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Parameter and state estimation for a class of neural mass models

Romain Postoyan, Michelle Chong, Dragan Nešić and Levin Kuhlmann.

Abstract— We present an adaptive observer which asymp-
totically reconstructs the parameters and states of a model of
interconnected cortical columns. Our study is motivated by the
fact that the considered model is able to realistically reproduce
patterns seen on (intracranial) electroencephalograms (EEG) by
varying its parameters. Therefore, by estimating its parameters
and states, we could gain a better understanding of the mech-
anisms underlying neurological phenomena such as seizures,
which might lead to the prediction of the onsets of epileptic
seizures. Simulations are performed to illustrate our results.

I. INTRODUCTION

A long standing quest in brain research is to understand

the underlying physiological mechanisms involved in a neu-

rological phenomenon by using measurable signals such as

the electroencephalogram (EEG). One way in which this

challenge can be undertaken is via estimating the states and

parameters of mathematical models that have been devised

to capture various brain phenomena. In particular, the emer-

gence of models which are able to realistically reproduce

patterns seen on (intracranial) EEG shows great potential (see

[5]). Indeed, if we could estimate the states and parameters

of these models online, we would have access to neuro-

physiologically relevant data which are not observable today.

This would allow us to better understand the physiological

mechanisms and could potentially lead to the development

of new therapeutic treatments of neurological diseases, such

as the prediction of the onset of an epileptic seizure for

abatement via electrical stimulation or the administration of

drugs.

We focus on lumped parameter models developed in [8]

and [13] that describes the electrical activity of the cortex

at the scale of populations of neurons. These models are

also known as neural mass models in the literature [5]. In

[8], a single cortical column model was presented which

originated from the seminal work of Lopes da Silva [4].

This model is of particular interest for two reasons. Firstly,

it is able to generate an output signal which mimics the

recorded flash evoked potential in the EEG. Secondly, it can

be used as a basic unit that models a specific region of the

cortex and these units can then be interconnected to describe

the interaction between different cortical regions, see [8]

and [13]. For these reasons, a model of n coupled neural

populations is proposed in [13] which generalises the coupled
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UMR 7039 and the CNRS, CRAN, UMR 7039, France. He

is financially supported by the PEPS-CNRS project APSE.

romain.postoyan@univ-lorraine.fr
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cortical column model given in [8]. The authors of [8] and

[13] identified regions of the parameter space that produce

different types of oscillations seen in the EEG (measured

output). These oscillatory patterns are known to be related to

various brain activity. Hence, estimating the parameters may

give researchers a glimpse into the current state of the brain

and provide insights into the spatial aspects of brain activity,

such as the spreading of seizure activity in an epileptic brain

[13]. Moreover, the estimation of the states might lead to

the development of intracranial feedback control strategies

to abate seizures, see [11].

Few researchers have proceeded in this direction, where

stochastic filters are usually the observers of choice [11].

One of the reasons we choose to tackle the problem using

deterministic adaptive observers is so that we can provide an

analytical proof of the convergence of the estimates.

We observe that the models in [8] and [13] admit the

following general structure:

ẋ0 = A0x0 + φ0(y)θ

ẋ1 = A1x1 + φ1(x0, u)θ

y = C1x1, (1)

where x0 ∈ R
n0 , x1 ∈ R

n1 are the states, θ ∈ R
p is a

vector of constant and unknown parameters, y ∈ R
ny is the

measurement and u ∈ R
nu is the input.

To the best of our knowledge, there is currently no

adaptive observer in the literature that can be used to estimate

the parameters and the states of system (1). Indeed, most

nonlinear adaptive observers apply to systems for which

the nonlinearities depend on known quantities, see [15]

for instance. This is not the case for system (1) since φ1

depends on x0 which is not measured. Few designs have been

proposed for systems with state-dependent nonlinear terms,

see [12] and the references therein. A notable exception is

the work in [6] which focuses on a class of systems that

is very similar to (1). While the nonlinearities in (1) satisfy

some of the conditions stated in [6], the problem arises in

the linear part which is not of the same form as in [6].

