatic pressure sensitivity coefficient, µ

to µ′ [24–26].

The post yield stress-strain behaviour can be modelled using kinematic or isotropic

hardening, or a combination of the two. In isotropic hardening, the yield surface is

assumed to expand uniformly in all directions. Kinematic hardening represents a
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translation of the yield surface [27], an effect which has been noted experimentally

for composites [28, 29].

2. Constitutive Model for UD composites

One possible approach to modelling the constitutive response is through the

use of a plasticity approach to generate the non-linear stress-strain curves observed

experimentally for UD composites. Several papers in the literature use a viscoelastic

approach in order to capture the time dependent behaviour of the material [30, 31].

This paper is concerned with loading under quasi-static conditions at the ply level

and so an elastic-plastic constitutive law is used.

A model is hereby developed that is able to represent the full non-linear response

of UD composites under quasi-static loading. This non-linearity may be the result of

several different mechanisms, including plasticity, microcracking and other forms of

damage. As with other models of this type [23], the modelling of the non-linearities

does not account for the exact physical cause of the non-linearity. Rather, the

model aims to faithfully reproduce the constitutive response under superimposed

hydrostatic pressure or multiaxial loading.

2.1. Yield Criterion

A pressure dependent yield criterion for UD composites is formulated which

satisfies the condition ∂f
∂σ11

= 0. This is achieved by removing all terms and brackets

containing σ11 from an existing yield criterion. As an example, the yield curves

produced by modifying the linear Drucker-Prager and Raghava criteria in this way

are plotted in figure 4, with experimental data for the failure of graphite tubes [3].

Although the experimental values are not necessarily for yield, they provide a useful

first point of comparison.
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The Raghava criterion, expressed in terms of µ and σ0 instead of the tensile and

compressive yield strengths, is proposed as it captures the yield in tension well. The

criterion is:

f =
√

1
6(σv22 − σv33)2 + σ2

12 +Nσ2
23 + σ2

31 + µ

2 (σv22 + σv33)− σv0 (5)

The constants µ and σv0 in equation 5 are calculated using experimental data from

any two uniaxial tests [25], as shown in table 1, where S is the shear yield stress. It

should be noted that the numerical value of µ differs depending on the yield stresses

used for its calculation. As the material is assumed to be transversely isotropic,

the constant N is included to account for the difference in shear properties out of

plane. In most load combinations applied to composite laminates σ23 is negligible,

therefore in this work it is assumed N = 1.
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Table 1: Definitions of µ and σ0 using data from different loading tests

Uniaxial test data µ (MPa) σ0 (MPa)

Shear and Compression C
3 −

2S2

C
S

Shear and Tension T
3 + 2S2

T
S

Tension and Compression C−T
3

√
TC
6

2.2. Flow Rule

The plastic potential for the flow rule used is defined based on the chosen yield

criterion in equation 5. In order to correctly reproduce the experimentally measured

curves, it is necessary to alter the hydrostatic sensitivity when plastic flow occurs:

g =
√

1
6 (σ22 − σ33)2 + σ2

12 +Nσ2
23 + σ2

31 + µ′

2 (σ22 + σ33) (6)

There are several methods for the calculation of the parameter µ′ ( 6= µ) for non-

associative flow. In an isotropic material, it can be related to the plastic Poisson’s

ratio νp, assuming a uniaxial compression in the z-direction of the material. The

derivation for an isotropic material is given by Zhang et al. [15], the resulting

expression for µ′ is:

μ
′ = 9(1− 2νp)

2(1 + νp)
(7)

Modifying this derivation so that there is no plastic deformation parallel to the

fibres leads to an assumed definition of the volumetric plastic strain increment,

dεvp = (1− νp) dεzzp, where dεzzp is the plastic strain increment in the through

thickness direction. Following the derivation of equation 7 [15] with this volumetric

plastic strain leads to an expression for μ′ considered suitable for unidirectional

composite materials:

μ
′ = 9(1− 2νp)

(2 + νp)
(8)
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Equation 8 should be used with caution as it often requires non-physically sensi-

ble values of νp to obtain suitable values of the non-associated hydrostatic pressure

coefficient, µ′, that match the observed experimental behaviour. However, the same

comment can be made for the isotropic material expression in equation 7, in which

plausible flow behaviour is only obtained if 0 ≤ νp ≤ 0.5, implying 0 ≤ µ′ ≤ 9
2 [32].

