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ABSTRACT

In this paper, we propose a system for interactive image retrieval in

dynamic databases, where images are regularly added or removed.

In order to handle this, we propose a method that tunes itself accord-

ing to user labels. The framework we propose is based on visual

dictionaries, with the specificity that the dictionaries are built online,

during retrieval sessions. In other words, each user has its own vi-

sual dictionary, as opposed to usual approaches where all users share

the same visual dictionary. In order to create theses dictionaries, we

propose a method based on kernel functions. This method iteratively

selects base kernels from a large base kernel pool, where each base

kernel is related to a low-level descriptor such as color or texture.

This learning process is performed in real time, and the classifica-

tion of the database is faster than usual techniques since only rele-

vant features for the current query are used. Experiments are carried

out on a generalist database, and show the ability of the method to

build effective kernels with few labels.

Index Terms— Image databases, Interactive systems, Machine

learning algorithms, Boosting

1. INTRODUCTION

During the last decade, many retrieval methods have been proposed

for interactive retrieval in multimedia database. In order to use these

methods with effectiveness, a tuning step is usually required. In the

case of static databases, this is easily handled. However, in the case

of dynamic databases, where images are regularly added, a steady

tuning of the retrieval method is necessary.

In this paper, we propose to focus on dynamic databases with re-

trieval methods which require minimal tuning, and in the ideal case

no tuning at all. In order to reach this goal, we propose to work with

kernel-based methods, a framework that has shown its effectiveness

for many tasks including multimedia retrieval. In this context, a

usual approach is to first extract low-level features and build a vi-

sual dictionary using for instance K-means, Gaussian Mixtures[1] or

reconstruction[2]. Visual dictionaries are then used to build a vector

for each image in the database, like histograms, bag of words, den-

sities, etc. Then a kernel function on these vectors is selected and

tuned to the current database. Once these steps done, retrieval ses-

sions can begin, usually using SVM for database classification and

active learning for interaction with users [3].

As we can see, these methods have two main offline steps : dic-

tionary/vectors building and kernel tuning. In this paper, we propose

to perform these two steps online, during the retrieval. The idea is

to use labels provided by the user to perform the tunings. A sim-

ple approach would be to run semi-supervised versions of dictionary

methods, but this is intractable from a computational point of view.

Instead, we propose to learn both the dictionary and the kernel in a

single step. More specifically, we propose to learn a linear combina-

tion of base kernel, where each base kernel is related to a low-level

feature or a codeword.

2. INTERACTIVE LEARNING

In this paper, we propose a method based on kernel functions, Sup-

port Vector Machines (SVM) and active learning to interact with the

user [4, 5]. A retrieval session is performed in the following way:

Initialization. A retrieval session is initialized from one image

brought by the user. The kernel function is used to compute the sim-

ilarity between this query image and all images in the database. The

images with the highest similarities are then presented to user. Note

that other initializations could be used, for instance with keywords.

If the user is not satisfied by this initial result, he labels images as

relevant or irrelevant.

Classification. The images the user labeled are used to train a SVM

classifier. This classifier is based on a kernel function, usually a

static kernel function, like a Gaussian with a L2 or a χ2 distance.

In this paper, we present a dynamic kernel function, that is learned

from the current user labels. Relevance of images in the database are

then evaluated using the hyperplane computed by the SVM trainer,

and images with the highest relevance are presented to the user.

Active learning. In the case where the user is not satisfied with

the current result, an active learner is called to select (unlabeled)

images the user should label. In the following experiments, we use

the method proposed in [3]. Once this labeling is performed, the

classification step is repeated, and so on.

3. PROPOSED METHOD

The method we proposed is based on Multiple Kernel Learning

(MKL), a strategy which has a great success these last years

[6, 7, 8]. The aim of our method is to find a linear combination

K =
∑

t=1 βtkt of base kernels kt from a pool K. More specif-

ically, we aim at finding a sparse combination (where most of βt

equal zero), within a very large base kernel pool. The motivation of

this choice is to be as generic as possible. Since we consider a very

large base kernel pool, we can build many different final kernels.

Furthermore, we consider “weak” base kernels, which focus on low-

level features with very few parameters. For instance, if each base

kernel is related to a visual codeword (a color, a keypoint, etc.), then

we are able to consider a very large set of final kernels, each of these

kernel possibilities being related to a different visual dictionary.