As a consequence, we need to modify the observer and the

technical proof in [6]. This study extends our previous works

[2] and [3] on the state estimation of this class of neural mass

models.

The paper is organised as follows: The considered class

of neural mass models is presented in Section II. We

formulate the problem in Section III. The adaptive observer

is presented in Section IV and simulations results are

provided in Section V. Section VI concludes the paper. All

technical lemmas and proofs are provided in the Appendix.



Definition and Notation

• A vector

[

a

b

]

is denoted (a, b), for all a ∈ R
na , b ∈

R
nb .

• A block diagonal matrix with square matrices

Ai ∈ R
ni×ni for i ∈ {1, . . . , n} is denoted as

diag(A1, . . . , An).
• The n-by-n identity matrix is denoted by In, where

integer n > 0.

• The set of positive real scalars is denoted by R≥0 and

the set of strictly positive real scalars is denoted R>0.

• A continuous function β : [0,∞) × [0,∞) → [0,∞)
is said to be a class KL function, if, for each fixed s,

the mapping β(r, s) is strictly increasing with respect

to r, β(0, s) = 0, and for each fixed r, the mapping

β(r, s) is decreasing with respect to s and β(r, s) → 0
as s → ∞.

II. DESCRIPTION OF THE MODELS

A. A single cortical column model

We consider a model of a single cortical column presented

in Section 2.1 in [8] that describes the functional relationship

between neuronal populations. This model captures the in-

teractions between the pyramidal neurons, the excitatory and

inhibitory interneurons in the cortex and is able to reproduce

the oscillatory patterns seen in the EEG (measured output)

by tuning the synaptic gains of the excitatory and inhibitory

interneurons (parameters). To write the model in state space

form (1), we take the states to be1 x0 = (x01, x02) ∈ R
2

and x1 = (x11, . . . , x14) ∈ R
4, where x01, x11, x13 are

membrane potential contributions of the pyramidal neurons,

the excitatory and inhibitory interneurons respectively, and

x02, x12, x14 are their respective derivatives. The measured

output (EEG) is y ∈ R, u ∈ R is the excitatory input from

neighbouring columns which is assumed to be known and

θ = (θA, θB) ∈ Θ ⊆ R
2 is a vector of unknown parameters

where θA and θB represent the synaptic gains of the exci-

tatory and inhibitory neuronal populations respectively. The

matrices in (1) are defined as:

C1 =
(

1 0 −1 0
)

, A0 = Aa, A1 = diag(Aa, Ab),

where Aa =

(

0 1
−a2 −2a

)

, Ab =

(

0 1
−b2 −2b

)

.

The parameters a, b ∈ R>0 are assumed to be known. It has

to be noted that the matrices A0 and A1 are Hurwitz. The

nonlinear terms in (1) are given by:

φ0(y) =

(

0 0
aS(y) 0

)

,

φ1(x0, u) =









0 0
ac2S(c1x01) + au 0

0 0
0 bc4S(c3x01)









.

1According to the notation of [8], x0 = (y0, y3) and x1 =
(y1, y4, y2, y5).

The parameters c1, c2, c3, c4 ∈ R≥0 are assumed to be known

parameters and S denotes the sigmoid function, for v ∈ R:

S(v) = 2e0
1+er(v0−v) with known constants e0, v0, r ∈ R>0.

For a detailed description about the model and its parameters,

see [8].

B. Interconnected single cortical column models

We now consider a model of n inteconnected cortical

columns presented in [13]. This model is obtained by inter-

connecting n of the single cortical column models described

in Section II-A, in the manner shown in Figure 1. Physio-

logically, the interactions between cortical columns are the

firing rates of each column S(yi). Hence, a physiological

interpretation of Figure 1 would include the sigmoid block

S as part of the single column model.
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Fig. 1. n−interconnected models, where i ∈ {2, . . . , n− 1}.

