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By using Nevanlinna theory, we prove some normality criteria for a family of meromorphic functions under a condition on differential polynomials generated by the members of the family.

Introduction

Let D be a domain in the complex plane C and F be a family of meromorphic functions in D. The family F is said to be normal in D, in the sense of Montel, if for any sequence {f v } ⊂ F, there exists a subsequence {f v i } such that {f v i } converges spherically locally uniformly in D, to a meromorphic function or ∞.

In 1989, Schwick proved: Theorem A ( [START_REF] Schwick | Normal criteria for families of meromorphic functions[END_REF], Theorem 3.1). Let k, n be positive integers such that n ≥ k + 3. Let F be a family of meromorphic functions in a complex domain D such that for every f ∈ F, (f n ) (k) (z) = 1 for all z ∈ D. Then F is normal on D. Theorem B ( [START_REF] Schwick | Normal criteria for families of meromorphic functions[END_REF], Theorem 3.2). Let k, n be positive integers such that n ≥ k + 1. Let F be a family of entire functions in a complex domain D such that for every f ∈ F, (f n ) (k) (z) = 1 for all z ∈ D. Then F is normal on D.

The following normality criterion was established by Pang and Zalcman [START_REF] Pang | On theorems of Hayman and Clunie[END_REF] in 1999: Theorem C ( [START_REF] Pang | On theorems of Hayman and Clunie[END_REF]). Let n and k be natural numbers and F be a family of holomorphic functions in a domain D all of whose zeros have multiplicity at least k. Assume that f n f (k) -1 is non-vanishing for each f ∈ F. Then F is normal in D.

The main purpose of this paper is to establish some normality criteria for the case of more general differential polynomials. Our main results are as follows:

Theorem 1. Take q (q ≥ 1) distinct nonzero complex values a 1 , . . . , a q , and q positive integers (or +∞) ℓ 1 , . . . ℓ q . Let n be a nonnegative integer, and let n 1 , . . . , n k , t 1 , . . . , t k be positive integers (k ≥ 1). Let F be a family of meromorphic functions in a complex domain D such that for every f ∈ F and for every m ∈ {1, . . . , q}, all zeros of

f n (f n 1 ) (t 1 ) • • • (f n k ) (t k )
a m have multiplicity at least ℓ m . Assume that a) n j ≥ t j for all 1 j k, and ℓ i ≥ 2 for all 1 i q, b)

q i=1 1 ℓ i < qn-2+ k j=1 q(n j -t j ) n+ k j=1 (n j +t j ) .
Then F is a normal family.

Take q = 1 and ℓ 1 = +∞, we get the following corollary of Theorem 1:

Corollary 2. Let a be a nonzero complex value, let n be a nonnegative integer, and n 1 , . . . , n k , t 1 , . . . , t k be positive integers. Let F be a family of meromorphic functions in a complex domain D such that for every f ∈ F,

f n (f n 1 ) (t 1 ) • • • (f n k ) (t k ) -a is nowhere vanishing on D. Assume that a) n j ≥ t j for all 1 j k, b) n + k j=1 n j ≥ 3 + k j=1 t j . Then F is normal on D.
We remark that in the case where n ≥ 3, condition a) in the above corollary implies condition b); and in the case where n = 0 and k = 1, Corollary 2 gives Theorem A.

For the case of entire functions, we shall prove the following result:

Theorem 3. Take q (q ≥ 1) distinct nonzero complex values a 1 , . . . , a q , and q positive integers (or +∞) ℓ 1 , . . . ℓ q . Let n be a nonnegative integer, and let n 1 , . . . , n k , t 1 , . . . , t k be positive integers (k ≥ 1). Let F be a family of holomorphic functions in a complex domain D such that for every f ∈ F and for every m ∈ {1, . . . , q}, all zeros of

f n (f n 1 ) (t 1 ) • • • (f n k ) (t k ) -a m have multiplicity at least ℓ m .
Assume that a) n j ≥ t j for all 1 j k, and ℓ i ≥ 2 for all 1 i q, b)

q i=1 1 ℓ i < qn-1+ k j=1 q(n j -t j ) n+ k j=1 n j .
Then F is a normal family.

