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DIAMOND CONE FOR sl(m,n)

BOUJEMAÂ AGREBAOUI, DIDIER ARNAL, OLFA KHLIFI

Abstract. In this paper, we first study the shape algebra and the reduced shape
algebra for the Lie superalgebra sl(m,n). We define the quasistandard tableaux,
their collection is the diamond cone for sl(m,n), which is a combinatorial basis for
the reduced shape algebra. We realize a bijection between the set of semistandard
tableaux with shape λ and the set of quasistandard tableaux with shape µ ≤ λ,
by using the ‘super jeu de taquin’ on skew semistandard tableaux. This gives the
compatibility of the diamond cone with the natural stratification of the reduced
shape algebra.

1. Introduction

The theory of Lie superalgebras was initied by V. Kac (see for instance [K]). V.
Kac introduced the classical (simple) Lie superalgebras, studied their classification
and their irreducible (finite dimensional) representations, which are characterized by
their highest dominant weight λ. Denote the corresponding module Sλ. The theory
is thus very close to the usual theory for simple Lie algebras. However, there are
important differences. For instance the tensor product of two irreducible representa-
tions can be not completely reducible.

Denote S• the direct sum of all irreducible representations of a simple Lie algebra g.
It is a natural algebra called the shape algebra of g. For instance, consider g = sl(m),
put V = Cm. The space V ⊗N is a completely reducible gl(m) representation. An
explicit decomposition is given by the Schur-Weyl duality: let λ = (a1, . . . , am) be
a sequence of natural numbers such that N =

∑

j jaj. One can see λ as the shape
of the Young tableaux having aj columns with height j. For any standard tableau
Sλ with shape λ, define the Young symmetrizer cSλ

in the group algebra of SN ,
acting on the right side on tensors. As a consequence of the duality, the space
VSλ

= {v ∈ V ⊗N , vcSλ
= v} is a simple gl(m) module whose type is characterized

by λ. By varying N and λ, we get all the simple gl(m) modules. For restriction to
sl(m), we consider only λ such that am = 0 and the standard tableau Stλ obtained by
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the filling column by column. Thus, the shape algebra S• is a quotient of Sym•(∧V ).
Moreover, a basis for this shape algebra is indexed by the family of semistandard
Young tableaux with at most m− 1 rows.

In this paper we look for the Lie superalgebra sl(m,n) (see [K, HKTV, V]). Put
V = Cm,n. The definition of the shape algebra for sl(m,n) requires the restriction
to the irreducible covariant tensorial representations, they are the irreducible sub-
representations in T (V ), indeed, the tensor product of two such representations is
completely reducible. The covariant tensorial irreducible representations of sl(m,n)
were studied by Berele and Regev in [BR], through a generalization of the Schur-Weyl
duality. Especially, they consider shapes λ = (a1, . . . , am, a

′
1, . . . , a

′
n−1), placed in the

hook, i.e. built by adding under a shape having aj column with height j a shape
having a′i rows with length i, with the restriction am ≥ sup{i, a′i > 0}. Choose the
standard tableau Stλ, with shape λ, then Sλ is the space of v ∈ V ⊗

∑
jaj+ia′i such that

vcStλ = v. Moreover, a basis for Sλ is labelled by the semistandrad tableaux with
shape λ (see [BR, KW]).

For a simple Lie algebra g, the reduced shape algebra S•red is the quotient of the
shape algebra by the ideal generated by vλ − 1, where vλ is a well chosen highest
weight vector in Sλ. Let n+ be the nilpotent factor in the Iwasawa decomposition of
g, as a n+ module, S•red is indecomposable, it is the union of the modules Sλ|n+, with
the stratification Sµ|n+ ⊂ Sλ|n+, if µ ≤ λ.

A way to describe a basis for S•red, respecting this stratification is the selection,
among the semistandard tableaux of some tableaux called quasistandard. The dia-

mond cone is by definition the collection of all quasistandard tableaux. The projection
map p : S• −→ S•red becomes a push mapping on rows of the semistandard tableaux.
This push mapping can be defined through the use of the ‘jeu de taquin’. This pro-
gram was completed for sl(m), sp(2n), so(2n + 1) and the rank 2 semisimple Lie
algebras and sl(m, 1) (see [AAB, AAK, AK, Kh]).

In this paper, we study this construction for the case of the Lie superalgebra
sl(m,n), using push functions and ‘super jeu de taquin’ corresponding to horizontal
translations on the m first rows and vertical translations on the bottom of the first
n− 1 columns.

The paper is organized as follows. In Section 2, we recall the construction of the
reduced shape algebra and quasistandard tableaux for sl(m).
In Section 3, we recall the fundamental results on the Lie superalgebra sl(m,n)

and its finite dimensional irreducible representations.
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In Section 4 and 5, we describe the shape algebra of sl(m,n) and define the semi-
standard tableaux for sl(m,n).
To describe the multiplication of the shape algebra directly on the tableaux, we

need to study relations between tensor products of vectors in Cm,n. These relations
are the Garnir and Plücker relations, in Section 6, we recall their equivalence. These
relations generate the ideal defining the shape algebra S• as a quotient of the tensor
algebra T (Cm,n).
With these relations, in Section 7, we define a multiplication ⋆ on the set of semi-

standard tableaux, which corresponds to the multiplication in the shape algebra.
In Section 8, we define the reduced shape algebra for sl(m,n) and study the strat-

ification of the corresponding n+ module.
In Section 9, we define quasistandard tableaux, and the push function. We prove

that these tableaux form a basis for the reduced shape algebra, well adapted to the
above stratification.
Finally, in Section 10, we define the ‘super jeu de taquin’ on skew semistandard

tableaux and prove that the push function is the result of a succession of actions of
this ‘super jeu de taquin’.
This achieves the combinatorial description of the reduced shape algebra of sl(m,n),

i.e. the description of the diamond cone for sl(m,n).

2. Diamond cone for sl(m)

2.1. Shape algebra of sl(m) and semistandard tableaux.

Recall that the Lie algebra sl(m) = sl(m,C) is the set of m×m traceless matrices,
it is the Lie algebra of the Lie group SL(m) of m×m matrices, with determinant 1.

First, put V = Cm, denote (e1, . . . , em) its canonical basis. Then sl(m) acts nat-
urally on T (V ). For any sequence λ = (a1, . . . , am−1) of natural numbers, see λ as
the shape of a tableau having am−1 columns with height m − 1, . . . , a1 columns
withheight 1. Suppose that the heights of the columns in λ are c1, . . . , ck, then to
any Young tableau with shape λ, i.e. to any filling T of the shape λ by entries ti,j in
{1, . . . , m}, put:

eT = (et1,1 ⊗ et2,1 ⊗ · · · ⊗ etc1,1)⊗ (et1,2 ⊗ · · · ⊗ etc2,2)⊗ · · · ⊗ (et1,k ⊗ · · · ⊗ etck,k
).

For instance, if S0
λ is the tableau defined by s0i,j = i (for any i and j),

eS
0
λ = (e1 ⊗ e2 ⊗ · · · ⊗ ec1)⊗ (e1 ⊗ · · · ⊗ ec2)⊗ · · · ⊗ (e1 ⊗ · · · ⊗ eck).

We use the Young symmetrizer cλ associated to the standard tableau Stλ, with
shape λ, defined by

Stλ = (sti,j), sti,j = i+
∑

j<i

cj ,
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foe any i and j. For any Young tableau T , put eT = eT cλ. Then the polyvector:

vλ = eS0
λ
= (e1∧e2∧· · ·∧em−1)

am−1⊗· · ·⊗(e1)
a1 ∈ Symam−1(∧m−1V )⊗· · ·⊗Syma1(V ).

By construction, vλ is a primitive weight vector for the action of sl(m) on T (V ),
vλcλ = vλ, thus it is a highest weight vector for Sλ, and Sλ is the submodule in
Sym•(∧V ) generated by vλ.

Definition 2.1.

A Young tableaux of shape λ is semistandard if its entries are increasing along each
row and strictly increasing along each column. We note SSλ the set of all semistan-
dard tableaux with shape λ.

This notion allows to select a basis for Sλ.

Theorem 2.2.

If λ = (a1, . . . , am−1) is a shape, a basis for Sλ is given by the family of polyvectors
(eT ), where T is a semistandard Young tableau with shape λ.

On the other hand, for any tableau C with one column: C = (c1,j) = (kj), the
polyvector eC is:

eC = ek1 ∧ · · · ∧ ekc .

It is possible to realize the space S• =
⊕

Sλ as a quotient of the algebra Sym•(∧V )
by an ideal.

Theorem 2.3.

For any column

C =

i1
...
ip

,

put eC = e{i1,...,ip}.
Then the space S• =

⊕

λ Sλ, is isomorphic to the quotient of the algebra Sym•(
∧

V )
by the ideal P generated by the Plücker relations: for any p ≥ q, for any column C
with height p and column D with height q,

e{i1,i2,...,ip}e{j1,j2,...,jq} +
∑

A⊂{i1,...,ip}
#A=r≤q

±e({i1,...,ip}\A)∪{j1,...,jr}eA∪{jr+1,...,jq} = 0.