The study of the interconnected models has the potential

of gaining a better understanding of the interactions between

different regions, whereby each model represents a part of

the cortex [13]. The strength of their interaction is captured

by the linear gains Kji, for i, j ∈ {1, . . . , n} and i 6= j. The

time delay of interaction between these regions is described

by:

hd(t) = θAadt exp(−adt), ∀t ≥ 0, (2)

where θA, ad are positive constants defined in Table 1 of

[13].

We assume that the synaptic gains of the populations θAi

and θBi are unknown and the coupling gains Kji for i, j ∈
{1, . . . , n} and i 6= j are known. The interconnected models



can then be written in the form of (1) by taking the states

in (1) to be2 x0 = (x1
01, x

1
02, x

1
03, x

1
04, . . . , x

n
01, x

n
02, x

n
03, x

n
04)

and x1 = (x1
11, x

1
12, x

1
13, x

1
14, . . . , x

n
11, x

n
12, x

n
13, x

n
14), where

integer n > 1. The input is u = (u1, . . . , un) and measure-

ment y = (y1, . . . , yn). The matrices are:

A0 = diag(A01, . . . , A0n),
A1 = diag(A11, . . . , A1n),
C1 =

(

C11 . . . C1n

)

,

(3)

where C1i =
(

1 0 −1 0
)

, A0i = diag(Aa, Ad) and

A1i = diag(Aa, Ab) for i ∈ {1, . . . , n}, Aa and Ab are as

defined in (2) and Ad =

(

0 1
−a2d −2ad

)

. The nonlinear

terms in (1) are:

φ0(y) =
[

φ01 . . . φ0n

]

,

φ1(x0, u) =
[

φ11 . . . φ1n

]

,

where for i ∈ {1, . . . , n},

φ0i =









0 0
aS(yi) 0

0 0
adS(yi) 0









,

φ1i =













0 0
aui + ac2S(c1x

i
01)

+
∑

j∈{1,...,n},j 6=i Kjix
j
03 0

0 0
0 bc4S(c3x

i
01)













.

III. PROBLEM FORMULATION AND

ASSUMPTIONS

For ease of notation, we write (1) in the following form:

ẋ = Ax+ φ(y, u, x)θ
y = Cx,

(4)

where x = (x0, x1), A = diag(A0, A1), C = (0, C1) and

φ = (φ0, φ1). The nonlinear terms φ0 : R → R
n0 × R

p and

φ1 : Rn0 × R
nu → R

n1 × R
p are globally Lipschitz and

bounded. The matrices A0 and A1 are Hurwitz.

Our objective is to synthesise an adaptive observer to

simultaneously estimate the state x and parameter θ of (1)

from the measured output y. We make the following crucial

assumptions in the design of the adaptive observer:

Assumption 1: The vector of unknown parameters θ is

constant and is known to reside in a compact set Θ.

This assumption is justified under the circumstances where

the parameters are slowly-varying for each type of cortical

activity [8]. When a change in activity occurs, an abrupt

variation of θ is presumed which violates Assumption 1 for

only a short time as illustrated in simulations in Section V.

For the models described in Section II, the plant’s parameters

θ⋆ were identified to lie in a compact set in Sections 3.1 and

3.2 of [8] respectively.

Assumption 2: The input u is known.

2According to the notation of [13] as x0 =
(y1

0
, y1

3
, y1

6
, y1

7
, . . . , yn

0
, yn

3
, yn

6
, yn

7
) and x1 =

(y1
1
, y1

4
, y1

2
, y1

5
, . . . , yn

1
, yn

4
, yn

2
, yn

5
).

This is a limiting assumption in practice as the input is

unknown/unmeasured. A common assumption is to model

the input as random white noise, see [8], [13].

Assumption 3: The measured output y is noise-free.

This assumption is more justified when electroencephalo-

gram (EEG) recorded with intracranial electrodes as opposed

to EEG obtained from electrodes placed on the scalp. We

investigate the robustness of our algorithm to measurement

noise in simulations in Section V.