Take q = 1 and ℓ 1 = +∞, Theorem 3 gives the following generalization of Theorem B, except for the case n = k + 1. So for the latter case, we add a new proof of Theorem B in the Appendix which is slightly simpler than the original one.

Corollary 4. Let a be a nonzero complex value, let n be a nonnegative integer, and n 1 , . . . , n k , t 1 , . . . , t k be positive integers. Let F be a family of holomorphic functions in a complex domain D such that for every f ∈ F,

f n (f n 1 ) (t 1 ) • • • (f n k ) (t k ) -a is nowhere vanishing on D. Assume that a) n j ≥ t j for all 1 j k, b) n + k j=1 n j ≥ 2 + k j=1 t j . Then F is normal on D.
In the case where n ≥ 2, condition a) in the above corollary implies condition b).

Remark 5. Our above results remain valid if the monomial

f n (f n 1 ) (t 1 ) • • • (f n k ) (t k )
is replaced by the following polynomial

f n (f n 1 ) (t 1 ) • • • (f n k ) (t k ) + I c I f n I (f n 1I ) (t 1I ) • • • (f n kI ) (t kI ) ,
where c I is a holomorphic function on D, and n I , n jI , t jI are nonnegative integers satisfying

α I := j=1 t jI n I + k j=1 n jI < α := j=1 t j n + k j=1 n j .
2 Some notations and results of Nevanlinna theory

Let ν be a divisor on C. The counting function of ν is defined by

N (r, ν) = r 1 n(t) t dt (r > 1), where n(t) = |z|≤t ν(z).
For a meromorphic function f on C with f ≡ ∞, denote by ν f the pole divisor of f, and the divisor ν f is defined by

ν f (z) := min{ν f (z), 1}. Set N (r, f ) := N (r, ν f ) and N (r, f ) := N (r, ν f ).
The proximity function of f is defined by

m(r, f ) = 1 2π 2π 0 log + f (re iθ ) dθ,
where log + x = max{log x, 0} for x ≥ 0. The characteristic function of f is defined by

T (r, f ) := m(r, f ) + N (r, f ).
We state the Lemma on Logarithmic Derivative, the First and Second Main Theorems of Nevanlinna theory.

Lemma on Logarithmic Derivative. Let f be a nonconstant meromorphic function on C, and let k be a positive integer. Then the equality

m(r, f (k) f ) = o(T (r, f ))
holds for all r ∈ [1, ∞) excluding a set of finite Lebesgue measure. First Main Theorem. Let f be a meromorphic functions on C and a be a complex number. Then

T (r, 1 f -a ) = T (r, f ) + O(1).
Second Main Theorem. Let f be a nonconstant meromorphic function on C. Let a 1 , . . . , a q be q distinct values in C. Then

(q -1)T (r, f ) N (r, f ) + q i=1 N (r, 1 f -a i ) + o(T (r, f )),
for all r ∈ [1, ∞) excluding a set of finite Lebesgue measure.

Proof of our results

To prove our results, we need the following lemmas:

Lemma 6 (Zalcman's Lemma, see [START_REF] Zalcman | Normal families: New perspective[END_REF]). Let F be a family of meromorphic functions defined in the unit disc △. Then if F is not normal at a point z 0 ∈ △, there exist, for each real number α satisfying -1

< α < 1, 1) a real number r, 0 < r < 1, 2) points z n , |z n | < r, z n → z 0 , 3) positive numbers ρ n , ρ n → 0 + , 4) functions f n , f n ∈ F such that g n (ξ) = f n (z n + ρ n ξ) ρ α n → g(ξ)
spherically uniformly on compact subsets of C, where g(ξ) is a non-constant meromorphic function and g # (ξ) g # (0) = 1. Moreover, the order of g is not greater than 2. Here, as usual, g # (z) = |g ′ (z)| 1+|g(z)| 2 is the spherical derivative.

