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Abstract

In this paper, we propose a compact image signa-

ture based on VLAT. Our method integrates spatial in-

formation while significantly reducing the size of orig-

inal VLAT by using two pojection steps. we carry out

experiments showing our approach is competitive with

state of the art signatures.

1. Introduction

Content Based Image Categorization is a research

field that has known a rapid development in the last

years. The typical scheme is composed of the following

steps: extraction of local image descriptors, aggregation

of the descriptors in an image signature, and learning a

classifier in signatures space. The most recent and suc-

cessful methods are Coding/pooling [9], Fisher Vector

[6], VLAD [4], and VLAT [7].

In this paper we present a new method for aggregat-

ing local descriptors based on VLAT [7]. Our method

improves significantly the classification results over of

VLAT, while reducing its size.

This paper is organized as follows: the next section de-

scribes recent related work on image representation and

similarities. Section 3 introduces our novel approach.

Finally we present successful experiments on the well

known VOC2007 dataset [3].

2. State of the art

In this section we present the most recent and effi-

cient image signatures using local descriptors.

2.1. Coding/Polling Schemes

Coding/Polling methods proposed in [9] by J. Wang

et al. are a generalization of BoW methods[8]. These

methods are based on visual words dictionary. The vi-

sual words are computed using a clustering algorithm

on a training set of descriptors. The Coding/Pooling

schemes divide the problem into two steps. The first

step maps each descriptor of the image on the code-

book (“coding” step). The second step aggregates the

mapped descriptors into a single signature (“pooling”

step). For the Coding step in [9], they compute a

mapped vector α⋆ as the result of the following recon-

struction problem:

α
⋆ = argmin

α

||b−Wα||2 + ||d ◦α||2, (1)

with b being a descriptor, W the codebook matrix, α

the projection coefficients and d a locality constraint.

The output vector α
⋆ is thus optimized with respect

to the reconstruction error and constrained to the pro-

jection on few nearby codewords. For the Pooling

step, they propose 2 methods: Sum Pooling (sum of all

codes) or Max Pooling (maximum value for each cod-

ing coefficient). Compared to BoW, the coding/pooling

schemes give good performance with linear similarities,

while retaining a small signature size. However this

method is more complex to implement and requires a

fine tuning of the parameters to obtain good results [2].

2.2. Fisher Vector

Recently, Perronnin et al.[6] presented a new method

called Fisher Vectors. The authors hypothesize the de-

scriptors can be modeled by a probability density func-

tion denoted as uλ of parameters λ. To describe the

image, they use the derivative of the log-likelihood of

all image descriptors to the model. The key idea is to

describe the contribution of the descriptors to the de-

viation of the model parameters. The model used is a

GMM of parameters µc and σc. The elements of the

Fisher Vector for each Gaussian c can be written as:

G
Bi

µ,c = 1
T
√
ωc

∑

r γc(bri)
(

bri−µ
c

σc

)

, (2)

GBi

σ,c = 1
T
√
ωc

∑

r γc(bri)
[

(bri−µ
c
)2

σ2
c

− 1
]

, (3)

Where bri are the descriptors of image i, (ωc,µc, σc)
are the weight, mean and standard deviation of Gaus-

sian c, and γc(bri) the normalized likelihood of bri to



Gaussian c. The final descriptor is obtained by concate-

nation of GBi

µ,c and GBi

σ,c for all Gaussians. The Fisher

Vector method achieve very good results [2]. However,

Fisher Vectors are limited to the simple model of mix-

tures of Gaussians with diagonal matrices. Moreover,

the GMM algorithm is computationally very intensive.

2.3. Vector of Locally Aggregated Tensors

In [7], Picard et al. proposed an extension of Fisher

vectors, called VLAT for Vector of Locally Aggregated

Tensors. This method uses a codebook of visual words,

computed with a clustering algorithm (typically: k-

mean). They compute the 1st and 2nd order moments

for each visual word (cluster):

µc =
1

|c|
∑

i

∑

r

brci, (4)

Tc =
1

|c|
∑

i

∑

r

(brci − µc)(brci − µc)
⊤, (5)

with |c| the number of descriptors in cluster c and brci

the descriptors of image i belonging to cluster c. For

each image, the difference between image 2nd order

moment and the cluster 2nd order moment is computed

for each cluster c:

Ti,c =
∑

r

(brci − µc)(brci − µc)
⊤ − Tc. (6)

Each Ti,c is flattened into a vector vi,c. The VLAT sig-

nature vi for image i consists in the concatenation of

vi,c for all clusters c:

vi = (vi,1 . . .vi,C) . (7)

It is advisable to perform a normalization step for best

performance.