In the usual case where the base kernel pool is small, one has to

work on “strong” base kernels, which must be built to fit the current

database in order to be effective. When working on static databases

and with some prior knowledge, this problem can be solved with



Algorithm 1 Fast Iterative Selection.

Given: kernel K, minor kernel k, centering matrix H , target kernel

L.

Compute inner products:

a = tr(HKHK); b = tr(HkHk); c = tr(HKHk)
∆ = ab− c2

if |∆| < ǫ then return “no solution”

Compute weights which maximize AH
L (βKK + βkk):

wK = tr(HKHL); wk = tr(HkHL)

βK = bwK−cwk

∆
; βk = awk−cwK

∆
if |βK | < ǫ then return “no solution”

Compute weight β = βk

βK

if β < ǫ then return “no solution”

Compute alignment A = wK+βwk√
tr(HLHL)(a+2cβ+bβ2)

Return weight β and alignment A

cross-validation techniques. However, when working on dynamic

databases, where images regularly change, “strong” base kernels

must be re-tuned to keep the effectiveness of the system.

3.1. Kernel-Target Alignment

In order to find the linear combination, we use the Kernel-Target

Alignment :

AL(K) =
〈K,L〉F

||K||F ||L||F
(1)

where K is the n×n kernel matrix to evaluate, L is the n×n target

kernel matrix, 〈K,L〉F the Frobenius inner product, and ||K||F the

Frobenius norm.

A first target kernel is yy⊤, with yi ∈ {−1, 1} the label of

document i. This choice is relevant for balanced training sets, where

there is the same number of positive and negative labels. In other

cases, such a kernel target focuses on the largest class. In the case

of interactive retrieval, where the negative class is much larger than

the positive one, optimization algorithms using this target kernel will

learn more the negative class – the class the user is not interested in.

In order to deal with the unbalance of training data, one can use

the target kernel ỹỹ⊤, with ỹi = 1/n+ if yi > 0 and ỹi = −1/n−

if yi < 0, where n+ and n− are the sizes of the positive and negative

classes, respectively. An even more interesting approach we use in

this paper is the centered alignment [9]:

AH
L (K) =

〈HKH,HLH〉F
||HKH||F ||HLH||F

(2)

with Lij = 1 if yi = yj , 0 otherwise, and H = I − 1
n
11⊤,

with I the identity matrix of size n, and 1 the column vector with

all elements 1. Centered alignment deals with unbalanced data in

the same way than target kernel ỹỹ⊤, but is also invariant to scale

(AH
L (λK) = AH

L (K)) and shift (AH
L (K + λ11⊤) = AH

L (K)).

3.2. Fast Iterative Selection

In order to deal with computational constraints of interactive re-

trieval, we propose a fast algorithm to find a good linear combination

of base kernels. For each feedback step in the retrieval process, we

start with kernel K0 = 0, and then select the base kernel k⋆
1 with

weight β⋆
1 = 1 that maximizes centered kernel alignment with cur-

rent user labels. Then, we iteratively select and add new base kernels

until no solution is found:

K⋆
t = Kt−1 + β⋆

t k
⋆
t (3)

where

β⋆
t , k

⋆
t = argmax

β>0,k∈K
AH

L (Kt−1 + βk) (4)

The optimization problem of Eq. (4) can be solved using linear al-

gebra (cf. [9] for proof). Implementation details are presented in

Algorithm 1.

This method can be seen as an approximation of boosting-based

kernel learning methods such as [10]. The approximation we made

in these processes is the removal of the training of base kernels (weak

learner in boosting framework), because this is the most computa-

tional part of the learning process. This approximation changes the

boosting assumption which states that, for any iteration of selection,

it exists a weak learner (base kernel in our case) that enhances the

optimization criterion. In our case, this assumption holds if the base

kernel pool is infinite – which is obviously impossible in real appli-

cations. However, we can reach good performances if the pool is

well made.

3.3. Base kernels

We propose to build base kernels that compare two images based on

a low-level descriptor like color or texture.

Before any retrieval session, we extract and quantize the descrip-

tors within an image using K-Means with Euclidean distance d. Let

us note that quantization is performed independently on each image,

as a trick to reduce the number of descriptors in each image. Then,

we build for each image i a set Pi of features pri = (fri, hri, θri),
where fri is the center of cluster r computed by K-Means, hri the

number of vectors in cluster r, and θri the distance of fri to the clos-

est cluster center r′ 6= r. These image feature sets Pi = {pri}i are

computed off-line.