This defines a structure of associative and commutative algebra on the space S•.
We call this space the shape algebra of sl(m).
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2.2. Diamond cone for sl(m) and quasistandard tableaux.

Let us now put:

Definition 2.4.

We call reduced shape algebra or diamond cone the quotient:

S•red = S•/
〈

vλ − 1
〉

.

This algebra is a natural n+ module, where n+ is the Lie algebra of strictly upper
triangular m × m matrices. This module is indecomposable, if p is the canonical
projection map from S• to S•red, the restriction of p to any Sλ is an isomorphism
of n+ module but we have p(Sµ) ⊂ p(Sλ) if µ ≤ λ, i.e. if λ = (a1, . . . , am−1) and
µ = (b1, . . . , bm−1), bk ≤ ak for any k (see [ABW]).

In order to build a basis for S•red, well adapted to the above stratification, a notion
of quasistandard Young tableau for sl(m) was introduced. Let us first recall this
notion in a presentation usefull for the next sections.

Let ν = (c1, . . . , ch, 0, . . . , 0) be a shape. We call trivial tableau with shape ν for
sl(m) and denote trivial(ν) the tableau with shape ν and entries tri,j ∈ {1, 2, . . . , m}
such that:

tri,j = i, for all i = 1, . . . , h, j = 1, . . . , ℓi =
∑

k≥i

ck.

That means we fill up the shape ν, row by row, with the number of the row.

Let T be a semistandard Young tableau, with shape λ and entries ti,j.
If ν ≤ λ, we say that the trivial tableau with shape ν is extractable from T if

1. The subtableau, with shape ν, placed on the top and left in T is trivial, or:

ti,j = i, for all i = 1, . . . , h, j = 1, . . . , ℓi.

2. It is possible to extract this subtableau from T by pushing each row of T , with
number i ≤ h, ℓi steps from the right to the left, getting a new semistandard
tableau or (with our convention): for all i, and all j,

ti,j+
∑

k≥i ck
< ti+1,j+

∑
k≥i+1 ck

.

This is equivalent to
2’. For all i, and all j ≥

∑

k>i ck,

ti,j+ci < ti+1,j.

Definition 2.5.

Let T be a semistandard tableau with shape λ (T ∈ SSλ). If there is no trivial
extractable tableau in T (except the empty tableau with shape (0,d ots, 0)), we say that
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T is a quasistandard tableau. Denote QSλ the set of all quasistandard tableaux with
shape λ.

It is shown in [ABW] that for any T in SSλ, there is a greatest trivial extractable
subtableau S in T , with shape ν ≤ λ. We get thus, as above, a new semistandard
tableau, denoted push(T ), by extracting S. In fact, push(T ) is quasistandard, with
shape µ = λ− ν.
For instance, if m = 4, the tableau

T =
1 1 2 2 3
2 3 4
4

is in SS(2,2,1) and

push(T ) = push





1 1 2 2 3
2 3 4
4



 =
2 2 3
3 4
4

is in QS(1,1,1).

Morover, the map push is bijective from SSλ onto the disjoint union
⊔

µ≤λ QSµ.

And it is proved in [ABW] that

Theorem 2.6.

The family p(eT ) for T quasistandard is a basis for the reduced shape algebra S•red
of sl(m) well adapted to the stratification p(Sµ) ⊂ p(Sλ) if µ ≤ λ.

We call this basis the diamond cone for sl(m).

Example 2.1.

For m = 3, we get the following picture of a part of the diamond cone:
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3. The special linear Lie superalgebra sl(m,n)

Let us recall some basic definitions from Lie superalgebra theory ([V]).

A Lie superalgebra g = g0 ⊕ g1 is a Z2-graded algebra with product [., .], i.e. if a
is in gα, b in gβ,(α, β ∈ Z2 = {0, 1}) then [a, b] is in gα+β. The bracket satisfies the
following axioms:

[a, b] = −(−1)αβ [b, a]; [a, [b, c]] = [[a, b], c] + (−1)αβ [b, [a, c]], ∀c ∈ g.

In this paper, we are interested on the case g = sl(m,n), with m,n ∈ N. Recall

that sl(m,n) can be viewed as the set of all (m+ n)2 matrices X =

(

A B
C D

)

over

the complex number field C where A is a m×m matrix, B a m× n one, C a n×m
one, D a n× n one, and str(X) = trA − trD = 0. The even part g0 of g consists

of matrices of the form

(

A 0
0 D

)

, the odd part g1 of g consists of matrices of the

form

(

0 B
C 0

)

and g0
∼= sl(m)⊕ sl(n)⊕ C.

It is known (see [K]) that the center z of sl(m,n) is trivial ifm 6= n, one dimensional
if m = n, and the quotient sl(m,n)/z is always simple.
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Let

h = {diag(h1, . . . , hm+n), hs ∈ C, 1 ≤ s ≤ m+ n, and

m
∑

i=1

hi =

n
∑

j=1

hm+j}.

Then h is a Cartan subalgebra of g. The corresponding root system will be denoted
by ∆. Put ǫs(diag(h1, . . . , hm+n) = hs. The roots can be expressed in terms of linear
functions ǫ1,. . . ,ǫm, δ1 = ǫm+1,. . . , δn = ǫm+n. Let ∆0 be the set of even roots, let ∆1

be the set of odd roots, then

∆0 = {ǫi − ǫj , δi − δj , i 6= j} and ∆1 = {±(ǫi − δj)}.

We choose

Π = {ǫ1 − ǫ2, ǫ2 − ǫ3, . . . , ǫm − δ1, δ1 − δ2, . . . , δn−1 − δn}

as a simple root system.

The corresponding nilpotent factor in sl(m,n) is:

n+ =

{

X =

(

A B
0 D

)

, A,D strictly upper triangular

}

.

The weight space h⋆ is spanned by ǫi and δj . So, a weight λ ∈ h⋆ can be written as

λ =
m
∑

i=1

λiǫi +
n

∑

j=1

µjδj with
m
∑

i=1

λi −
n

∑

j=1

µj = 0.

Following [V], we put ai = λi − λi+1 for i < m, am = λm + µn and a′j = µj − µj+1 for
j < n. A weight λ is called integral dominant if ai ∈ N for i 6= m, whereas am ∈ Z.
The set of integral dominant weights is denoted by Λ.

We just denote elements in Λ by λ = (a, a′) = ((a1, . . . , am), (a
′
1, . . . , a

′
n−1)). Re-

mark the ordering on Λ is defined by µ = (b, b′) ≤ λ = (a, a′) if and only if λ− µ is
dominant, if and only if bi ≤ ai for i < m and b′j ≤ a′j for j < n.

Let λ be dominant. From the theory of reductive Lie algebras, it follows that there
exists a unique finite-dimensional irreducible sl(m,n)0 module V0(λ) with highest
weight λ. Let vλ be a highest weight vector for V0(λ).

Definition 3.1.

For any λ ∈ Λ, the Kac module V (λ) is the induced module

V (λ) = Ind
sl(m,n)

sl(m,n)0 ⊕n
+

1

V0(λ) = U(sl(m,n))⊗sl(m,n)0 ⊕n
+

1
V0(λ),

where U(sl(m,n)) is the universal enveloping superalgebra of sl(m,n).



DIAMOND CONE FOR sl(m,n) 9

V (λ) is a finite-dimensional sl(m,n) module of dimension 2mn × dim
(

V0(λ)
)

. Un-

fortunately, V (λ) is not always an irreducible module. Since V (λ) is a highest weight
module, it contains a unique maximal submodule M(λ) such that the quotient mod-
ule:

V (λ)/M(λ)

is a finite dimensional simple sl(m,n) module with highest weight λ.

Definition 3.2.

For any λ in Λ, we denote the unique simple sl(m,n)-module with highest weight
λ by

V (λ) = Sλ = V (λ)/M(λ).

Kac ([K]) proved the following result:

Theorem 3.3.

Every finite-dimensional simple sl(m,n) module is isomorphic to a module of the
type V (λ) where λ is an integral dominant weight.
Moreover, any finite-dimensional irreducible sl(m,n) module is uniquely character-

ized by its integral dominant weight λ.

Put ρ = 1
2

∑

α∈∆+

0
α − 1

2

∑

β∈∆+

1
β, where ∆+

0
(resp. ∆+

1
)is the set of even (resp.

odd) roots. Or explicitly in the ǫδ-basis

ρ =
1

2

m
∑

i=1

(m− n− 2i+ 1)ǫi +
1

2

n
∑

j=1

(m+ n− 2j + 1)δj .

There is a symmetric form ( , ) on h⋆ induced by the invariant symmetric form
(X, Y ) 7→ str(XY ) on sl(m,n), and in the natural basis it is the restriction to h⋆ of
the form (ǫi, ǫj) = δij , (ǫi, δj) = 0 and (δi, δj) = −δij , where δij is the usual Kronecker
symbol.