∀j, v′
i[j] = sign(vi[j])|vi[j]|α, (8)

xi =
v′
i

||v′
i||

, (9)

with α = 0.5 typically. VLAT gives very good results in

similarity search and automatic indexing of images with

linear metric, but leads to large feature vectors. The size

of the VLAT signature is C×D×D, with C the number

of clusters and D the size of descriptors.

2.4. Spatial pyramid binning

The spatial pyramid method [5] allows the introduc-

tion of spatial information in image signatures. The pro-

cess consists in computing a set of p signatures for dif-

ferent regions of the image. To compute the similarity

between images, the weighted sum of similarities for all

regions is performed. It can be written as the following

kernel function:

K(Xi, Xj) =

p
∑

m=1

αmk(X
(m)
i , X

(m)
j ), (10)

with k(·, ·) the minor kernel function and X
(m)
i ,X

(m)
j

the signatures of image i and j for region m.

3. Proposed method

We propose a new VLAT based signature that signifi-

cantly reduces the size of the signature, while increasing

their discriminative power. Our scheme is as follows:

1. We perform a Principal Component Analysis (PCA)

within each cluster (We project the descriptors in the

space of the eigenvectors of their cluster).

2. We compute VLAT signatures for different part of

the spatial pyramid.

3. For some training set of images, we then compute the

Gram matrix using Eq. (10) with a linear minor kernel.

4. We then perform a low rank approximation of the

gram matrix and compute the set of projection vectors

associated with the generated subspace.

The final signatures are the projections of normalized

pyramid VLAT using the obtained projection vectors.

3.1. Pre-projection: descriptors PCA by cluster

As for standard VLAT, we compute the 1st and 2nd

order moments (Eq. 4 and 5) of each cluster. We per-

form a Takagi factorization of Tc matrix:

Tc = VcDcV
⊤
c , (11)

where Dc is a diagonal matrix formed from the eigen-

values of Tc and Vc is a matrix of eigenvectors of Tc.

We denote by Dc,pc
the matrix with the pc largest eigen-

values on the diagonal:

Dc,pc
= diag(λc,1 . . . λc,pc

), (12)

with λ1,pc
≥ λ2,pc

≥ · · · ≥ λc,pc
and we denote by

Vc,pc
the matrix of the first pc eigenvectors:

Vc,pc
= [vc,1 . . .vc,pc

] . (13)

We perform an approximation of the image descriptors

by projection on the subspace spanned by the pc largest

eigenvectors of Tc:

b′
rci = V⊤

c,pc
(brci − µc). (14)

We can thus rewrite Eq. (6):

T ′
i,c = V⊤

c,pc
Ti,cVc,pc

. (15)
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Figure 1. Images from PASCAL Visual Object Classes Challenge 2007.

Like in VLAT, we concatenate each cluster signature

and do proper normalization. Due to the tensor prod-

uct, the size of the new signature depends on the square

of the number of eigenvector selected in each clus-

ter
(

∑C
c=1 p

2
c

)

. We propose 2 strategies for selecting

the eigenvectors in each cluster. The fixed dimension

method is to arbitrarily set the number of eigenvalue

that is kept for each cluster : p1 = · · · = pC . The er-

ror threshold method is to set a threshold ε on the error

introduced by the subspace projection:

pc = min
p

p s.t. 1−
∑p

i=1 λc,i
∑D

i=1 λc,i

≤ ε. (16)

3.2. Spatial pyramid

To add spatial information, we compute the signature

of Eq.(15) for different region of spatial pyramid. The

spatial regions are obtained by dividing image using 1×
1, 3× 1, and 2× 2 grids, for a total of 8 regions like in

most image categorization setups [3, 2]. We use a linear

metric for classification (e.g. the minor kernel of Eq.

(10) is the dot product). Hence, the global signature for

the image is the concatenation of weighted signatures

for each region of the pyramid:

xi = (
√
α1xi,1 . . .

√
αmxi,m . . .

√
α8xi,8) , (17)

with xi,m is the signature of the image i computed in

the area m of the pyramid.