IV. MAIN RESULTS

We consider the following adaptive observer for system (4):

˙̂x =Ax̂+ φ(y, u, x̂)θ̂ + Γ(y − ŷ)
ŷ = Cx̂
˙̂
θ = Γ̄(y − ŷ)

Υ̇ = AΥ+∆φ(y, u, x̂) with Υ(0) = 0

Ṗ = dP − dPΥTCTCΥP with P (0) = P (0)T > 0,
(5)

where Γ = ∆−1ΥΓ̄, Γ̄ = PΥTCT and ∆ = diag(In0
, 1
d
In1

)
with d > 0 a design parameter. The vector x̂ denotes the

estimate of x and θ̂ the estimate of θ. The variable Υ ∈
R

(n0+n1)×p is initialized to Υ(0) = 0 in order to simplify

the technical statements. Our result also applies when it is

not the case. An essential assumption for our design to work

is the condition stated below.

Assumption 4: For any signals u, y, x̂ that belong to L∞,

there exist a1, a2 ∈ R>0, T ∈ R>0 such that the solution to:

Υ̇ = AΥ+∆φ(y, u, x̂) with Υ(0) = 0, (6)

satisfies for all3 t ≥ 0:

a1I2 ≤
∫ t+T

t
ΥT(τ)CTCΥ(τ) dτ ≤ a2I2. (7)

�

The condition (7) is known as the persistency of excitation

of the signal CΥ(t) and is a well-known condition in

identification and adaptive control literature (see [7]). This is

a sufficient condition for the identification of the parameter θ

using the adaptive observer proposed here and it is similar to

the condition used in (A4) of [6] and (A3) in [1]. Inequality

(7) is hard to verify analytically in general. Nevertheless, we

have observed in simulations that this condition is satisfied

for the model we consider under the simulation conditions

stated in Section V.

The matrix P will be used to construct a Lyapunov

function in the proof. It can be verified that P (t) is symmetric

and positive definite with lower and upper bound which are

independent of d, see Lemma 1 in [16].

We are now ready to state the main result which ensures

the asymptotic convergence of the estimated variables (x̂, θ̂)
to (x, θ). Its proof is given in the Appendix.

3A unique solution exists for all time, for all the ordinary differen-

tial equations in (4) and (5). By Theorem 3.3 of [10], Ṗ = dP −
dPΥTCTCΥP in (5) has a unique solution because its right hand side
is locally Lipschitz and piecewise continuous in t and all its solution are
in a compact set (by Lemma 1 of [16], P is bounded). The other ODEs
in (4) and (5) have unique solutions because the nonlinearity φ is globally
Lipschitz.



Theorem 1: Consider the system (4) and the observer (5)

and suppose Assumptions 1-4 are satisfied. Then, there exists

d⋆ ≥ 1 such that for all d ≥ d⋆, the estimates (x̂, θ̂)
asymptotically converge towards (x, e) i.e. for any d ≥ d⋆,

there exist βd ∈ KL such that for any input u and any initial

conditions P (0) = P (0)T > 0, x̃(0) and θ̃(0), the following

holds :
∣

∣

∣

(

x̃(t), θ̃(t)
)∣

∣

∣ ≤ βd

( ∣

∣

∣

(

x̃(0), θ̃(0)
)∣

∣

∣ , t
)

∀t ≥ 0, (8)

where x̃ := x− x̂ and θ̃ := θ − θ̂. �

Remark 1: The design parameter d is chosen such that

d ≥ d⋆ to obtain (8). An estimate of d⋆, which we believe

is subject to some conservatism is provided in the proof

of Theorem 1 (see (13) in the Appendix). Although the

expression of d⋆ depends on |θ|, it is possible to estimate

it be taking the maximum over the set Θ, where θ is known

to belong to according to Assumption 1.

