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ABSTRACT

Within the Content Based Image Retrieval (CBIR) frame-

work, one of the main challenges is to tackle the scalability

issues. We propose a new compact signature for similarity

search. We use an original method to perform a high com-

pression of signatures while retraining their effectiveness. We

propose an embedding method that maps large signatures into

a low-dimensional hilbert space. We evaluated the method on

Holidays database and compared the results with methods of

state-of-the-art.

Index Terms— Image retrieval, Image databases, Ma-

chine learning

1. INTRODUCTION

Content Based Image Retrieval (CBIR) is now an as well es-

tablished field in the image processing community. In search

by similarity tasks, the main problem is to compute image

signatures that reduce as much as possible the semantic gap.

Efficient systems have been proposed thanks to the introduc-

tion of highly discriminative local descriptors [1] and power-

ful aggregation schemes to produce the signatures [2, 3, 4].

However, these methods are not compact and require a lot of

storage and computational resources. Scalability issues are

then the next challenge of image search by similarity.

In this paper, we propose a new method for fast similarity

search using compact signatures with high discriminative ca-

pacity. Our approach is as effective as current ones, but with

a much smaller computational cost and data size. Our signa-

tures are obtained by compressing a tensor based aggregation

of local descriptors.

This paper is organized as follows: the next section de-

scribes recent related work on image representation. Section 3

introduces our novel approach and gives insight on its sound-

ness. We then present successful experiences on Holidays

dataset, before we conclude.

2. IMAGE VECTOR REPRESENTATION

In the similarity search and automatic indexing popular tech-

niques are based on bag of features. Among these ones, two

main methods: kernels based technique [5] and explicit em-

bedding methods. In this article we will focus on mapping

functions. These methods consist in mapping a set of descrip-

tors into a single vector.

2.1. Bag of Words

A first method to map the set of descriptors into a single vec-

tor is called “Bag of Words” (BoW) [4]. This method involves

a visual codebook composed of prototype descriptors (visual

words), and count the occurrences of these prototypes within

an image.

For some training set of images, the Visual codebook is

usually computed using a clustering of descriptors (usually

using K-means).

This method has many advantages: its implementation

is very simple. The size of the signature generated by this

method is small, as it depends only on the number of visual

words in the visual codebook. However, nonlinear methods

of similarity (e.g. Gaussian kernels with ℓ2-distance or χ2-

distance) are required to reach good performances.

2.2. Coding/pooling schemes

The Coding/pooling method is a generalisation of BoW. It

divides the mapping in two steps. The first step is to map

each descriptor of the image on the dictionary (“coding” step).

The second step is to aggregate the mapped descriptors into a

single signature (“pooling” step).

To compute BoW with these schemes, 1 is assigned to the

closest visual word during the coding step (0 otherwise). The

pooling step is the sum of all mapped vectors.

In the coding scheme of [2], a mapped vector α⋆ is the

result of a reconstruction problem :

α
⋆ = argmin

α

‖b−Wα‖2 + ‖d ◦α‖2, (1)

with b being a descriptor, W the codebook matrix, α the

projection coeficients and d a locality constraint. The output

vector α⋆ is thus optimized with respect to the reconstruction

error and constrained to the projection on few nearby code-

words. They also propose an alternative to the sum pooling



step by computing the maximum coefficient among descrip-

tors of the set.

Unlike BoW, coding/pooling schemes give good perfor-

mance with linear similarities, while retaining a small size.

However this method is more complex to implement and it

requires a fine tuning of the parameters to obtain good results.

2.3. Fisher Vectors - VLAD

Perronnin et al. [6, 3] have recently proposed a novel method

called Fisher Vectors to map a set of descriptors in a single

signature. Their model computes the deviation of each de-

scriptor to a Gaussian Mixture Model of the distribution of all

descriptors in the database. Then they sum these deviations

for all descriptors of the image.

Jegou et al. [7] proposed a method to perform an approx-

imation of Fisher vectors, called Vectors of Locally Aggre-

gated Descriptors (VLAD). This method has two steps: first,

a small codebook is generated by clustering. Then, the sum

of all centered descriptors from image i and cluster c is com-

puted:

νc,i =
∑

r

(brci − µc) ; (2)

where brci are the descriptors for image i in cluster c and µc

is the center of the cluster. The final signature νi is obtained

by concatenating νc,i for all c, and is thus of size C×D, with

C the size of codebook and D the size of features.

Like the coding/pooling, this approach gives good perfor-

mance with linear metric. The dimension of VLAD vectors is

large and depends on the size of descriptors, however it can

be significantly reduced using techniques like PCA[3].

2.4. VLAT - A tensor based aggregation

The Vector of Locally Aggregated Tensors (VLAT) is an im-

provement of VLAD recently presented by Picard et al [8]. In

this method, the authors propose to aggregate tensor products

of local descriptors to produce a unique signature.