If λ is a dominant weight of sl(m,n) then λ is said:

i) typical if (λ+ ρ, β) 6= 0, for all β ∈ ∆+
1
,

ii) atypical if there exist β ∈ ∆+
1
such that (λ+ ρ, β) = 0.

Theorem 3.4.

Let λ be a dominant weight. The Kac module V (λ) is an irreducible sl(m,n) module
if and only if its highest weight λ is typical.
In this case, we call V (λ) = V (λ) a typical module, otherwise V (λ) 6= V (λ) is

called atypical module.
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In this paper we are interested by the modules appearing in the tensor algebra
T (V ) =

⊕

N≥0 V
⊗N , where V = Cm,n is the natural sl(m,n) module. Let us recall

the sl(m,n) (left) action on V ⊗N is:

X.(v1 ⊗ . . .⊗ vN) =
N
∑

i=1

(−1)|X|(|v1|+...+|vi−1|)(v1 ⊗ . . .⊗Xvi ⊗ · · · ⊗ vN).

We call these modules covariant tensorial modules, they were studied by [BR, KW, S].
On the other hand, the group SN acts on the right by:

(v1 ⊗ · · · ⊗ vN) · σ = ε|v|(σ)(vσ(1) ⊗ . . .⊗ vσ(N)),

where ε|v|(σ) is the sign of the permutation induced by σ on the odd vi.
These two actions commute : X.(v · σ) = (X.v) · σ. Berele and Regev prove:

Theorem 3.5.

All the covariant tensorial modules are completely reducible, among them, the sim-
ple modules are exactly the modules V (λ) = S(a,a′), with am an integral positive number
and ãm = am − sup{j, a′j > 0} ≥ 0.
We note Λcov the set of such covariant dominant integral weights.

Denote e1, . . . , em+n the canonical basis for V , where e1, . . . , em are even (|ei| = 0),
and em+1, . . . , em+n are odd (|em+j | = 1). If x, y are homogeneous vectors in V , we
put:

x · y =
1

2
(x⊗ y + (−1)|x||y|y ⊗ x) x ∧ y =

1

2
(x⊗ y − (−1)|x||y|y ⊗ x).

Put A′j = a′j + · · ·+ a′n−1, define {s1 < · · · < sp} as the set of j sucht that a′j > 0
(sp = j0), define s0 = 0 and the numbers ãk as follows:

ãk = 0 if k /∈ {A′s1 > · · · > A′sp} and ãA′
sr

= sr − sr−1.

We choose the highest weight vector vλ (λ ∈ Λcov) in the space:

Symã1(∧m+A′
1V )⊗ · · · ⊗ Symãn−1(∧m+A′

n−1V )⊗ Symãm(∧mV )⊗

⊗ Symam−1(∧m−1V )⊗ · · · ⊗ Syma1(V ).

This choice is associated to the choice of a Young symmetrizer cλ. We start with
the vector:

w = (e1 ⊗ · · · ⊗ em ⊗ em+1 ⊗ · · · ⊗ em+1)⊗ (e1 ⊗ · · · ⊗ em ⊗ em+2 ⊗ · · · ⊗ em+2)⊗ . . .

· · · ⊗ (e1 ⊗ · · · ⊗ em ⊗ em+n−1 ⊗ · · · ⊗ em+n−1)⊗ (e1 ⊗ · · · ⊗ em)⊗ . . .

· · · ⊗ (e1)

where the first ã1 parenthesis contain A′1 vector em+i, the ã2 following parenthesis
contain A′2 vector em+i, and so on, there are ai parenthesis of the form e1 ⊗ . . .⊗ ei.
Then we define vλ as a multiple of cλ(w), for a good choice of cλ, we get explicitely:
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Proposition 3.6. ([BR])

We keep all the preceding notations, and denote G the group S
a′1
1 ×S

a′2
2 ×· · ·×S

a′n−1

n−1 .

Then the simple module V (λ) = S(a,a′) is realized as the submodule in T (V ) generated
by its highest weight vector:

vλ = αλ

[

∑

(τA′
1
,τA′

1−1,...,τ1)∈G

A′
1

∏

k=1

ε(τk)
(

e1 ∧ · · · ∧ em ∧ em+τ1(1) ∧ · · · ∧ em+τA′
1
(1)

)

⊗

⊗
(

e1 ∧ · · · ∧ em ∧ em+τ1(2) ∧ · · · ∧ em+τA′
2
(2)

)

⊗

. . .⊗
(

e1 ∧ · · · ∧ em ∧ em+τ1(n−1) ∧ em+τA′
n−1

(n−1)

) ]

⊗

⊗ (e1 ∧ · · · ∧ em)
am−j0 ⊗ (e1 ∧ · · · ∧ em−1)

am−1 ⊗ · · · ⊗ (e1)
a1 ,

where the numerical factor αλ is:

αλ =
m
∏

i=1

Ai!
n−1
∏

j=1

(m+ A′j)!(m!)am−j0
m−1
∏

k=1

((m− k)!)ak .

The value of the coefficient αλ will be usefull in Section 5.
With the notation Ai = ai+ · · ·+am, the highest weight λ can be written, modulo

the supertrace as:

λ =

m
∑

i=1

Aiǫi +

n−1
∑

j=1

A′jδj .

4. Shape algebra

As for the Lie algebra sl(m), knowing the simple covariant tensorial modules Sλ

for sl(m,n), we can define a structure of commutative algebra on their direct sum.
More precisely, we define the space:

S• =
⊕

λ∈Λcov

Sλ,

To define the product on S•, we need to consider its dual (S•)∨ as a natural sl(n,m)-
module.
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First each Sλ is a finite dimensional gl(m)× gl(n)-module, thus the corresponding
group acts on Sλ, we consider the element:

w =













































0 1
·

·
·

1 0













0

0













0 1
·

·
·

1 0













































in GL(m) × GL(n). Put ẽi = em+1−i, ẽm+j = em+n+1−j . In Sλ, there is the vector
ṽλ = w · vλ, which have the same expression as vλ, but with the ẽk replacing the ek.
Its weight is:

w(λ) = A′n−1δ2 + A′n−2δ3 + · · ·+ A′1δn + Amǫ1 + Am−1ǫ2 + · · ·+ A1ǫm.

Now the contragredient module (Sλ)∨, defined by (X, f) 7→ −tX · f , where f
belongs to the dual (Sλ)⋆ and tX· is the supertranspose of the transformation X· on
Sλ, contains a vector with weight −w(λ).
We consider this sl(m,n)-module as a sl(n,m)-module, by the identification of

these two Lie superalgebras through:
(

A B
C D

)

7−→

(

D C
B A

)

,

then the system of simple roots for sl(n,m) is

Π∨ = {δ1 − δ2, . . . , δn−1 − δn, δn − ǫ1, ǫ1 − ǫ2, ǫ2 − ǫ3, . . . , ǫm−1 − ǫm}.

With this choice, λ∨ = −w(λ) becomes an integral dominant weight for sl(n,m),
since it can be written λ∨ = (a∨, a

′∨), where:

a∨j = a′n−j (1 ≤ j ≤ n− 1), a∨n = am − j0, a
′∨
i = am−i (1 ≤ i ≤ m− 1).

We shall just write

(Sλ)∨ = (Sλ
m,n)

∨ ≃ Sλ∨

n,m = Sλ∨

.

Now, for each µ, ν in Λcov such that µ + ν = λ, since λ 7→ λ∨ is linear, there is a
natural morphism of sl(n,m)-modules:

∆ : (Sλ)∨ −→ (Sµ)∨ ⊗ (Sν)∨.

By transposition, we get a natural morphism of sl(m,n)-modules:

⋆ : Sµ ⊗ Sν −→ Sλ.
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Proposition 4.1.

The so defined product ⋆, on S•, is commutative and associative, and satisfies:

1. ⋆ is an intertwining operator from Sλ ⊗ Sµ to Sλ+µ,
2. when we fix the highest weight vector vλ in Sλ as in the preceding section,

vλ ⋆ vµ = vλ+µ.

Remark that Sλ ⊗ Sµ being a submodule in T (V ), is completely reducible into a
sum of simple modules isomorphic to some Sν , with ν ≤ λ + µ. However, the iso-
typic component corresponding to ν = λ + µ is simple, generated by vλ ⊗ vµ. As a
consequence, the two properties of this proposition characterize completely the mul-
tiplication ⋆.

Definition 4.2.

The algebra (S•, ⋆) is called the shape algebra of sl(m,n).

Especially, for any λ, there is an injective morphism of n+-module from Sµ into
Sλ+µ, given by:

v 7→ vλ ⋆ v.

Conversely, suppose λ, µ are in Λcov, with µ ≤ λ.
If λ− µ is in Λcov, then v 7→ vλ−µ ⋆ v is an injective morphism of n+-modules from

Sµ into Sλ.
Unfortunately, we can have λ − µ /∈ Λcov. Indeed if λ = (a, a′), and µ = (b, b′),

λ−µ = (a−b, a′−b′) is integral dominant but we can have am−bm < sup{j, a′j > b′j}.
In this situation, we can define another injective map as follows.
Consider the weight η =

∑m

i=1 ǫi. This weight is in Λcov, since η = ((0, . . . , 1), 0).
There is a minimal natural number k such that λ− µ+ kη belongs to Λcov, namely:

k = sup(0, sup{j, a′j > b′j} − am + bm).