Lemma 7 (see [START_REF] Clunie | The spherical derivative of integral and meromorphic functions[END_REF]). Let g be a entire function and M is a positive constant. If g # (ξ) M for all ξ ∈ C, then g has order at most one.

Remark 8. In Lemma 6, if F is a family of holomorphic functions, then by Hurwitz theorem, g is a holomorphic function. Therefore, by Lemma 7, the order of g is not greater than 1.

We consider a nonconstant meromorphic function g in the complex plane C, and its first p derivatives. A differential polynomial P of g is defined by

P (z) := n i=1 α i (z) p j=0 (g (j) (z)) S ij ,
where S ij (1 i n, 0 j p) are nonnegative integers, and α i ≡ 0 (1 i n) are small (with respect to g) meromorphic functions. Set d(P ) := min

1 i n p j=0
S ij and θ(P ) := max

1 i n p j=0 jS ij .
In 2002, J. Hinchliffe [START_REF] Hinchliffe | On a result of Chuang related to Hayman's Alternative[END_REF] generalized theorems of Hayman [START_REF] Hayman | Meromorphic Functions[END_REF] and Chuang [START_REF] Chuang | On differential polynomials[END_REF] and obtained the following result: Proposition 9. Let g be a transcendental meromorphic function, let P(z) be a non-constant differential polynomial in g with d(P ) ≥ 2. Then

T (r, g) θ(P ) + 1 d(P ) -1 N (r, 1 g ) + 1 d(P ) -1 N (r, 1 P -1 ) + o(T (r, g)),
for all r ∈ [1, +∞) excluding a set of finite Lebesgues measure.

In order to prove our results, we now give the following generalization of the above result:

Lemma 10. Let a 1 , . . . , a q be distinct nonzero complex numbers. Let g be a nonconstant meromorphic function, let P(z) be a nonconstant differential polynomial in g with d(P ) ≥ 2. Then

T (r, g) qθ(P ) + 1 qd(P ) -1 N (r, 1 g ) + 1 qd(P ) -1 q j=1 N (r, 1 P -a j ) + o(T (r, g)),
for all r ∈ [1, +∞) excluding a set of finite Lebesgues measure. Moreover, in the case where g is a entire function, we have

T (r, g) qθ(P ) + 1 qd(P ) N (r, 1 g ) + 1 qd(P ) q j=1 N (r, 1 P -a j ) + o(T (r, g)),
for all r ∈ [1, +∞) excluding a set of finite Lebesgue measure.

Proof. For any

z such that |g(z)| 1, since p j=0 S ij ≥ d(P ) (1 i n), we have 1 |g(z)| d(P ) = 1 |P (z)| • |P (z)| |g(z)| d(P ) 1 |P (z)| • n i=1 |α i (z)| p j=0 g (j) (z) g(z) S ij .
This implies that for all z ∈ C,

log + 1 |g(z)| d(P ) log + 1 |P (z)| • n i=1 |α i (z)| p j=0 g (j) (z) g(z) S ij
.

Therefore, by the Lemma on Logarithmic Derivative and by the First Main Theorem, we have

d(P )m(r, 1 g ) m(r, 1 P ) + o(T (r, g)) = T (r, 1 P ) -N (r, 1 P ) + o(T (r, g)) = T (r, P ) -N (r, 1 P ) + o(T (r, g)).
On the other hand, by the Second Main Theorem (used with the q+1 different values 0, a 1 , ..., a q ) we have qT (r, P ) N (r, P ) + N (r,