V. SIMULATIONS

We have performed simulations for the single cortical

column model described in Section II-A with the following

initial conditions: x(0) = (0.6, 1, 0.6, 1, 0.6, 1), x̂(0) = 0,

θ = (3.25, 22), θ̂(0) = 0, P (0) = I2, Υ(0) = 0. The

other parameters take the value given in [8] and the input

is a Gaussian noise of mean 100 and variance 302. Figures

2-3 respectively show the state and parameter estimation

error when the design parameter d is equal to 2 and 10.

They confirm the convergence properties of the algorithm

and show that larger d speeds up the rate of convergence.
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Fig. 2. State estimation error for d = 10.

As previously mentioned, Assumptions 1 and 3 (i.e param-

eters are constant and noise-free measurement) are limiting

assumptions in practice. In Figure 4, we simulate a change in

parameters which might correspond to a change in cortical

activity. We see that the estimated parameters still converge

to the true values after the transition has occurred. We also

consider the scenario where the measured output (EEG) is
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Fig. 3. Parameter estimates for d = 2 and 10.

noisy by introducing a random noise that is drawn from a

Gaussian distribution of mean 0 and variance 0.42, which

is approximately 20% of y at steady state. Figure 5 shows

that despite the presence of measurement noise, the adaptive

observer still provides estimates that are close to the true

values. In fact, the neighbourhood in which the parameter

error converges to is smaller with small d. This illustrates

the tradeoff between fast convergence rate and robustness

towards measurement noise.
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Fig. 4. Parameter estimation error with varying parameters for d = 10.

VI. CONCLUSION AND FURTHER WORKS

We have presented an algorithm to provide simultaneous

estimates of the states and parameters of a class neural

mass models using the electroencephalogram (EEG) as the

measured output. This adaptive observer is based on the work

in [6], where the class of systems considered are different

in the linear part. Consequently, modifications were made
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in the adaptive observer and we provide a technical proof

for the asymptotic convergence of parameters and states.

Simulations are provided for a single cortical column model

by [8] which confirm our results. In the future, we will work

on estimating the connectivity gains (see Section II-B), in

addition to the synaptic gains θAi and θBi, i ∈ {1, . . . , n}
of the interconnected model. The adaptive observer presented

here does not apply as the nonlinearity φ1 of (1) is no longer

bounded as required. Estimating the connectivity gains of

interconnected models is of interest as each model serves to

model a part of the cortex and the connectivity gain between

these models may provide insight into the spatial aspects

of the physiological mechanisms involved during a brain

phenomenon, such as seizures.

VII. APPENDIX

A. A technical lemma

In the proof of Theorem 1, we use that Υ is bounded

according to the following lemma.

Lemma 1: Consider system (5). There exist M ∈ R>0

such that for any d ≥ 1, any L∞ signal x̂, y, u the solution

of Υ̇ = AΥ + ∆φ(y, u, x̂) with Υ(0) = 0, satisfies

|Υ(t)| ≤ M for all t ≥ 0. �

Proof. Note that |∆φ(y, u, x̂)| ≤ |∆||φ(y, u, x̂)| ≤
|φ(y, u, x̂)| since d ≥ 1. Moreover, it can be verified that φ

is upper bounded by a constant (independent of d) in view

of Section II. As a consequence, we can directly conclude

that |Υ(t)| can be bounded by a constant M independent

of d for all time since the matrix A is Hurwitz and of the

initial condition Υ(0) as it was chosen to be Υ(0) = 0 in

the algorithm (5). �

B. Proof of Theorem 1

We first consider the system in x̃ coordinate. According

to (4) and (5), we have

˙̃x = Ax̃+
(

φ(y, u, x)− φ(y, u, x̂)
)

θ + φ(y, u, x̂)θ̃
−Γ(y − ŷ).

We scale the error x̃ as such x̄ := ∆x̃. Noting that ∆A∆−1 =
A:

˙̄x = Ax̄+∆
(

φ(y, u, x)− φ(y, u, x̂)
)

θ +∆φ(y, u, x̂)θ̃
−∆Γ(y − ŷ).