Then, as n+-module, Sλ is isomorphic to vkη ⋆ Sλ, and this module contains a n+-
module isomorphic to Sµ, namely vλ−µ+kη ⋆ Sµ.

In the next section, we shall describe a linear basis for the shape algebra, given by
semistandard Young tableaux.

5. Semistandard tableaux for sl(m,n)

5.1. Young tableaux.

A Ferrer diagram F for gl(m), is a juxtaposition of columns of empty boxes, the
diagram is characterized by its shape a = (a1, . . . , am) where ai is the number of
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columns with height i.

The transpose of F is the diagram F t having, for any j, aj rows with length j.

To build a diagram for sl(m,n) (with n ≥ 1) we consider two Ferrer diagrams,
one F+ for gl(m), with shape a = (a1, . . . , am) and one F ′ for gl(n − 1) with shape
a′ = (a′1, . . . , a

′
n−1), we suppose the condition:

am ≥ sup{j, a′j 6= 0} (∗)

holds. Then, we first put (at the top) the diagram F+, then a line at the separation
between rows m and m + 1, finally the transpose F− of the diagram F ′ under this
line and at the left. We get a diagram F = F+ ⊎ F− with shape:

λ = (a, a′) = ((a1, . . . , am), (a
′
1, . . . , a

′
n−1)).

Here is an example, for sl(2, 3): start with F+ and F ′:

F+ = F ′ =

Then the respective shapes are a = (1, 2), a′ = (2, 3), the transpose of F ′ is:

F− = (F ′)t =

and the final Ferrer diagram is:

F = F+ ⊎ F− =

m

We define a partial ordering on the shapes for diagrams by putting:

µ = (b, b′) ≤ λ = (a, a′)

if and only if:
bi ≤ ai, for any i, b′j ≤ a′j, for any j.

Let us remark that λ− µ is not always a shape of a Ferrer diagram, indeed, λ− µ is
a shape if and only if am − bm ≥ sup{j, a′j > b′j}.
This relation defines an ordering on the set of (m,n)-shapes. This ordering corre-

sponds to the restriction of the natural ordering on Λ.



DIAMOND CONE FOR sl(m,n) 15

The semistandard tableaux for sl(m,n), are particular filling of Ferrer diagrams.

5.2. Semistandard Young tableaux.

Definition 5.1.

A semistandard tableau for sl(m,n) is a filling of a Ferrer diagram with natural
numbers ti,j (in the (i, j)-box) such that

1. For every i, j, ti,j ≤ n+m,
2. Along each row, the ti,j are increasing from the left to the right, and strictly

increasing if ti,j > m:

For all j, ti,j ≤ ti,j+1, and, if ti,j > m, then ti,j < ti,j+1,

3. Along each column, the ti,j are increasing from the top to the bottom, and
strictly increasing if ti,j ≤ m:

For all i, ti,j ≤ ti+1,j , and, if ti,j ≤ m, then ti,j < ti+1,j.

In these relations and everywhere in this section, we use the following convention:
if a member in an inequality does not exist, then the inequality holds.

For instance the following tableaux T and T ′ are semistandard for sl(2, 3):

T =

1 1 2
2 4
3 4
4

T ′ =

1 2
4
4
4

We denote SSλ
m,n or SSλ the set of semistandard Young tableaux for sl(m,n), with

shape λ.

If n = 0, a semistandard tableau for sl(m, 0) is a usual semistandard Young tableau.
If m = 0, a semistandard tableau for sl(0, n) is the transpose of a usual semistandard
Young tableau.

If T is a semistandard tableau for sl(m,n), we define T+ as the tableau formed by
the m first rows of T and T− the tableau whose the (j −m)th row is the row j, for
j > m. We shall write T = T+ ⊎ T−:

t+i,j = ti,j (i ≤ m), t−i,j = tj+m,i.

For each semistandard tableau T with shape λ, we associate, as usual, a vector eT
in Sλ, realized as a submodule in T (V ).
First, we choose the standard tableau St = (sij), with shape λ, defined by:

sij = i+
∑

k<j

ck,
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if ck is the height of the column k, that is we fill the boxes column by column, from
the top to the bottom and from left to right.
Then, if (e1, . . . , en+m) is the canonical basis in V , and T = (tij) is a semistandard

or not semistandard tableau with shape λ (tij ≤ n + m), we denote eT the tensor
product:

eT = (et11 ⊗ et21 ⊗ · · · ⊗ etc11)⊗ (et12 ⊗ · · · ⊗ etc22)⊗ · · · ⊗ (et1A1
⊗ · · · ⊗ etcA1

A1
).

Now, if N =
∑

ck is the number of entries in λ, the group SN acts on the right on
TN(V ) by

v1 ⊗ · · · ⊗ vN · σ = ε|v|(σ)vσ(1) ⊗ · · · ⊗ vσ(n).

Denote aλ the sum of the permutations σ in SN which preserve the rows of the
standard tableau St, similarly denotes bλ the linear combination of the permutations
τ in SN which preserve the columns of St, with the sign of τ as coefficient.
The Young symmetrizer associated to our choice of St is cλ = aλ · bλ. Finally, we

associate to T the vector:

eT = eT · cλ.

Remark that with our preceding notations,

eT ∈ Symã1(∧m+A′
1V )⊗· · ·⊗Symãn−1(∧m+A′

n−1V )⊗Symãm(∧mV )⊗· · ·⊗Syma1(V ).

For instance, for sl(2, 2), we consider the semistandard tableau:

T =
2 2
3 4
3

.

Then:

eT = (e2 ⊗ e3 ⊗ e3)⊗ (e2 ⊗ e4),

and

eT · aλ = 2(eT − eT
′

), where T ′ =
2 2
4 3
3

and finally:

eT = eT · cλ = 3!2! [2(e2 ∧ e3 ∧ e3)⊗ (e2 ∧ e4)− 2(e2 ∧ e4 ∧ e3)⊗ (e2 ∧ e3)] .

Especially, with our preceding notations and choice of the factor αλ (Proposition
3.6),

vλ = eS0
λ
,

where S0
λ is the tableau such that tij = i if i ≤ m and tij = m+ j if i > m.

Berele and Regev prove:
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Theorem 5.2. ([BR])

A basis for the space Sλ is given by the familly of all the vectors eT for T in SSλ.

In the next section, we recall a presentation of S• as the subspace of elements in
T (

∧

V ) satisfying the Garnir relations.

6. Garnir and Plücker relations

We first saw (see Theorem 2.3) that in the classical sl(m) case, the shape algebra
is a quotient of Sym•(

∧

Cm) by an ideal generated with the Plücker relations. In the
graded case, the generalization of Plücker relations are the Garnir relations.

Let us first describe the Garnir relations.

Let C = (v1, . . . , vP ) and D = (w1, . . . , wQ) be two finite sequence of vectors in V .
We suppose P ≥ Q and put (v1, . . . , vP , w1, . . . , wQ) = (u1, . . . , uP+Q).

The Garnir relations take place in Sym•(
∧

V ). We consider vectors with the form:

uC · uD = (u1 ∧ . . . ∧ uP ) · (uP+1 ∧ . . . ∧ uP+Q),

where · is for ⊗ if P > Q and the symmetric product if P = Q. Recall that if σ is in
SP+Q,

(uC · uD) · σ = ε|u|(σ)(uσ(1) ∧ . . . ∧ uσ(P )).(uσ(P+1) ∧ . . . ∧ uσ(P+Q)).

To define the Garnir relations, we consider particular permutations σ = (X ′ ↔ Y ′).

Let p ≤ P , q ≤ Q, such that p+ q > P . put X = (v1, . . . , vp), Y = (w1, . . . , wq).
A subsequence with r elements X ′ ⊂ X is a sequence (vi1, vi2 , . . . , vir) such that

i1 < i2 < . . . < ir. Denote sr(X) the set of such subsequences.
If r ≤ inf(p, q), let X ′ be in sr(X), and Y ′ in sr(Y ),

X ′ = (vi1 , vi2, . . . , vir) = (ui1, ui2, . . . , uir),

Y ′ = (wj1, wj2, . . . , wjr) = (uP+j1, uP+j2, . . . , uP+jr),

we define the permutation X ′ ↔ Y ′ in SP+Q as:

X ′ ↔ Y ′ = (i1, P + j1)(i2, P + j2) . . . (ir, P + jr)

=
(

1 ... i1 ... ir ... P P+1 ... P+j1 ... P+jr ... P+Q
1 ... P+j1 ... P+jr ... P P+1 ... i1 ... ir ... P+Q

)

.



18 B. AGREBAOUI, D. ARNAL AND O. KHLIFI

By definition, the Garnir relations on the vector uC .uD associated to X and Y is:

GX,Y (uC .uD) =

inf(p,q)
∑

r=0

(−1)r
∑

X′∈sr(X)
Y ′∈sr(Y )

(uC · uD) · (X
′ ↔ Y ′).