P ) + q j=1 N (r, 1 P -a j ) + o(T (r, g)), 1 
Hence,

d(P )m(r, 1 g ) 1 q N (r, P ) + N (r, 1 P ) + q j=1 N (r, 1 P -a j ) -N (r, 1 P ) + o(T (r, g)).
Therefore, by the First Main Theorem, we have

d(P )T (r, g) = d(P )T (r, 1 g ) + O(1) = d(P )m(r, 1 g ) + d(P )N (r, 1 g ) + O(1) 1 q N (r, P ) + N (r, 1 P ) + q j=1 N (r, 1 P -a j ) + d(P )N (r, 1 g ) -N (r, 1 P ) + o(T (r, g)). (3.1) 
We have

1 g d(P ) = 1 P (z) n i=1 α i g ( p j=0 S ij )-d(P ) p j=0 ( g (j) g ) S ij .
(note that ( p j=0 S ij )d(P ) ≥ 0). Therefore,

d(P )ν 1 g ν 1 P + max 1 i n {ν α i + p j=0 jS ij ν 1 g } ν 1 P + n i=1 ν α i + θ(P )ν 1 g
, where ν φ is the pole divisor of the meromorphic φ and ν φ := min{ν φ , 1}. This implies,

d(P )ν 1 g -ν 1 P + 1 q ν 1 P (θ(P ) + 1 q )ν 1 g + n i=1 ν α i , (note that for any z 0 , if ν 1 g (z 0 ) = 0 then d(P )ν 1 g (z 0 ) -ν 1 P (z 0 ) + 1 q ν 1 P (z 0 ) 0). Then, d(P )N (r, 1 g ) -N (r, 1 P ) + 1 q N (r, 1 P ) (θ(P ) + 1 q )N (r, 1 g ) + n i=1 N (r, α i ) = (θ(P ) + 1 q )N (r, 1 g ) + o(T (r, g)).
Combining with (3.1), we have d(P )T (r, g) 1 q N (r, P ) + q j=1 N (r, 1 Pa j ) + (θ(P ) + 1 q )N (r, 1 g ) + o(T (r, g)).

On the other hand, by the definition of the differential polynomial P, Pole(P ) ⊂ ∪ n i=1 Pole(α i )∪ Pole(g). Hence (since N (r, α i ) ≤ T (r, α i ) = o(T (r, g) for i = 1, ..., n), we get

d(P )T (r, g) 1 q N (r, g) + q j=1 N (r, 1 P -a j ) + (θ(P ) + 1 q )N (r, 1 g ) + o(T (r, g)) 1 q T (r, g) + q j=1 N (r, 1 P -a j ) + (θ(P ) + 1 q )N (r, 1 g ) + o(T (r, g)).
(3.2) Therefore,

T (r, g) qθ(P ) + 1 qd(P ) -1 N (r, 1 g ) + 1 qd(P ) -1 q j=1 N (r, 1 P -a j ) + o(T (r, g)).
In the case where g is an entire function, the first inequality in (3.2) becomes

d(P )T (r, g) 1 q q j=1 N (r, 1 P -a j ) + (θ(P ) + 1 q )N (r, 1 g ) + o(T (r, g)).
This implies that

T (r, g) θ(P )q + 1 qd(P ) )N (r, 1 g ) + 1 qd(P ) q j=1 N (r, 1 P -a j ) + o(T (r, g)).
We have completed the proof of Lemma 10.

Proof of Theorem 1. Without loss the generality, we may asssume that D is the unit disc. Suppose that F is not normal at z 0 ∈ D. By Lemma 6, for α =

k j=1 t j n+ k j=1 n j there exist 1) a real number r, 0 < r < 1, 2) points z v , |z v | < r, z v → z 0 , 3) positive numbers ρ v , ρ v → 0 + , 4) functions f v , f v ∈ F such that g v (ξ) = f v (z v + ρ v ξ) ρ α v → g(ξ) (3.3)
spherically uniformly on compact subsets of C, where g(ξ) is a non-constant meromorphic function and g # (ξ) g # (0) = 1.