First, they compute a visual codebook of C visual words

over a sample image set using k-means.

Then, they compute the mean descriptor µc and mean

centered tensor Tc of each cluster c:

µc =
1

|c|

∑

i

∑

r

brci, (3)

Tc =
1

|c|

∑

i

∑

r

(brci − µc)(brci − µc)
⊤, (4)

with |c| the number of descriptors in cluster c and brci the

descriptors of image i belonging to cluster c.

For each image and each cluster, a signature Ti,c is com-

puted by aggregating the centered tensors of centered descrip-

tors:

Ti,c =
∑

r

(brci − µc)(brci − µc)
⊤ − Tc. (5)

Each Ti,c is flattened into a vector vi,c.

The VLAT signature vi for image i consists in the con-

catenation of vi,c for all clusters c:

vi = (vi,1 . . .vi,C) . (6)

The VLAT gives very good results in similarity search and

automatic indexing of images with linear metric, but leads

to large feature vectors. The size of the VLAT descriptor is

C ×D ×D, with C the number of clusters and D the size of

descriptors.

3. COMPACT VLAT

We propose to drastically reduce the size of VLAT features,

while keeping their discriminative power. Our method uses

the following scheme : first we preprocess the VLAT by per-

forming a normalization step. Then, we compute the Gram

matrix of normalized VLAT for some training set of images.

We perform a low rank approximation of the Gram matrix

and compute the set of projection vectors associated with the

generated subspace. The compact VLAT signatures are the

projections of normalized VLAT using the obtained projec-

tion vectors.

3.1. Normalization

First, we compute the set of VLAT signatures of the image

database. Then, we perform a two steps normalization. we

compute the power norm of vi to produce v′

i:

∀j, v′

i[j] = vi[j]
α, (7)

With α typically set to 0.5. Then, we normalize the vector v′

i

with the ℓ2-norm:

xi =
v′

i

‖v′

i‖
(8)

xi is the normalized VLAT signature. We use the perfor-

mance of normalized VLAT signatures for comparison with

performance of the compact VLAT signatures. Normaliza-

tion is necessary to obtain a Gram matrix with good properties

(unitary diagonal, well-conditioned, etc).

3.2. Low rank approximation

We compute the Gram matrix G of centered normalized

VLAT signatures:

Gi,j = (xi −mx)
⊤(xj −mx), (9)

with mx the mean of xi. Then, we compute the eigenvalues

and eigenvectors of the Gram matrix:

(λ1 . . . λl . . . λN ) = eigval(G), (10)

(u1 . . .ul . . .uN ) = eigvect(G), (11)



with λ1 ≥ λ2 ≥ · · · ≥ λN and ul the eigenvector associated

the eigenvalue λl. We compute a low rank approximation

of the Gram matrix. We denote by Lt the matrix with the t

largest eigenvalues on the diagonal:

Lt = diag(λ1 . . . λt), (12)

and we denote by Ut the matrix of the first t eigenvectors:

Ut = [u1 . . .ut] . (13)

We can then define Gt as an approximation of G:

Gt = UtLtU
⊤

t . (14)

Then, we compute the projectors of VLAT signatures in ap-

proximated subspace:

Pt = XUtL
−1/2
t , (15)

with X = [x1 −mx . . .xN −mx] is the matrix of centred

VLAT signatures. This method is analog to Kernel-PCA us-

ing a dot product Kernel.

3.3. Projection vectors

For each image, we compute the projection of VLAT signa-

ture in the approximated space:

yi = L
−1/2
t P⊤

t xi. (16)

yi contains an approximate and compressed version of xi.

This method keeps the most informative directions of VLAT

feature space.

Moreover, the normalization by L
−1/2
t produces axes of

equal variance in the projected subspace. Let us compute the

covariance matrix of projections Y = [y1 . . .yN ]:

YY⊤ = L
−1/2
t P⊤

t XX⊤PtL
−1/2
t (17)

= L−1

t U⊤

t GGUtL
−1

t . (18)

Let us denote by Ū the matrix of remaining eigenvectors such

that G = UtLtU
⊤

t + ŪL̄Ū⊤, then YY⊤ simplifies to:

YY⊤ = L−1

t U⊤

t (UtLtU
⊤

t + Ū⊤L̄Ū)2UtL
−1

t (19)

= L−1

t U⊤

t UtLtU
⊤

t UtLtU
⊤

t UtL
−1

t (20)

= I, (21)

since U⊤

t Ut = I and U⊤

t Ū = 0.