Theorem 6.1. ([KW])

As a vector space, the shape algebra S• is the quotient of the symmetric algebra

Sym•(∧V ) =
∑

ãk ,...,ã1

Symãk(∧kV )⊗ · · · ⊗ Symã1(V ),

by the ideal generated by the Garnir relations.

More precisely, given λ ∈ Λcov, if ãj is the number of columns with height j, Sλ is
exactly the image of

⊗

j(Sym
ãj(∧jV )) in the quotient.

The graded Plücker relations are the following: for any q ≥ 1, we consider Y =
(uP+1, . . . , uP+q), the relation is:

uC .uD = Pq(uC.uD) =
∑

X′∈sq(C)

(uC · uD) · (X
′ ↔ Y ).

In fact, it is proved in [KW] that the Garnir relations are equivalent to the Plücker
relations, since:

Theorem 6.2.

We keep our notations. Then the following are equivalent:

1) uC .uD = P1(uC .uD) for any C, and D,
2) uC .uD = Pq(uC.uD) for any C, any D, any q,
3) GC,Y (uC.uD) = 0 for any C, any D, and any Y 6= ∅,
4) GX,Y (uC.uD) = 0 for any C, any D, any X, any Y such that #(X∪Y ) > #C.

If we consider vectors of the form eT for a given shape λ, the Plücker relations
imply columns of T . More precisely suppose T has k columns with height c1, . . . , ck,
eT =

∑

±eC1 · . . . · eCk
, with eCj

∈ ∧cjV .
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For any j < k, for any q > 0, if Y is the q-top of the column Cj+1, with a small
abuse of notations, the Plücker relation is:

eT =
∑

±eC1 · . . . · eCj−1
· Pq(eCj

· eCj+1
) · eCj+2

· . . . · eCk

=
∑

X∈sq(Cj)

eT · (X ↔ Y )

=
∑

X∈sq(Cj)

ε|ei|(X ↔ Y )eT ·(X↔Y )

= P (j)
q (eT ).

Later one, we shall work with the part T− of a semistandard tableau T , which is
under the line. Especially, we shall extract some ‘trivial’ subtableau from T−, exactly
as in [ABW], but modulo a transposition of the tableau. To be complete, we shall
prove here that the transpose of the usual Plücker relations on (T−)t hold for T , we
call them horizontal Plücker relations, since, on vectors eT , these relations yield from
permutations on the rows of the tableau T .

We look for two successive rows Ri, Ri+1 in a tableau T , containing only entries
strictly larger than m. We denote these entries s1, . . . , sp and t1, . . . , tq, with p ≥ q,
then the corresponding horizontal Plücker relation is:

eT =

p
∑

j=1

eT ·(sj↔t1) = HP
(i)
1 (eT ).

Proposition 6.3.

For any tableau T , and any rows Ri, Ri+1 of T whose entries are all strictly larger

than m, the horizontal Plücker relation eT = HP
(i)
1 (eT ) holds.

Proof. Suppose first that T contains only the two rows Ri, Ri+1. Then:

eT =
∑

(σ,τ)∈Sp×Sq

ε(σ)ε(τ)(esσ(1)
∧ etτ(1))⊗ . . .⊗ (esσ(q)

∧ etτ(q))⊗ . . .⊗ (esσ(p)
).
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On the other hand, the sum in HP
(i)
1 is

HP
(i)
1 (eT ) =

p
∑

j=1

eT ·(sj↔t1)

=
∑

j

∑

(σ,τ)∈Sp×Sq

σ−1(j)=τ−1(1)

ε(σ)ε(τ)(esσ(1)
∧ etτ(1))⊗ . . .⊗ (et1 ∧ esj)⊗ . . .

+
∑

j

∑

(σ,τ)∈Sp×Sq

σ−1(j)6=τ−1(1)

ε(σ)ε(τ)(esσ(1)
∧ etτ(1))⊗ . . .⊗ (esj′ ∧ esj)⊗ . . .

Since the vectors ek are odd, in the first sum, et1∧esj = esj∧et1 = eσ(σ−1(j))∧eτ(τ−1(1)),
thus the first sum is exactly eT .
In the second sum, we keep the terms for which j′ < j, getting a quantity A and,

for the terms where j′ > j, we replace esj′ ∧ esj by esj ∧ esj′ and σ by σ′ = (j, j′) ◦ σ,
thus we get the terms of A, but with an opposite sign, the second sum vanishes.

In the general case, if T<i is the top of T , containinig the i − 1 first rows and
T>i+1 the bottom, containing rows after i + 1, we can present the ·aλ action on T
shematically as:

T · aλ =
∑

(σ,τ)∈Sp×Sq

T<i · a<i
λ

sσ(1) . . . sσ(p)
tτ(1) . . . tτ(q)

T>i+1 · a>i+1
λ

then the above proof works with the same computation, except we have to modify
the signs ε(σ) and ε(τ) into ε′(σ) and ε′(τ), to take into account the vectors corre-
sponding to the rows of T above and under Ri and Ri+1. But when we use (j, j′) ◦σ,
we verify directly that we still have ε′((j, j′) ◦ σ) = −ε′(σ).

The horizontal Plücker relation holds.
�

7. Product on tableaux

The sl(m,n) action on the vectors eT defines an action on the space generated by
the semistandard tableaux with a given shape λ. More precisely, for any i, j the
matrix Eij with all entries 0, except in the position (i, j), where the entry is 1 acts
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on eT (T = (tk,ℓ) semistandard or not semistandard) as follows:

Eij · eT =
∑

tk,ℓ=j

eT ·(tk,ℓ↔i),

then we decompose this sum onto the basis eU , U in SSλ, getting:

Eij · eT =
∑

r

xreUr .

We just write this last relation as:

Eij · T =
∑

r

xrUr.

The algebra structure on S• defines a multiplication (still denoted ⋆) on the vec-
tor space generated by semistandard tableaux. If T and T ′ are two semistandard
tableaux, with shape λ and µ, we write:

eT ⋆ eT ′ =
∑

i

xieUi
,

with xi 6= 0 and each Ui is semistandard, with shape λ+ µ. We thus put

T ⋆ T ′ =
∑

i

xiUi.

Let us describe directly the multiplication ⋆ on the space of tableaux.

Let us start with two semistandard tableaux S with shape λ and T with shape µ.
We write S = S+ ⊎ S− and T = T+ ⊎ T−.
Suppose the length of the rows in S+ are A1, . . . , Am. We define S+ ◦ T+ as the

tableau U+ = (uij) whose the entries in the row i are uij = sij, if j ≤ Ai, and
ui(Ai+j) = tij .
Similarly suppose the height of the columns in S− are A′1, . . . , A

′
n−1. We define

S− ◦ T− as the tableau U− = (u(m+i)j) whose the entries in the column j are
u(m+i)j = s(m+i)j , if i ≤ A′j , and u(m+A′

j+i)j = t(m+i)j .

Proposition 7.1.

With the above notation, we put U = U+ ⊎ U−, it is a possibly non semistandard
tableau with shape λ + µ, suppose the decomposition of eU into the basis eUi

, Ui

semistandard is

eU =
∑

i

xieUi
,

then

S ⋆ T =
∑

i

xiUi.
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Proof. By construction, the tableau U is a Young tableau, with a shape λ+ µ, espe-
cially it corresponds to a weight in Λcov.
For the moment, note ⋆′ the operation defined in the proposition. Then, by defi-

nition of the sl(m,n) action, this map is a morphism of modules between Sλ ⊗ Sµ to
Sλ+µ:

Eij · U = (Eij · S) ⋆
′ T + S ⋆′ (Eij · T ).

Moreover, if S = S0
λ and T = S0

µ are the tableaux associated to the highest weight

vector, by construction U is S0
λ+µ. Thus it is semistandard and

eS0
λ
⋆′S0

µ
= eS0

λ+µ
= eS0

λ
⋆ eS0

µ
.

By unicity of the multiplication, this proves our proposition: ⋆ = ⋆′. �

Let us remark that, with the preceding notations, for S = S0
λ and any semistandard

T , with shape µ, the tableau U is semistandard, with shape λ+ µ, therefore:

S0
λ ⋆ T = U.

8. Reduced shape algebra

By definition, the reduced shape algebra is the quotient of the shape algebra by
the ideal generated by the relations vλ = 1.

Definition 8.1.

The reduced shape algebra for sl(m,n), denoted S•red = S•red, (m,n) is the quotient of
the shape algebra S• = S•(m,n) by the ideal generated by eS0

λ
− 1, for any shape λ in

Λcov:
S•red = S•/〈vλ − 1〉.

Recall n+ is the nilpotent Lie superalgebra of strictly uppertriangular matrices in
sl(m,n). Since the n+ action is trivial on the (vλ − 1), the ideal 〈vλ − 1〉 and the
reduced shape algebra are n+ modules. The goal of this paper is a first study of the
structure of the n+-module S•red.

Denote p the canonical projection from S• to S•red.

Proposition 8.2.