On the other hand,

g n j v (ξ) (t j ) = ( f v (z v + ρ v ξ) ρ α v ) n j (t j ) = 1 ρ n j α-t j v (f n j v ) (t j ) (z v + ρ v ξ).
On the other hand, we can write (g n j ) (t j ) = c m 0 ,m 1 ,...,mt j g m 0 (g ′ ) m 1 . . . (g (t j ) ) mt j , c m 0 ,m 1 ,...,mt j are constants, and m 0 , m 1 , . . . , m t j are nonnegative integers such that m 0 + • • • + m t j = n j , t j j=1 jm j = t j . Thus, by an easy computation, we get that d(P ) = n + k j=1 n j , θ(P ) = k j=1 t j . Now, we apply Lemma 10 for the differential polynomial

P = g(ξ) n (g n 1 (ξ)) (t 1 ) • • • (g n k (ξ)) (t k ) .
By Lemma 10, we have (note that, by condition b) of Theorem 1, n

+ k j=1 n j ≥ 2) T (r, g) q k j=1 t j + 1 qn + q k j=1 n j -1 N (r, 1 g ) + 1 qn + q k j=1 n j -1 q m=1 N (r, 1 P -a m ) + o(T (r, g)). (3.5)
For any m ∈ {1, . . . , q}, we have, by the First Main Theorem,

N (r, 1 P -a m ) = N (r, 1 g n (g n 1 ) (t 1 ) • • • (g n k ) (t k ) -a m ) 1 ℓ m N (r, 1 g n (g n 1 ) (t 1 ) • • • (g n k ) (t k ) -a m ) 1 ℓ m T (r, g n (g n 1 ) (t 1 ) • • • (g n k ) (t k ) ) + O(1) = 1 ℓ m m(r, g n (g n 1 ) (t 1 ) • • • (g n k ) (t k ) ) + 1 ℓ m N (r, g n (g n 1 ) (t 1 ) • • • (g n k ) (t k ) ) + O(1). (3.6) 
By the Lemma on Logarithmic Derivative and by the First Main Theorem,

m(r,g n (g n 1 ) (t 1 ) • • • (g n k ) (t k ) ) + N (r, g n (g n 1 ) (t 1 ) • • • (g n k ) (t k ) ) m(r, g n (g n 1 ) (t 1 ) • • • (g n k ) (t k ) g n g n 1 • • • g n k ) + m(r, g n g n 1 • • • g n k ) + N (r, g n (g n 1 ) (t 1 ) • • • (g n k ) (t k ) ) (n + k j=1 n j )m(r, g) + N (r, g n (g n 1 ) (t 1 ) • • • (g n k ) (t k ) ) + o(T (r, g)) = (n + k j=1 n j )m(r, g) + (n + k j=1 n j )N (r, g) + ( k j=1 t j )N (r, g) + o(T (r, g)) (n + k j=1 n j )T (r, g) + ( k j=1 t j )N (r, g) + o(T (r, g)). (3.7) 
Combining with (3.6), for all m ∈ {1, . . . , q} we have

N (r, 1 P -a m ) 1 ℓ m (n + k j=1 n j )T (r, g) + 1 ℓ m ( k j=1 t j )N (r, g) + o(T (r, g)) ≤ 1 ℓ m (n + k j=1 n j + k j=1 t j )T (r, g) + o(T (r, g)). (3.8) 
Therefore, by (3.5) and by the First Main Theorem, we have

(qn + q k j=1 n j -1)T (r, g) (q k j=1 t j + 1)N (r, 1 g ) + q m=1 N (r, 1 P -a m ) + o(T (r, g)) (q k j=1 t j + 1)T (r, g) + (n + k j=1 n j + k j=1 t j )( q m=1 1 ℓ m )T (r, g) + o(T (r, g).
This implies that

qn + k j=1 q(n j -t j ) -2 n + k j=1 (n j + t j ) T (r, g) q m=1 1 ℓ m T (r, g) + o(T (r, g)).
Combining with assumption b) we get that g is constant. This is a contradiction. Hence F is a normal family. We have completed the proof of Theorem 1. ✷