Then, for each on-line retrieval session, we first build a new fea-

ture pool P̂ = {p ∈ Pi|yi > 0} using features contained in positive

labelled images. Then, we define the corresponding base kernel pool

K = {kp̂|p̂ ∈ P̂}. With such a definition, there is a base kernel kp̂
for each descriptor p̂, and a feature pool for each base kernel pool,

and vise versa. In the following, we mix the two concepts.

Base kernels are defined as:

kp̂(Pi, Pj) = δχ1(ep̂(Pi), ep̂(Pj)) (5)

with

δχ1(x, y) =

{

1− |x−y|
x+y

if x > 0 and y > 0

0 otherwise
(6)

ep̂(Pi) =

{

hr⋆i if d(f̂ , fr⋆i) ≤ θ̂
0 otherwise

(7)

r⋆ = argmin
r

d(f̂ , fri) (8)

p̂ = (f̂ , ĥ, θ̂) (9)

Each of these base kernels can be seen as a triangle kernel with χ1

distance computed on a single bin of a histogram. We first compute

the descriptor fr⋆i of image Pi the closest to the base kernel de-

scriptor f̂ (Eq. (8)). Then, if this descriptor is in the hypersphere of

center f̂ and radius θ̂, we return the number of pixels hr⋆i in image

Pi (Eq. (7)). The same computation is performed on image Pj , and

finally numbers of pixels in each image are compared (Eq. (6)).
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Fig. 1. Images from VOC 2007 database.

4. EXPERIMENTS

We carried out experiments on VOC 2007 database which contains

images belonging to 20 categories. It is split into 5,011 development

images (train+val) and 4,952 test images. Images from this database

are shown in Fig. 1. Let us note that we do not follow any of the

PASCAL evaluation protocols since we are interested in interactive

image retrieval.

4.1. Evaluation Protocol

We set up an evaluation protocol to estimate the average performance

one can expect when starting an interactive retrieval session with a

random image. This is performed by the simulation of retrieval ses-

sions for each category, where the user labels the images selected by

the active learning technique. A Precision/Recall curve is computed

at each feedback step, and then averaged over all retrieval sessions

for the same category. Then, the average quality of the ranking is

computed with the usual criterion of Average Precision, which is

used for example in TRECVID evaluation campaign. At last, in or-

der to have a global quality measure of our system, we compute the

Mean Average Precision (MAP) on all categories. Labelling is only

performed on the development set, and performance is computed on

the test set.

4.2. Results

Average Precision per category are displayed in Fig. 2 for 51 labels,

and Mean Average Precision according to feedback steps in Fig. 3.

In all the following experiments, we use a SVM classifier for the

classification of the database, and the active learning method is the

one of [3].

Baseline. We first show baseline results using a usual learning strat-

egy with static dictionaries that is effective and robust to tuning. In

order to find such a method, we tested many techniques proposed

Category rgSIFT/VLAD Prop./1x1 Prop./1x1+1x3

aeroplane 25,6 24,8 35,3

bicycle 10,8 11,9 13,6

bird 12,1 11,1 12,5

boat 16,8 23,5 25,9

bottle 6,3 6,3 8,2

bus 9,0 9,6 15,2

car 28,8 34,3 39,6

cat 14,8 13,6 15,1

chair 24,7 15,5 19,0

cow 3,6 5,9 5,7

diningtable 12,6 9,9 14,6

dog 11,4 13,5 13,8

horse 20,7 25,0 29,2

motorbike 11,0 20,9 23,6

person 57,6 58,5 61,4

pottedplant 7,6 8,2 10,5

sheep 4,1 5,7 4,7

sofa 8,3 8,0 10,0

train 15,9 21,7 31,2

tvmonitor 9,3 12,5 17,4

all 15,6 17,0 20,3

Fig. 2. Average Precision(%) on the test set of VOC2007 database,

for each category. Initialization with 1 image, 10 feedbacks, 5 labels

per feedback.

in the literature. Most of them use large dictionaries of descriptors

(more than 1000) and then compute a vector representation of im-

ages using the dictionaries. For instance, Bags of Words computes

a dictionary of 4000 keypoint descriptors, and then creates an his-

togram of visual words occurrences for each image. Our experi-

ments showed that this method leads to very unstable results in an

interactive retrieval context. For instance, running another time the

dictionary computation can lead to very different results, even with

advanced K-Means algorithms. Let us note that is specific to the few

number of labels (about 50) we have in interactive retrieval context,

and this high instability does not appear with very large training sets.