(9)

We now proceed to a dynamical change of coordinates by

introducing η as follows which was as proposed in [14]:

η := x̄−Υθ̃.

Noting that C∆−1 = dC, the dynamics of variables η and

θ̃ are given by:
{

η̇ = Aη +∆
(

φ(y, u, x)− φ(y, u, x̂)
)

θ
˙̃
θ = −dPΥTCTC(η +Υθ̃).

(10)

We note that, contrary to [14], we have not obtained a nice

cascade system since the η-system also depends on x and x̂.

In the following, we will invoke small-gain type arguments

to conclude the stability of system (10). We consider the

Lyapunov-type functions V1(η) = ηTSη and V2(θ̃, P ) =
θ̃TP−1θ̃ where S is a real symmetric positive definitive

matrix such that ATS + SA = −I (such a matrix always

exists according to Theorem 4.6 in [10] since A is Hurwitz).

It can be noted that V2 satisfies λ1|θ̃|2 ≤ V2(θ̃, P ) ≤ λ2|θ̃|2
where λ1, λ2 are independent of d for d ≥ 1 according to

[16, Lemma 1], which will be useful for our purpose. We

first consider V1. Along solutions to (10), we have:

V̇1(t) = −|η|2 + 2ηTS∆
(

φ(y, u, x)− φ(y, u, x̂)
)

θ. (11)

Noting that φ(x, y, u) =
(

φ0(y), φ1(x0, u)
)

, so φ(x, y, u)−
φ̂(x̂, y, u) = (0, φ1(x0, u)− φ̂1(x̂0, u)). As a consequence,

∆(φ(y, u, x)− φ̂(y, u, x̂)) =
(

0, 1
d
(φ1(x0, u)− φ̂1(x̂0, u))

)

from which we deduce in (11):

V̇1(t) ≤ −|η|2 + 2|η||S||θ||∆
(

φ(x0, u)− φ(x̂0, u)
)

|
≤ −|η|2 + 2|η||S||θ|

(

1
d
|φ1(x0, u)− φ1(x̂0, u)|

)

.

By assumption, φ1 is globally Lipschitz with a constant that

we denote L1 > 0, thus |φ1(x0, u) − φ1(x̂0, u)| ≤ L1|x̃0|.
Note also that the scaling induced by the matrix ∆ does not

affect the x̃0 part of the estimation error x̃, so that we have

x̃0 = x̄0. As a consequence,

V̇1(t) ≤ −|η|2 + 2
d
|η||S||θ|L1|x̃0|

≤ −|η|2 + 2
d
|η||S||θ|L1(|η|+ |Υθ̃|)

= (−1 + 2
d
|S||θ|L1)|η|2 + 2

d
|η||S||θ|L1|Υθ̃|.

(12)

We define

d⋆ := max{1, 4L1|θ||S|}. (13)

Choose d such that d ≥ d⋆, so that −1+ 2
d
|S||θ|L1 < − 1

2 , in

that way: V̇1(t) ≤ − 1
2 |η|2 + 2

d
|S|L1|θ||η||Υθ̃|. According to



Lemma 1, we always have |Υ| ≤ M , therefore: V̇1(t) ≤
− 1

2 |η|2 + 2
d
|S||θ|L1M |η||θ̃|, from which we deduce, by

invoking the fact that S and P−1 are symmetric positive

definite with lower and upper bounds independent of d (see

[16, Lemma 1]), that there exists σ1, σ2 ∈ R>0 independent

of d such that:

V̇1(t) ≤ −σ1V1 +
1
d
σ2

√
V1

√
V2

= −σ1

2 V1 − σ1

2 V1 +
1
d
σ2

√
V1

√
V2,

(14)

as a consequence, noting that 1
d
σ2

√
V1

√
V2 ≤ σ1

2 V1 can be

written as 1
d2σ

2
2V2 ≤ σ2

1

4 V1:
(

σ
d2V2 ≤ V1

)

⇒
(

V̇1(t) ≤ −σ1

2 V1

)

, (15)

with σ = 4
(

σ2

σ1

)2
. That is all we need so far concerning V1.