We can obtain Theorem 3 by an argument similar to the the proof of Theorem 1: We first remark that although condition b) of Theorem 3 is different from condition b) of Theorem 1, whereever it has been used in the proof of Theorem 1 before equation (3.5), the condition b) of Theorem 3 still allows the same conclusion. And from equation (3.5) on we modify as follows : Since F is a family of holomorphic functions and by Remark 8, g is an entire functions. So, similarly to (3.5), by Lemma 10, we have

T (r, g) q k j=1 t j + 1 qn + q k j=1 n j N (r, 1 g ) + 1 q(n + k j=1 n j ) q m=1 N (r, 1 P -a m ) + o(T (r, g)) q k j=1 t j + 1 qn + q k j=1 n j T (r, g) + 1 q(n + k j=1 n j ) q m=1 N (r, 1 P -a m
) + o(T (r, g)).

(3.9)

Since g is a holomorphic function, N (r, g) = 0. Therefore, by (3.6) and (3.7) (which remain unchanged), we have

N (r, 1 P -a m ) 1 ℓ m (n + k j=1 n j )T (r, g) + o(T (r, g)).
(3.10) By (3.9), (3.10), we have

qn + k j=1 q(n j -t j ) -1 n + k j=1 n j T (r, g) q m=1
1 ℓ m T (r, g) + o(T (r, g)).

Combining with assumption b) of Theorem 3, we get that g is constant. This is a contradiction. We have completed the proof of Theorem 3. ✷

In connection with Remark 5, we note that the proofs of Theorem 1 and Theorem 3 remain valid for the case where the monomial

f n (f n 1 ) (t 1 ) • • • (f n k ) (t k ) is replaced by the following polynomial f n (f n 1 ) (t 1 ) • • • (f n k ) (t k ) + I c I f n I (f n 1I ) (t 1I ) • • • (f n kI ) (t kI ) ,
where c I is a holomorphic function on D, and n I , n jI , t jI are nonnegative integers satisfying

α I := j=1 t jI n I + k j=1 n jI < α := j=1 t j n + k j=1 n j .
In fact, since α I < α and by (4.1), we get

g I v (ξ) := f v (z v + ρ v ξ) ρ α I v = ρ α-α I v g v (ξ) → 0,
spherically uniformly on compact subsets of C. Therefore, similarly to (3.4)

c I (z v + ρ v ξ)f n I v (z v + ρ v ξ)(f n 1I v ) (t 1I ) (z v + ρ v ξ) • • • (f n kI v ) (t kI ) (z v + ρ v ξ) = c I (z v + ρ v ξ)g I n I v (ξ)(g n 1I v (ξ)) (t 1I ) . . . (g I n Ik v (ξ)) (t kI ) → 0,
spherically uniformly on compact subsets of C. This implies that

f n v (z v + ρ v ξ)(f n 1 v ) (t 1 ) (z v + ρ v ξ) • • • (f n k v ) (t k ) (z v + ρ v ξ) + I c I (z v + ρ v ξ)f n I v (z v + ρ v ξ)(f n 1I v ) (t 1I ) (z v + ρ v ξ) • • • (f n kI v ) (t kI ) (z v + ρ v ξ) = g n v (ξ)(g n 1 v (ξ)) (t 1 ) . . . (g n k v (ξ)) (t k ) + I c I (z v + ρ v ξ)g I n I v (ξ)(g I n 1I v (ξ)) (t 1I ) . . . (g I n Ik v (ξ)) (t kI ) → g n (ξ)(g n 1 (ξ)) (t 1 ) . . . (g n k (ξ)) (t k ) . (3.11) 
spherically uniformly on compact subsets of C.