With more recent methods, such as the ones based on locally linear

coding [2], results are better but still unstable.

Among all methods we tested, we found an effective one in our

interactive context which is based on small visual dictionaries. This

method is called Vector of Locally Aggregated Descriptors (VLAD)

[11], and is derived from the method based on bag of features and

Fisher Kernels proposed in [1]. VLAD approach aggregates key-

point descriptors into a single vector in a more efficient way than

bag of features. We integrated this aggregation scheme using key-

points detected with Harris-Laplace and rgSIFT descriptors. Note

that we tested the same descriptors as the ones experimented in [12],

and rgSIFT turned to be the most effective. We tested several dic-

tionary sizes (from 8 to 64), and it appears that a dictionary of 18

visual words provides the best results. Let us note that we experi-

mented several indexing and learning techniques from the literature,

and select this method for its robustness to tuning. For instance, with

the worst dictionary size, we get a MAP of 14.7%, which is close to

the best result (15.6%). Furthermore, since we need few codewords,

the computation of the dictionary is always good, on the contrary

to other dictionary base techniques where two K-Means can lead to

two different dictionaries with very different performances. In other

words, this method is a good candidate for interactive retrieval in dy-

namic database since performances seem to be quite stable, whatever
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the changes made in the database.

About computational time, with an iCore7 processor and no

shared cache between retrieval sessions, training requires less than

1ms, and classification of 5,000 images from 30ms (8 codewords) to

200ms (64 codewords).

Proposed method. We also show results with the proposed method

using global descriptors (denoted as “Proposed/1x1” in Fig. 2 and 3).

We used L⋆a⋆b⋆ colors (lab) and Quaternionic Wavelets coefficients

(qw) for texture. For each image i, we extract lab and qw descriptors

for each pixel, and then use K-Means to reduce their number to get

sets Pi of R descriptors. We tune the value of R as a compromise

between performance and computational time, knowing that fewer

descriptors lead to lower performances (16.4% with R = 32 lab and

qw), and more descriptors lead to higher performances (18.3% with

R = 256 lab and qw). Using our method with these features, we

get a MAP of 17.0% with 51 labels. This result is comparable to the

baseline method (VLAD), and thus shows the ability of the method

to learn effective kernels only using a few labels.

About computational time, with an iCore7 processor and no

shared cache between retrieval sessions, training requires about

250ms, and classification of 5,000 images about 25ms. When com-

pared to the baseline method, the training is much slower, but does

not depends on the size of the database. However, the classification

of images is always faster, which means that the method we propose

is more interesting for large databases.

We also show results with the proposed method using fea-

tures extracted in 3 horizontal parts of images (denoted as “Pro-

posed/1x1+1x3” in Fig. 2 and 3). In that case, each part of images

is used to build a different feature/base kernel pool. We extracted

21 lab and 21 qw descriptors in each part of image, and then get 8

different feature/base kernel pool (64 lab and 64 qw in whole image,

21 lab and 21 qw in upper part, 21 lab and 21 qw in middle part,

and 21 lab and 21 qw in bottom part). With 25 positive labels (the

usual case at the end of retrieval sessions), base kernel pools with

64 descriptors per image have 1600 elements, and base kernel pools

with 21 descriptors per image have 525 elements. Furthermore, at

the end of retrieval sessions, the method used to select from 27 to

38 base kernels from each base kernel pool. With this setup, we get

a MAP of 20.3%, a good improvement that shows the ability of the

method to benefit from more features.

5. CONCLUSION

In this paper, we introduced a method to learn a linear combination

of base kernels in an effective and efficient way. The main advantage

of this method is its high robustness to tuning, and thus its ability to

handle interactive retrieval in dynamic databases. This method can

be deployed and easily maintained on real image databases since no

steady tuning is required to fit the current needs of users. Moreover,

the classification of images is faster than comparable methods, since

only relevant feature for the current labels are used for classification.
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