3.3. Post-projection: Low rank approximation

Given a training set S of N images ,we compute the

Gram matrix G of signatures defined in Eq. (17):

Gi,j = x⊤
i xj , xi ∈ S,xj ∈ S. (18)

Then, we perform the Takagi factorization of G :

G = ULU⊤, (19)

L = diag(λ1 . . . λi . . . λN ), (20)

U = (u1 . . .ui . . .uN ), (21)

with λ1 ≥ λ2 ≥ · · · ≥ λN and ui the eigenvector as-

sociated with the eigenvalue λi. We want to compute a

low rank approximation of the Gram matrix. We denote

by Lt the matrix with the t largest eigenvalues on the

diagonal:

Lt = diag(λ1 . . . λt), (22)

and we denote by Ut the matrix of the first t eigenvec-

tors:

Ut = [u1 . . .ut] . (23)

Then, we compute the projectors in the approximated

subspace:

Pt = XUtL
−1/2
t , (24)

with X = [x1 . . .xN ] is the matrix of signatures for the

training set S . This method akin to Kernel-PCA using

the Spatial Pyramidal Kernel with a linear minor kernel.

3.4. Projection vectors

For some image i, we compute the projected signa-

ture in the approximated space:

yi = P⊤
t xi, (25)

yi contains an approximate and compressed version of

xi (from eq.(17)). This method selects the most energy

directions of signature space. The size of yi is very

small compared to the size of xi, as it directly depends

on t (varying from 1 to N). The final step is a ℓ2 nor-

malization of yi:

zi =
yi

||yi||
. (26)

4. Experiments

In this section we describe our experimental setup

and some results on the PASCAL-VOC 2007 dataset

[3]. This dataset consists in about 10,000 images and

20 categories, and is divided into 3 parts : train, val and

test. We used an 1-vs-rest linear SVM classifier trained

on train + val sets and tested on the test set. We used

a fast stochastic gradient descent algorithm with C =



mAP aeroplane bicycle bird boat bottle bus car cat chair cow

Our method 61.5 80.3 72.2 51.4 71.4 28.1 72.1 81.6 63.1 54.4 47.5

FV 61.7 79.0 67.4 51.9 70.9 30.8 72.2 79.9 61.4 56.0 49.6

LLC 57.6 71.1 62.9 47.4 67.7 25.2 62.7 77.0 59.6 54.2 45.3

Size table dog horse bike person plant sheep sofa train tv

Our method 10k 57.8 46.5 81.1 70.3 86.8 30.8 41.2 54.0 84.1 54.9

FV 320k 58.4 44.8 78.8 70.8 85.0 31.7 51.0 56.4 80.2 57.5

LLC 200k 51.6 44.2 75.5 67.1 83.3 27.6 45.7 53.6 76.0 52.3

Table 1. Image classification results on Pascal VOC 2007 dataset compared to [2]
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Figure 2. Effect of pre-projection

10 [1]. We used Mean Average Precision (mAP) over

the 20 classes for performance measurement. We ex-

tracted HOG features with 4 different scales (4px, 6px,

8px and 10px cell size), every 3 or 6 pixels, depending

on the test. We used a simple k-means clustering algo-

rithm in order to obtain the codebook. For the low-order

approximation of the post-projection step, we used the

full dataset Gram matrix.

4.1. Pre-projection effect

In this section we study the action of the pre-

projection (section 3.1). We used a 6 pixels step for ex-

tracting HOG features, a codebook of 64 visual words,

only the first level of the spatial pyramid (1 × 1) and no

post-projection. To compare the two strategies for esti-

mating pc, we measured the classification score against

the signature size. For the fixed dimension strategy, we

reduced the descriptor size to 32, 48, 64, 80, 112 and

128 dimensions. For the error threshold strategy, we

tested 30%, 25%, 20%, 15%, 10%, 5% and 0% of re-

construction error rate ε. As we can see in Figure 2 the

pre-projection significantly increases the performance

relative to VLAT even if it greatly reduces the signa-

tures size. We can also see that the thresholding strategy

gives better results, which is consistent with the fact it

balances the error among clusters.

4.2. Classification results

To compare our method to the state of the art, we

used a similar setup to [2]. We used a 3 pixels step

for extracting HOG features, a codebook of 256 visual

words, and all levels of the spatial pyramid. We set the

threshold ε to 10% of reconstruction error (about 74 di-

mensions). We used all projectors in post-projection

step (about 10k signature size). We can see from Ta-

ble 1, our signature gives comparative results to the

of state of the art methods. However, our signature is

much smaller and we used HOG descriptors (simpler

than SIFT used in [2]).

5. Conclusion
In this paper, we proposed a new image signature

based on VLAT. Our representation increases discrimi-
native power of VLAT by introducing a spatial informa-
tion while reducing its size significantly. Tests on VOC
2007 dataset show that our signature gives results simi-
lar to state of the art methods, with simpler descriptors
and smaller signature. The results are very promising,
and we are looking forward to a full investigation of the
influence of two projection steps.
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