1. S•red is a locally nilpotent n+-module,
2. The unique vector v in S•red such that n+.v = 0 is up to a factor p(1) and

p(1) 6= 0,
3. S•red is an indecomposable module,
4. For each λ in Λcov, p is an isomorphism of n+-module from Sλ onto p(Sλ).
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Proof. Recall first that the simple sl(m,n) module Sλ is a weight module (Sλ =
∑

µ≤λ(S
λ)µ), where (Sλ)µ is the weight subspace in Sλ, with weight µ. Now for any

non vanishing v in (Sλ)µ, there is a finite sequence (X1, . . . , Xk) of elements in n+,
such that X1 . . .Xk.v = vλ.
1. S•red is generated by the vectors w = wλ

µ in p((Sλ)µ). For these vectors there is k

such that (n+)k.w = p(vλ), thus (n
+)k+1.w = 0, S•red is a locally nilpotent n+-module.

2. Suppose p(1) = 0, that means there are some non vanishing weight vectors wλ
µ,ν

in some (Sµ)µ−ν , such that:

1 =
∑

λ6=0,µ,ν

wλ
µ,ν ⋆ vλ − wλ

µ,ν ∈
∑

λ,µ,ν

Sλ+µ + Sµ.

But 1 is a dominant weight vector in the shape algebra, the dominant weight vectors
in the right hand side are wλ

µ,0 = Cλ
µvµ and wµ,0 ⋆ vλ, thus we can write:

1−
∑

λ,µ

Cλ
µvµ ⋆ (vλ − 1) =

∑

λ,µ,ν 6=0

wλ
µ,ν ⋆ (vλ − 1) = u.

For any X in n+, X.u = 0, thus u is a linear combination of vρ, since no weight vector
in the right hand side is dominant, the only possibility is u = 0. We have

1 =
∑

λ>0,µ≥0

Cλ
µvµ ⋆ (vλ − 1) =

∑

λ,µ

Cλ
µ(vλ+µ − vµ) =

∑

λ≥ρ>0

Cλ
ρ−λvρ −

∑

λ>0,µ≥0

Cλ
µvµ.

We get the relations:

−1 =
∑

λ>0

Cλ
0 ,

∑

λ

Cλ
µ−λ =

∑

λ

Cλ
µ (µ > 0).

We finally sum up all these relations, getting:

−1 +
∑

λ,µ≥0

Cλ
µ =

∑

λ,µ≥0

Cλ
µ ,

which is impossible.

Let now w = p(v) be a vector in the reduced shape algebra which satisfies n+.w = 0,
then with a preceding argument,

v =
∑

µ

Aµvµ +
∑

λ,ν

Cλ
ν vν ⋆ (vλ − 1).

Therefore, w = p(v) = (
∑

µA
µ)p(1) is a multiple of the vector p(1).

3. Let W be a n+-submodule in the reduced shape algebra S•red, then since this mod-
ule is locally nilpotent, it contains a non trivial vector annhilated by n+, thus p(1)
belongs to W . S•red is an indecomposable n+-module.
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4. We consider the kernel K of the restriction of p to Sλ. It is a nilpotent n+-module,
thus, if it is not trivial, it contains a non vanishing vector annhilated by n+. Since
there is only one such vector in Sλ, K contains vλ, thus p(vλ) = p(1) = 0, which is
impossible, p is an isomorphism of n+-modules from Sλ onto p(Sλ).

�

Corollary 8.3.

If µ ≤ λ, then p(Sµ) is a submodule of p(Sλ).

Proof. Using the notations in the end of section 4, we have:

p(Sµ) = p(vλ−µ+kη ⋆ Sµ) ⊂ p(vkη ⋆ Sλ) = p(Sλ).

�

We shall now build a combinatorial basis, for the reduced shape algebra S•red which
respects the above stratification of indecomposable modules, using particular semis-
tandard tableaux, called quasistandard Young tableaux.

9. Quasistandard tableaux

Let us first define what is a trivial tableau.

Definition 9.1.

We say that a tableau S+ is trivial if it contains only columns with heights at most
m, and its entries are s+ij = i for any i and j.
We say that a tableau S− is trivial if it contains no rows with index 1, . . . , m, and

if its entries are s−m+i,j = m + j, for any i, and j. (Remark that S− is not a Young
tableau).
We say that a Young tableau S is trivial if it is S = S+⊎S−, with S+ and S− trivial.

Definition 9.2.

Suppose T = T+ ⊎ T− = (ti,j) is a semistandard tableau. Let S+, S− be two trivial
tableaux, let Bi be the length of the row i in S+ and B′j the height of the column j in
S−. We say that the pair of trivial subtableaux (S+, S−) is extractable from T if:

i. S± is on the top and left subtableau in T±,
ii. the tableau U defined by:

uij = ti,j+Bi
, (i ≤ m), and uij = ti+B′

j ,j
, (i > m)

is a semistandard tableau.
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Let T be a semistandard tableau, with shape (a, a′). Denote Ai the length of the
row i (i ≤ m) andm+A′j the height of the column j (j < n and the column has height
larger than m). We consider a pair (S+, S−) of trivial tableaux, with respective shape
b = (b, 0) and b′ = (0, b′). We denote Bi, (resp. B′j) the length (resp. the height)
of the rows (resp. the columns) of S+ (resp. S−). (S+, S−) is extractable from T
semistandard means the following conditions hold:

E1. for i ≤ m, bi ≤ ai, and ti,j = j if j ≤ Bi, and

ti,j+Bi
≤ ti+1,j+Bi+1

, and ti,j+Bi
< ti+1,j+Bi+1

if ti,j+Bi
≤ m,

E2. for j < n, b′j ≤ a′j , and for i > m, ti,j = m+ j if i ≤ Bj, and

ti+B′
j ,j

< ti+B′
j+1,j+1,

E3. (̃a− b)m = (am − bm)− sup{j, a′j > b′j} ≥ 0,
E4. for all j, tm,j+Bm ≤ tm+1+B′

j ,j
.

Example 9.1. For instance, for sl(2, 3), the tableau:

T =

1 1 2 2
2 3 4 2

3 4
3 5
4 5
4
5

,

contains the trivial extractable pair:

(S+, S−) =

1 1
2 2

3 4
3

.

Lemma 9.3.

Among the pairs of trivial extractable tableaux in T , there is an unique largest one.

Proof. Suppose that (S1+, S1−) with respective shapes b1, (b1)′ and (S2+, S2−) with
respective shapes b2, (b2)′ are trivial pairs extractable from T , then the pair S+ =
S1+ ∪ S2+, with shape b, S− = S1− ∪ S2−, with shape b′, is trivial, let us prove it is
extractable:

1. For i ≤ m, Bi = sup{B1
i , B

2
i }, thus bi = Bi − Bi+1 ≤ sup{b1i , b

2
i } and the

relation E1. holds in any case. For instance, if Bi = B1
i and Bi+1 = B2

i+1,
then

ti,j+Bi
= ti,j+B1

i
≤ ti+1,j+B1

i+1
≤ ti+1,j+B2

i+1
= ti+1,j+Bi+1

,
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and, if ti,j+Bi
≤ m,

ti,j+Bi
= ti,j+B1

i
< ti+1,j+B1

i+1
≤ ti+1,j+B2

i+1
= ti+1,j+Bi+1

.

2. E2 holds with the same argument: b′j ≤ a′j , for any j, and if for instance

Bj = B1
j and Bj+1 = B2

j+1, then

ti+B′
j ,j

= ti+(B1)′j ,j
< ti+(B1)′j+1,j+1 ≤ ti+(B2)′j+1,j+1 = ti+B′

j+1,j+1,

3. Remark that {j, A′j > B′j} = {j, A′j > (B1)′j} ∩ {j, A′j > (B2)′j} and

Bm = bm. Suppose for instance that Bm = B1
m, then

(̃a− b)m = am − bm − sup{j, A′j > B′j} ≥ am − b1m − sup{j, A′j > (B1)′j} ≥ 0.

Relation E3 holds.
4. Suppose Bm = B1

m. For any j, if B′j = (B1)′j , the inequality E4. holds, if
B′j = (B2)′j,

tm,j+Bm = tm,j+B1
m
≤ tm+1+(B1)′j ,j

≤ tm+1+(B2)′j ,j
= tm+1+B′

j ,j
,

E4 is still holding.

Therefore there is a largest trivial extractable pair (S+, S−) inside T .
�

Let us denote (S+
T , S

−
T ) the largest trivial extractable pair in T .

Remark 9.1.

Let (S+, S−) be a trivial extractable pair in the semistandard tableau T for sl(m,n).
Then S ′ = (S−)t is extractable (for sl(n)) from the tableau T ′ = (T−)t semistandard
for sl(n). It is easy to prove that if a tableau S ′1 is trivial extractable for T ′, and
contains S ′, then the pair (S+, (S ′1)

t) is trivial rextractable from T .
Therefore, if ST ′ is the maximal trivial extractable tableau for T ′, we have

(ST ′)t = S−T .

Definition 9.4.

