Statistical Learning for Resting-State fMRI: Successes and Challenges
Abstract
In the absence of external stimuli, fluctuations in cerebral activity can be used to reveal intrinsic structures. Well-conditioned probabilistic models of this so-called resting-state activity are needed to support neuroscientific hypotheses. Exploring two specific descriptions of resting-state fMRI, namely spatial analysis and connectivity graphs, we discuss the progress brought by statistical learning techniques, but also the neuroscientific picture that they paint, and possible modeling pitfalls.
Origin : Files produced by the author(s)
Loading...