The size of yi is very small compared to the size of xi, as

it directly depends on t (varying from 1 to N). The final step

is a ℓ2-normalization of yi:

zi =
yi

‖yi‖
. (22)

Compact VLAT

t 16 32 64 128 256 512 1024

VLAT 29.6 38.6 46.1 49.2 48.7 44.1 22.2

Normalized VLAT 45.0 54.2 63.1 68.5 72.3 71.1 54.8

VLAD 35.7 43.5 49.0 51.2 50.3 47.1 21.6

Normalized VLAD 44.3 50.7 57.5 58.8 59.6 58.1 44.6

Table 1. Comparison of mAP(%) between normalized or not

normalized VLAD and VLAT descriptor.

Compact VLAT Standard

D. Size 16 32 64 128 256 512 1024 VLAT

64 45.0 54.2 63.1 68.5 72.3 71.1 54.8 66.4

256 44.6 53.6 62.4 68.2 74.6 74.2 56.7 71.8

1024 40.1 52.0 62.3 69.2 74.2 76.0 57.1 75.7

Table 2. Comparison of mAP(%) between compact VLAT

and VLAT descriptor.

4. EXPERIMENTS

We used the Holidays database to evaluate our compact VLAT

signatures and compare them with VLAT and VLAD signa-

tures. The Holidays dataset is a set of images drawn from

personal holidays photos, created to test methods of similarity

search. It contains 1491 images gathered in 500 subgroups,

each of them represents a distinct scene or object (Figure 1).

Images in this database are in high resolution color. The Hol-

idays dataset includes set of SIFT descriptors.

4.1. Image Similarity

We used the same evaluation setup as Jegou et al. [9]. For

all our experiments, we compute a set of codebook (64, 256,

1024 visual words) with all provided SIFT descriptors 1. For

each experiment, we evaluate the influence of parameter t

(number of selected eigenvalue and eigenvector) as a func-

tion of the size of the codebook. We compare our results with

those obtained with VLAD and Compact VLAD. We used our

method to build compact VLAD. Note that for all method and

experiments, we used the same codebooks.

First, we propose to examine the importance of normal-

ization of VLAT and VLAD signatures. For this, we eval-

uate the compact signatures without the normalization step

(section 3.1). We can see (Table 1) that the normalization

step is essential to keep the performance after the of low rank

approximation. Due to the large size of the VLAT descrip-

tors, it is more sensitive to normalization. Table 2 is the com-

parison between the compact VLAT and standard VLAT de-

scriptors. We see that, whatever the size of the codebook,

there are values of t for which the compact VLAT signatures

give better results than the standard VLAT signatures. When

keeping fewer eigenvalues, noise is introduced by the nor-

malization of the projection vectors in eq. 15. There is a opti-

mal level of approximation where information is better repre-

sented in the compact VLAT than in the standard VLAT. We

1http://www.vlat.fr/



Fig. 1. Images from Holidays dataset.

Compact VLAD Standard

D. Size 16 32 64 128 256 512 1024 VLAD

64 44.3 50.7 57.5 58.8 59.6 58.1 44.6 55.2

256 45.6 54.3 60.6 65.1 66.1 64.0 50.7 59.6

1024 45.8 55.4 62.8 67.8 70.8 69.8 54.1 63.9

Table 3. Comparison of mAP(%) between compact VLAD

and VLAD descriptor.
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Fig. 2. Search mAP as a function of the database size (Code-

book size : 64, t = 256).

see that the compact VLAD (Table 3) has the same behavior

as the VLAT compact, there is a optimal level of approxima-

tion which maximizes results. Comparing the results of the

Compact VLAT with those of standard VLAD and compact

VLAD, we can see that our method generally gives better re-

sults. With a codebook of size 1024, we have 12.1% of gain

compared to standard VLAD.

4.2. Large Scale - Similarity search

In this section, we want to test the robustness of our method

on large search sets. For our tests, we used the Holidays

database artificially enlarged by subsets of different sizes

(10k and 100k documents) from the Flickr10M database. We

can then see how searching in the Holidays database is dis-

rupted by the expansion of the database. Figure 2 shows the

evolution of the mean Average Precision against the size of

database, we see that our signatures have the same behavior

as the VLAD feature. Our compact VLAT signatures always

perform better than VLAD signatures. If we compare with

the results of state-of-the-art [3] (on different codebook), we

have a gain of about 11% mAP for 100k images.

5. CONCLUSION

In this paper, we proposed a compact image signature for

similarity search in large databases. Our method consists in

the projection of tensors based aggregation of local descrip-

tors on a low dimensional subspace. This subspace is ob-

tained by a low rank approximation of the Gram matrix on

a training set. We provided experiments on the well known

Holydays dataset showing that our approach gives very good

results while being several orders of magnitude more com-

pact than uncompressed signatures. Experiments on a larger

dataset (100k images) lead to promising results regarding the

scalability of the method.
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