A semistandard tableau T is quasistandard if the unique trivial extractable pair in
T is the empty pair (∅, ∅).
Denote QSλ

(m,n) = QSλ the set of all quasi standard tableaux with shape λ.

For any semistandard tableau, we define the tableau push(T ) by suppressing from
T the largest trivial extractable pair, that is if b = (bi), b

′ = (b′j) are the shapes of S+
T

and S−T , push(T ) = (ui,j) is the semistandard tableau defined by

ui,j = ti,j+Bi
(i ≤ m), and ui,j = ti+B′

j ,j
(i > m).
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Remark that if T belongs to SS(a,a′) and b (resp. b′) is the shape of S+
T (resp. S−T ),

then push(T ) is in SS(a−b,a′−b′) and µ = (a− b, a′ − b′) ≤ (a, a′) = λ.

Let us now prove that push is a bijective mapping between SSλ and
⊔

µ≤λ QSµ.

Proposition 9.5.

Consider the restriction pushλ of push to SSλ. Then, pushλ is a bijection from
SSλ onto

⊔

µ≤λ QSµ.

Proof. Let T = (ti,j) be a semistandard tableau of shape λ = (a, a′), let (S+
T , S

−
T ) the

largest trivial extractable pair in T . Suppose the shape of S+
T (resp. S−T ) is b (resp. b

′).

We first prove that push(T ) is in QS(a−b,a′−b′). Suppose push(T ) = (ui,j) contains
a non empty trivial extractable pair (S+, S−), with respective shapes c, c′. Then:

ui,j = i = ti,j+Bi
(i ≤ m, j ≤ Ci) or ti,j = i (i ≤ m, j ≤ Bi + Ci)

ui,j = j +m = ti+B′
j ,j

(m < i ≤ C ′j) or ti,j = j +m (m < i ≤ B′j + C ′j).

That means the trivial pair (S̃+, S̃−) with respective shapes d, d′ such that Di =
Bi + Ci, D

′
j = B′j + C ′j is a subtableau of T . Moreover, for all i ≤ m and j,

ti,j+Di
= ui,j+Ci

≤ ui+1,j+Ci+1
= ti+1,j+Di+1

, and ti,j+Di
< ti+1,j+Di+1

if ti,j+Di
≤ m,

and, for any i > m,

ti+D′
j ,j

= ui+C′
j ,j

< ui+C′
j+1,j+1 = ti+D′

j+1,j+1.

Similarly:

Am −Dm − sup{j, A′j > D′j} = (Am − Bm)− Cm − sup{j, A′j − B′j > C ′j} ≥ 0,

and for all j,

tm,j+Dm = um,j+Cm ≤ um+1+C′
j ,j

= tm+1+D′
j ,j
.

All these relations prove that (S̃+, S̃−) is a trivial extractable pair in T , which is
strictly larger than (S+

T , S
−
T ), which is impossible. push(T ) is quasistandard.

Let us define now, for any µ = (b, b′) ≤ λ = (a, a′) in Λcov, the ‘pullλ−µ’ map as
the following: if U = U+ ⊎ U− is a semistandard tableau with shape µ, we denote
(S+, S−) the trivial pair with shapes a− b, a′ − b′ and define:

pullλ−µ(U) = (S+ ⋆ U+) ⊎ (S− ⋆ U−).

That is we define T = pullλ−µ(U) as the tableau tij with, if i ≤ m,

ti,j = i (j ≤ Ai − Bi), ti,j+Ai−Bi
= ui,j (j ≤ Bi),
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and if i > m,

ti,j = m+ j (i ≤ A′j − B′j), ti+A′
j−B

′
j ,j

= ui,j (i ≤ B′j).

It is clear that T is a Young tableau with shape λ. It is easy to verify that T belongs
to SSλ, and of course, (S+, S−) is a trivial extractable pair in T .
Now, if (S+, S−) ( (S+

T , S
−
T ), then by construction, U contains a non empty trivial

extractble pair. Therefore, if U is quasistandard, then (S+, S−) is the largest trivial
extractable pair in T , U = push(pullλ−µ(U)), and push is onto.

Finally, for any semistandard tableau T with shape λ, if the shape of push(T ) is
µ, then, by definition, pullλ−µ(push(T )) = T and push is one-to-one.

�

We now get the wanted basis for S•red, ı.e. the diamond cone for sl(m,n).

Remark 9.2.

To prove the quasistandard tableaux give a generating system for the reduced shape
algebra, we could use the argument in [ABW]:
A consequence of the horizontal Plücker relations is that any semistandard tableau

T ′ for sl(n − 1) can be written ST ′ ⋆ U ′ +
∑

T ′
j<T ′ T ′j where < is a total ordering of

tableaux, coming back to T this gives, thank to remark 9.1:

T = (∅ ⊎ S−T ) ⋆ T
+ ⊎ U− +

∑

Tj<T

Tj .

As a consequence of the Plücker relations Pq with q ≤ m, T+ can be similarly
written as S+

T ⋆ U+ +
∑

T+
k
<T+ T+

k , this gives finally:

T = (S+
T ⊎ S−T ) ⋆ U +

∑

Ri<T

Ri.

With this result, it is easy to prove that {p(eU), U ∈ QS•} generates the reduced
shape algebra.

We prefer to now present a direct and simple proof.

Theorem 9.6.

The set of all quasistandard tableaux for sl(m,n) labels a basis for the reduced shape
algebra S•red.
More precisely, for any λ in Λcov, a basis for p(Sλ) is given by the family

{

p(eU), U ∈
⋃

µ≤λ

QSµ
}

.
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Proof. First, for any T semistandard, with shape λ, consider the largest trivial ex-
tractable pair (S+

T , S
−
T ) for T . Recall that S+

T ⊎ S−T can be not a Young tableau,
however, if µ is the shape of push(T ) and η is the shape ((0, . . . , 1), (0, . . . , 0)), there
is a natural number k such that (S0

kη⋆S
+
T )⊎S

−
T is the (trivial) Young tableau S0

kη+λ−µ,
with shape kη + λ− µ. It is easy to show that the largest trivial extractable pair in
S0
kη ⋆ T is ((S0

kη ⋆ S
+
T ), S

−
T ), thus

S0
kη ⋆ T = S0

kη+λ−µ ⋆ push(T ),

this proves that p(eT ) = p(epush(T )) in the quotient, and a generating system for p(Sλ)
is labelled by

⋃

µ≤λ QSµ.

Fix a shape λ and suppose that, in the reduced shape algebra
∑

ajp(eUj
) = 0,

where aj ∈ C, and the Uj are distinct quasistandard tableaux with shape µj ≤ λ.
Then the Tj = pullλ−µj (Uj) are distinct semistandard tableaux, with shape λ, and

p(
∑

j

ajeTj
) =

∑

j

ajp(epush(Tj)) =
∑

j

ajp(eUj
) = 0.

But we saw that p is one-to-one on Sλ, this implies:
∑

j

ajeTj
= 0.

Since the Tj are distinct tableaux, aj = 0 for any j and the p(eUj
) are linearly

independent in the reduced shape algebra.
�

Clearly, the basis given in the theorem is well adapted to the stratification of the
n+-modules p(Sλ) in S•red (see Corollary 8.3).

However, fix a shape µ and let λ ≥ µ a shape such that λ−µ is a shape. Then the
pullλ−µ map is simply U 7→ S0

λ−µ⋆U , this map corresponds to the injective morphism

of n+-modules, from Sµ into Sλ, given by v 7→ vλ ⋆ v. Its inverse mapping can be
denoted

push←λ : pullλ−µ(QSµ) −→ QSµ.

It is possible to define directly the map push←λ as the extraction from the semis-
tandard tableau T of a trivial Young tableau:
We say that a trivial Young tableau S0 is extractable from T , if it is a trivial

tableau S0 = S+⊎S−, S+ and S− trivial, and if T = S0 ⋆U , with U a Young tableau.
Among the trivial extractable tableaux, there is a largest one S0

max, then push←λ(T )
is defined by

T = S0
max ⋆ push

←λ(T ).

Now, if λ − µ is not a shape, push←λ(SSλ) ∩ SSµ = ∅, and there is no natural
morphism of n+-module from Sµ into Sλ, but only the morphism from Sµ into Skη+λ
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given by v 7→ vkη+λ−µ ⋆ v and described as at the end of the Section 4.

Example 9.2.