The value of µ′ can also be calculated based on the volume change seen experi-

mentally in a material under a given loading. However, as volume change is rarely

measured, in this study µ′ is determined by matching experimental curves from two

different uniaxial tests - for example shear and compression - using the effective

stress.

2.3. Effective Stress

As the model developed is related to Drucker-Prager criterion based models [19],

the same effective stress is used, defined as:

σe =
√

3f (9)

This effective stress allows the data from different loading regimes to be matched

when using the yield criterion in equation 5 with the non-associative flow rule, as

shown in figure 5. The material used to generate this plot is IM7-8552, with µ = 4

MPa and σ0 = 61 MPa.

The incremental effective plastic strain, dεpe, is defined as:

dεpe =
√

2
3dεp : dεp (10)
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Figure 5: Effective stress-strain plot using equation 9

2.4. Hardening

Kinematic hardening is implemented as it is able to reproduce the experimentally

observed constitutive behaviour of polymers and unidirectional composites [28, 29]

without the need for isotropic hardening and allows for the modelling of unloading.

The kinematic hardening is included in the model using the back stress, α. The

yield criterion then becomes:

f =
√

1
6 (ξ22 − ξ33)2 + ξ2

12 +Nξ2
23 + ξ2

31 + µ

2 (σ22 + σ33)− σ0 (11)

where ξij = σij − αij.

The simplest and most commonly used non-linear hardening rule used in the

literature is the Armstrong-Frederick rule [24, 26, 33]. The evolution of the back

stress is given through the use of the material constants c and γ. In its uniaxial

13
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form, the hardening law is stated as:

α = c

γ
(1− e(−γεp)) (12)

To ensure that the Armstrong-Frederick rule is suitable for composites, the pre-

dicted hardening using equation 12 is compared with the experimental data from a

transverse compression test for IM7-8552 [34], as shown in figure 6.

2.5. Calculation of the plastic multiplier

For non-associative flow, the plastic multiplier, dλ, is calculated by substituting

Hooke’s law and the hardening rule into the consistency condition. For the case of

kinematic hardening, the consistency condition is given by:

df
dσdσ + df

dαdα = 0 (13)

The full derivation of the plastic multiplier follows the method found in Dunne

and Petrinic [33] for an associative flow plastic multiplier. The end result for non-

14



  

associative flow is:

dλ = fσDedε
fσDegσ + γfαα−

(
2
3

)
cfαgσ

(14)

where fσ = df
dσ
, fα = df

dα
, gσ = dg

dσ
and De is the elastic stiffness matrix.

2.6. Evolution of Hardening with Hydrostatic Pressure

Previous studies have indicated the elastic modulus of polymers and composites

is greater when hydrostatic pressure is applied [3, 35]. The effect of hydrostatic

pressure in the elastic region is modelled as by Pinho et al. [6], assuming a linear

increase of E22, E33 and shear moduli with hydrostatic pressure.

As γ → 0, the Armstrong-Frederick rule reduces to linear kinematic hardening.

The value of γ must be positive to cause the modulus to drop in the plastic region.

However, the experimental data (see figure 2) suggests that the value must decrease

with increasing hydrostatic pressure. Two forms of this evolution are proposed;

linear and exponential.

The linear form is stated as:

γ = γ0 + ηγσm (15)

The exponential form is:

γ = γ0e
ηγσm (16)

If the linear form (equation 15) is used, γ > 0 must be enforced. This is not

required for the exponent version which tends to zero as the hydrostatic pressure

is increased. In both versions, the value of the slope coefficient for γ, ηγ, must be

defined based on experimental observations. A comparison of the evolution of γ

using the two forms with experimental data is shown in figure 7.