We use again the proofs of Theorem 1 and Theorem 3 for the general case above after changing (3.4) by (3.11). ✷

Appendix

Using our methods above, we give a slightly simpler proof of the case of Theorem B above which did not follow from our Corollary 4:

Theorem 11 ([6], Theorem 3.2, case n = k + 1). Let k be a positive integer and a be a nonzero constant. Let F be a family of entire functions in a complex domain D such that for every f ∈ F, (f k+1 ) (k) (z) = a for all z ∈ D.

Then F is normal on D.

In order to prove the above theorem we need the following lemma:

Lemma 12 ( [START_REF] Hennekemper | Über die Werteverteilung von (f k+1 ) (k)[END_REF]). Let g be a transcendental holomorphic function on the complex plane C, and k be a positive integer. Then (g k+1 ) (k) assumes every nonzero value infinitely often.

Proof of Theorem 11. Without loss the generality, we may assume that D is the unit disc. Suppose that F is not normal at z 0 ∈ D. Then, by Lemma 6, for α = k k+1 there exist 1) a real number r, 0 < r < 1, 2) points z v , |z v | < r, z v → z 0 , 3) positive numbers ρ v , ρ v → 0 + , 4) functions f v , f v ∈ F such that

g v (ξ) = f v (z v + ρ v ξ) ρ α v → g(ξ) (4.1)
spherically uniformly on compact subsets of C, where g(ξ) is a non-constant holomorphic function and g # (ξ) g # (0) = 1. Therefore

(f k+1 v ) (k) (z v + ρ v ξ) = ( f v (z v + ρ v ξ) ρ α v ) k+1 (k) = g k+1 v (ξ) (k) → (g k+1 (ξ)) (k)
spherically uniformly on compact subsets of C. By Hurwitz's theorem either (g k+1 ) (k) ≡ a, either (g k+1 ) (k) = a. On the other hand, it is easy to see that there exists z 0 such that (g k+1 ) (k) (z 0 ) = a (the case where g is a nonconstant polynomial is trivial and the case where g is transcendental follows from Lemma 12). Hence, (g k+1 ) (k) ≡ a. Therefore g has no zero point. Hence, by Lemma 7, g(ξ) = e cξ+d , c = 0. Then a ≡ (g k+1 ) (k) (ξ) ≡ ((k + 1)c) k e (k+1) (cξ+d) , which is impossible. ✷
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Therefore, by the definition of α and by (4.1), we have

spherically uniformly on compact subsets of C. Now, we prove the following claim:

Since g is non-constant and n j ≥ t j (j = 1, . . . , k), it easy to see that (g n j (ξ)) (t j ) ≡ 0, for all j ∈ {1, . . . , k}. Hence,

We first remark that, from conditions a), b), we have that in the case n = 0, there exists i ∈ {1, . . . , k} such that n i > t i . Therefore, in both cases (n = 0 and n = 0), since a = 0, it is easy to see that g is entire having no zero. So, by Lemma 7, g(ξ) = e cξ+d , c = 0. Then

By the assumption of Theorem 1 and by Hurwitz's theorem, for every m ∈ {1, . . . , q}, all zeros of g(ξ) n (g n 1 (ξ)

For any j ∈ {1, • • • , k}, we have that (g n j (ξ)) (t j ) is nonconstant. Indeed, if (g n j (ξ)) (t j ) is constant for some j ∈ {1, . . . , k}, then since n j ≥ t j , and since g is nonconstant, we get that n j = t j and g(ξ) = aξ + b, where a, b are constants, a = 0. Thus, we can write

where c is a nonzero constant. This contradicts to the fact that all zeros of g(ξ) n (g

)a m have multiplicity at least ℓ m ≥ 2 (note that a m = 0, and that, by condition b) of Theorem 1, n + k j=1 (n jt j ) > 0). Thus, (g n j (ξ)) (t j ) is nonconstant, for all j ∈ {1, • • • , k}.