Consider V2, along solutions to (5) and (10), the following

is satisfied (recall that V2(θ̃, P ) = θ̃TP−1θ̃):

V̇2(t) = −θ̃TP−1ṖP−1θ̃ + 2θ̃TP−1 ˙̃θ

= −dV2 − dθ̃TΥTCTCΥθ̃ − 2dθ̃TΥTCTCη,

since θ̃TΥTCTCΥθ̃ ≥ 0, V̇2(t) ≤ −dV2 − 2dθ̃TΥTCTCη.

By invoking the same arguments as after (14) and since Υ is

bounded by M according to Lemma 1, there exists γ ∈ R>0

independent of d such that |2dθ̃TΥTCTCη| ≤ dγ
√
V1

√
V2

so that:

V̇2(t) ≤ −dV2 + γd
√
V1

√
V2

= −d
2V2 − d

2V2 + γd
√
V1

√
V2

since γd
√
V1

√
V2 ≤ d

2V2 is equivalent to γ2V1 ≤ 1
4V2, we

deduce that:
(

σ̄V1 ≤ V2

)

⇒
(

V̇2(t) ≤ −d
2V2

)

, (16)

with σ̄ = 4γ2. Following the proof of Theorem 3.1 in [9],

we are going to define a Lyapunov function for the system

(10) based on V1 and V2. Let d be sufficiently large such that
σ
d2 < σ̄−1 (i.e. such that the small gain condition is satisifed)

and take χ > 0 such that:

σ
d2 < χ < σ̄−1. (17)

We introduce the candidate Lyapunov function, V =
max{V1, χV2}. Function V is the maximum of two contin-

uously differentiable functions, therefore it is locally Lip-

schitz and so differentiable almost everywhere according

to Rademacher’s theorem. Along solutions to (10), when

V = V1 that means V1 ≥ χV2 ≥ σ
d2V2. (15) shows us that

V̇ (t) ≤ −σ1

2 V (t) almost everywhere. Similarly, when V =
χV2 that means V2 ≥ χ−1V1 ≥ σ̄V1 so (16) shows us that

V̇ (t) ≤ −d
2χV (t) almost everywhere. As a consequence,

we have that, almost everywhere: V̇ (t) ≤ −min{σ1

2 , d
2χ}V .

Taking d ≥ d⋆ ≥ 1,

V̇ (t) ≤ −min{σ1

2 , d
2χ}V ≤ −min{σ1

2 , 1
2χ}V =: −λV.

Using the comparison principle (see Lemma 3.4 in [10]) and

the fact that V is positive definite and radially unbounded,

we obtain:

|(η(t), θ̃(t))| ≤ β̄
(

|(η(0), θ̃(0))|, t
)

∀t ≥ 0, (18)

where β̄ ∈ KL. By the definition of x̃,

|(x̃, θ̃)| = |(∆−1η +∆−1Υθ̃, θ̃)|
≤ d|(η +Υθ̃, θ̃)| ≤ d|η +Υθ̃|+ d|θ̃|
≤ d|η|+ d(1 +M)|θ̃| ≤ d(1 +M)|(η, θ̃)|.

From (18) and η(0) = ∆x̃(0) − Υ(0)θ̃(0). As Υ(0) = 0
by initialisation, we have that η(0) = ∆x̃(0). Recalling that

|∆| ≤ 1 (since d ≥ 1), hence |η(0)| ≤ |∆||x̃(0)| ≤ |x̃(0)|
and we obtain:

|(x̃(t), θ̃(t))| ≤ d(1 +M)β̄
(

|(η(0), θ̃(0))|, t
)

≤ d(1 +M)β̄
(

|(x̃(0), θ̃(0))|, t
)

.

Therefore, we obtain the desired property (8) with

βd(s, t) = d(1 +M)β̄(s, t). �
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