Consider the Lie super algebra sl(1, 2), and the shape λ = ((2), (1)). Then we get
the following picture for the base of p(Sλ)

1
3

2
3

3
3

2 3
3

2

3 2 3

0

Similarly, for sl(2, 1) and λ = ((1, 1), ), we get the picture:

1
3

2
3

3
3

2 3
3

2

3
2 3
3

0

10. Super jeu de Taquin

In this section, we define the ‘super jeu de taquin’, i.e. the notion of jeu de taquin
for sl(m,n)-tableaux.
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Let λ = (a, a′) be a (m,n)-shape and µ = (b, b′) ≤ λ, such that λ − µ is a shape.
We say that a Ferrer diagram F = F+⊎F− is a skew diagram with shape λ−µ if the
shape of F is obtained by suppressing the empty boxes in µ from λ. More precisely,
denoting F µ = (F µ)+ ⊎ (F µ)− (resp. F λ = (F λ)+ ⊎ (F λ)−) a Ferrer diagram with
shape µ (resp. λ), we see (F µ)+, resp. (F µ)− as the corresponding subset at the top
and left in (F λ)+, resp. (F λ)−, then F± = (F λ)± \ (F µ)±.
For instance, for sl(2, 3), if λ = ((1, 3), (2, 3)) and µ = ((1, 1), (1, 1)), the skew

Ferrer diagram F with shape λ− µ is:

F =

m

For such a skew Ferrer diagram F , we define the outer corners as the box (i, j) such
that (i, j) is a box in (F µ)±, but (i+1, j) and (i, j+1) are not in (F µ)±. Similarly we
define inner corner for F± as the boxes (i, j) which are in F± and such that (i+1, j)
and (i, j + 1) are not in F±.
For future purpose, we put a total ordering on the set Out(F ) = Out(F+) ∪

Out(F−) of outer corners of F by putting:

Out(F+) = {c1 = (i1, j1) < · · · < cp = (ip, jp)},

Out(F−) = {c′1 = (i′1, j
′
1) < · · · < c′q = (i′q, j

′
q)},

if j1 < j2 < · · · < jp and i′1 < i′2 < · · · < i′q, moreover for any r and s, cr < c′s.
For instance, in the preceding example, Out(F ) = {(2, 1) < (1, 2) < (3, 2) <

(4, 1)}.
We call semistandard skew tableau T the filling of a skew Ferrer diagram by entries

ti,j in {1, . . . , m+n} such that for all j, ti,j ≤ ti,j+1, and, if ti,j > m, then ti,j < ti,j+1,
for all i, ti,j ≤ ti+1,j , and, if ti,j ≤ m, then ti,j < ti+1,j.
To define the super jeu de taquin on T , we put a star in a outer corner c of the

diagram of T , and push this star, step by step from the outer corner to a sequence
of boxes through the following rules:
Suppose the star is at the box (i, j).

1. If i > m, we try to push to the bottom:
a. if the box (i + 1, j) exists and the box (i, j + 1) does not exist or

ti+1,j < ti,j+1, we put the star in the box (i+ 1, j) and the entry ti+1,j in the
box (i, j). The other entries are not modified.

b. if the box (i, j + 1) exists and the box (i + 1, j) does not exist or
ti+1,j 6< ti,j+1, we put the star in the box (i, j + 1) and the entry ti,j+1 in the
box (i, j). The other entries are not modified.
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c. if the two boxes (i+1, j) and (i, j +1) do not exist (we say that (i, j)
is an inner corner for T ), we suppress the box (i, j) and the star.

2. If i ≤ m, we try to push to the right:
a. if the box (i, j + 1) exists and the box (i + 1, j) does not exist or

ti,j+1 < ti+1,j or ti,j+1 = ti+1,j > m, we put the star in the box (i, j + 1) and
the entry ti,j+1 in the box (i, j). The other entries are not modified.

b. if the box (i + 1, j) exists and the box (i, j + 1) does not exist or
ti,j+1 > ti+1,j or ti,j+1 = ti+1,j ≤ m, we put the star in the box (i + 1, j) and
the entry ti+1,j in the box (i, j). The other entries are not modified.

c. if the two boxes (i+ 1, j) and (i, j + 1) do not exist ((i, j) is an inner
corner for T ), we suppress the box (i, j) and the star.

At the end of the super jeu de taquin, we get a new skew tableau Tc = sjdtc(T ),
the number of boxes in Tc is (number of boxes in T ) -1. By construction, Tc is a semi
standard skew tableau.

Example 10.1. Let us consider sl(2, 3) and the following skew semistandard tableaux,
with c = (2, 1):

T =

1 2
⋆ 2 2

3 4
3 5
4

−→

1 2
2 ⋆ 2

3 4
3 5
4

−→

1 2
2 4 2

3 ⋆
3 5
4

−→

1 2
2 4 2

3 5
3 ⋆
4

−→

1 2
2 4 2

3 5
3
4

= Tc.

Similarly,

T =

1 2
⋆ 4 2

3 5
4 5
5

−→

1 2
3 4 2

⋆ 5
4 5
5

−→

1 2
3 4 2

4 5
⋆ 5
5

−→

1 2
3 4 2

4 5
5 ⋆
5

−→

1 2
3 4 2

4 5
5
5

= Tc.

It is possible to describe the extraction procedure by using the super jeu de taquin.
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Proposition 10.1.

Suppose (S+, S−) is a trivial extractable pair, with shape µ = (b, b′) in the semis-
tandard tableau T = T+⊎T−, with shape λ = (a, a′). Consider the semistandard skew
tableau R = T \S, and apply the super jeu de taquin to T \S, starting from the greatest
outer corner c in Out(R). We get the skew tableau Rc with shape (ac, (ac)′)−(bc, (bc)′).

• If c = (i, j) and i > m, then the star is going each step to the bottom.
Especially ac = a, bc = b, and (ac)′k = a′k, (b

c)′k = b′k, except for k = j:

(ac)′j = a′j − 1, (bc)′j = b′j − 1,

and for k = j − 1, if j > 1:

(ac)′j−1 = a′j−1 + 1, (bc)′j−1 = b′j−1 + 1.

• if c = (i, j) and i ≤ m, then the star is going each step to the right. Especially
(ac)′ = a′, (bc)′ = b′, and ack = ak, b

c
k = bk, except for k = i:

aci = ai − 1, bci = bi − 1,

and for k = i− 1, if i > 1:

aci−1 = ai−1 + 1, bci−1 = bi−1 + 1.

Proof. Suppose first the box c is below the line m. That means c = (B′j , j) (as
above, B′j is the height of the tableau S−, if S = S+ ⊎ S−) and B′j+1 < B′j , suppose
moreover that during k moves, the star is moving down, it is therefore in the box
(B′j + k, j). If this box is not an inner corner, the box (B′j + k + 1, j) exists and
B′j+1 + k + 1 ≤ B′j + k + 1, since S is extractable, we have:

tB′
j+k+1,j < tB′

j+1+k+1,j+1 ≤ tB′
j+k+1,j+1,

if the box (B′j + k+1, j+1) exists. Thus the next move of the star is to the bottom.
Looking at the shape of Rc, this proves the first assertion in the proposition.

Especially, if λc = (ac, (ac)′), µc = (bc, (bc)′), then λc − µc = λ− µ is a shape.
The case c above the line m is completely similar.

�

This proposition means it is possible to write Rc = Tc \ (S+
c , S

−
c ) with rck,ℓ = tk,ℓ

except, with our notations:

if i > m, rck,j = tk+1,j (i ≤ k < A′j +m),

if i ≤ m, rci,k = ti,k+1 (j ≤ k < Ai),

and (S+
c , S

−
c ) is a trivial pair, with shape (bc, (bc)′). Remark that this pair is ex-

tractable. Indeed the tableau U in Definition 9.2 is the same for (T, (S+, S−)) and
(Tc, (S

+
c , S

−
c )).

Moreover suppose Out(R) = {c1 < · · · < cp < c′1 < · · · < c′q}, then the greatest
element d in Out(Rc) is the following:
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• If c = c′q = (i′q, j
′
q), then:

d = (i′q, j
′
q − 1) if j′q > 1,

d = (i′q − 1, 1) if j′q = 1 and sup{i′q−1, m} < i′q − 1,

d = c′q−1 = (i′q−1, j
′
q−1) if j′q = 1 and m < i′q−1 = i′q − 1,

d = cp = (m, jp) if j′q = 1 and m = i′q − 1.

• If c = cp = (ip, jp) 6= (1, 1), then:

d = (ip − 1, jp) if ip > 1,

d = (1, jp − 1) if ip = 1 and jp−1 < jp − 1,

d = cp−1 = (ip−1, jp−1) if ip = 1 and jp−1 = jp − 1.

• If c = c1 = (1, 1), then Out(Rc) is empty.

Now it is possible to repeat the above procedure for Rc, if d exists. We get a
sequence of successive greatest outer corners denoted (d1, . . . , dk) and a sequence of
skew tableaux, coming from the super jeu de taquin: R0 = R, R1 = sjdtd1(R),. . . ,
Rk = sjdtdk(Rk−1). If (S+, S−) is the maximal trivial extractable pair in T , let us
put Rk = maxjdt(R).

Proposition 10.2.

Rk is a semistandard tableau. If (S+, S−) is the maximal trivial extractable pair in
T , Rk = push(T ), or:

push = maxjdt.

Proof. By definition, Out(Rk) is empty, this means the skew tableau Rk is a tableau.
We saw it is semistandard.
Let rki,j be an entry in Rk such that i > m. Remark that all the boxes (m +

1, j), . . . , (m+B′j , j) are in {d1, . . . , dk}, therefore:

rki,j = ti+B′
j ,j

= ui,j.

Similarly, if i ≤ m,

rki,j = ti,j+Bi
= ui,j.

Therefore push = maxjdt.
�
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