To identify the parameter ηγ and similarly, the effect of hydrostatic pressure in

15
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the elastic region, tests are required on UD composites with superimposed hydro-

static pressure to generate stress-strain curves such as figure 2. The parameters are

easily identifiable from these stress strain curves. For the linear region, the change

in slope of the curve is plotted against hydrostatic pressure to obtain slope coeffi-

cients for Young’s modulus and shear modulus (figure 2b), ηE and ηG, respectively.

For the non-linear region, the non-linear hardening law is plotted along with the

experimental data at different values of γ. The parameter ηγ is determined from

a plot of γ against hydrostatic pressure, such as that in figure 7, using either the

linear or exponential evolution law.

3. Predictions

The model is implemented as a stand-alone FORTRAN code to simulate a uniax-

ial material loading. The exponential evolution of γ (equation 16) is used as it more

closely reproduces the experimental data (see figure 7). The experimental data for
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Table 2: Material properties for T300/PR319 and AS4/55A

Model Parameters γ0 G12 (MPa) ηγ µ (MPa) ηG c σ0 (MPa) N

T300/PR319 21 1300 0.0014 6.1 0.18 13000 64 1
AS4/55A 140 4200 0.007 7 0.4 50000 23 1

T300/PR319 was obtained using the high pressure torsion test apparatus, details of

which can be found in the literature [3, 36].

Figure 8 shows a comparison of the predictions produced by the model to the

change in shear response with increasing hydrostatic pressure for a T300/PR319

carbon-epoxy material system. The slope coefficient for shear, ηG, was calculated

as a best fit to the data shown in figure 2b. The slope coefficient ηγ was calculated

suing the curves for p = 0 MPa and p = 200 MPa in figure 2a.

Figure 9 shows the experimental data for AS4/55A with differing transverse

loading applied plotted with the predicted curves. In the experimental procedure

the σ2 component is applied first, followed by the shear, with the curves being plotted

during the shear loading phase [7]. Details of the procedure used to generate this

data can be found in [8]. The required slope coefficients are calculated from the

experimental data in figure 3 in the same way as for T300/PR319, using the data

at σ2 = 0 MPa and σ2 = −34.5 MPa. The input data used to produce figures 8 and

9 is shown in table 2.

4. Discussion

The proposed yield criterion shown in equation 5 is pressure dependent and

able to produce a similar shape to the hyperbolic Drucker-Prager and the Raghava

criteria described previously, whilst remaining relatively simple and allowing for

linear material response in the fibre direction. Thus, it is considered suitable for

17
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modelling the yield of unidirectional fibre-reinforced polymer-matrix composites.

When loading in shear is applied using non-associative flow with the value of

µ′ that matches the effective stress-strain curves under different loading regimes, a

non-negligible change in volume of the material can result [37]. This volume change

has been noted experimentally for materials such as concrete, soil and clay and can

be considered a limitation of Drucker-Prager type models as the hydrostatic stress

and mean stress are both used in the formulation of the yield criterion [37, 38]. If

the volume change of the material is not desired, it can be eliminated by specifying

µ′ = 0.

The model is shown to be capable of predicting the experimentally recorded

non-linear stress-strain under multiaxial loading curves (figures 6, 8, 9) up to the

experimental failure point using the exponential evolution for γ, although the dif-

ference using the linear evolution is small (see figure 7).

The model is suitable for implementation in finite element code with explicit

integration. Implementation in a finite element code with implicit integration is in

principle possible, but the non-linearities included in the model are likely to lead to

difficulties in defining the tangent stiffness matrix and in ensuring convergence. The

incorporation of the constitutive model with the existing LaRC05 failure criteria [6]

as a user subroutine in a finite element package with be addressed in a following

paper.

5. Conclusions

A constitutive model for unidirectional composite materials has been proposed

that is able to capture several features of the constitutive response that have previ-

ously been neglected. The proposed yield criterion is both hydrostatically sensitive
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(predicts the increase in yield with pressure) and accounts for the different response

of UD composites in the fibre direction. The model includes the effects of hydro-

static pressure in the elastic and non-elastic region, is able to predict the response

under multiaxial loading and matches the experimental stress-strain curves well us-

ing non-linear kinematic hardening.
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