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Thinning and Harvesting in Stochastic Forest Models

Kurt L. Helmesa,∗, Richard H. Stockbridgeb,1,∗∗

aHumboldt-Universität zu Berlin, Berlin, Germany
bUniversity of Wisconsin Milwaukee, Milwaukee, WI 53201, USA

Abstract

This paper analyzes a stochastic forest growth model in which the manager is able to first thin the forest to
promote better growth before harvesting. Both Wicksell single thinning-and-harvesting cycle and Faustmann
on-going rotation problems are considered. The Wicksell problem is analyzed by first restricting the class
of decision times to (thinning,harvesting) pairs that bound the growth away from infinity and imbedding
the problem in an infinite-dimensional linear program on a space of triplets of measures. These measures
capture the thinning and harvesting decisions along with the behavior of the growth process prior to harvest.
An auxiliary linear program then leads to a nonlinear optimization problem for which an optimal value and
solution are determined. The values of all the problems are be related through a set of inequalities. The
solution of the nonlinear problem determines (random) thinning and harvesting times for the single thinning-
and-harvesting cycle which demonstrate the equality of the values of these various problems. Finally for the
Wicksell problem, the unrestricted class of thinning-and-harvest times is shown to give the same value as the
restricted class. The Faustmann on-going thinning-and-harvesting rotation problem is reduced to a Wicksell
problem which then allows for the characterization of the value as the solution to a different nonlinear
optimization problem. The effects of the opportunity to thin the forest are illustrated on a mean-reverting
stochastic model.

Keywords: stochastic forest models, forest rotation, Wicksell, Faustmann, harvest, thinning, linear
programming
JEL: C61, Q23

1. Introduction

Consider a stochastic forest model where, without any intervention, the process X is assumed to satisfy

dX(t) = μ(X(t), Y (t)) dt+ σ(X(t), Y (t)) dW (t), X(0) = xnew > 0. (1)

Here X is a process that captures the volume and quality of the forest stand, xnew is the value of a “new”
forest, μ denotes the mean growth rate, σ denotes the volatility of the growth rate and W is a standard
Brownian motion process which provides the random fluctuations of the forest size. The process Y is an
indicator process that identifies whether the forest is new and densely planted (Y (t) = 1) or has been thinned
(Y (t) = 2); we assume Y (0) = 1. For our model, we have in mind functions μ and σ such that the process
X is always nonnegative and represents a growth process. Allowing dependence on the process Y in these
coefficients means that the growth dynamics can differ for dense and thinned forests or even that the process
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X can represent different quantities for the two types of forest. For example, X may represent the volume
of fuel wood for a dense forest and the diameter at breast height (dbh) for an average, more valuable tree
in the thinned forest. The interventions in the growth of the forest occur when it is thinned and harvested.
This paper analyzes both a single thinning-harvesting cycle of Wicksell type and the Faustmann on-going
rotation problem for this two-decision model.

For the Wicksell single-cycle problem, the goal of the forest manager is to maximize the expected present-
value of the net proceeds of the forest product when thinned and harvested. Let θ denote the time at which
the manager thins the forest and let η be the harvest time. The size of the forest after thinning is X(θ)
whereas the size of the stand is X(θ−) at the time the decision to thin is made; in this model, the thinning
decision results in an immediate jump to the process X. Let g1 and g2 denote the net profit functions from
thinning and harvesting, respectively, and let α > 0 denote the discount rate. The single-cycle objective is
one of selecting times θ and η, with θ ≤ η, so as to maximize

E
[
e−αθg1(X(θ−))I{θ<∞} + e−αηg2(X(η))I{η<∞}

]
. (2)

Let V w(xnew, 1) denote the optimal value.
At this point, one must mention the importance of the interpretation of the model for the dense and

thinned states. The process X may possibly represent two different quantities in the two states, in which
case it may be reasonable for thinning to result in an increase to the process X; X(θ) > X(θ−). When the
model is such that X represents the same quantity for both dense and thinned forests, it may be necessary
to impose an additional condition on the decision times of the model. For example, if X were to represent
the volume of lumber on the stand, then a decision to thin would reduce the size of X and the model would
therefore restrict the thinning decision to occur only after the process X exceeds the size of the thinned
stand. If X(θ) = xthin, in the simplest case, then one would require θ > τxthin , where τxthin is the first
time at which X achieves level xthin. This paper treats the more general model by allowing X to increase
in value when thinning occurs; the results can be easily adapted to include additional restrictions on the
decision times.

The Faustmann rotation problem replants trees for the cycle to repeat with the new planting resulting in
the forest stand returning to value xnew so the process X starts from this point following a harvest decision.
For k = 1, 2, 3, . . ., let θk and ηk denote the random times at which the forest is thinned and harvested,
respectively, for the kth time. Then for each k, X(θk−) and X(ηk−) represent the values of X when the
decisions are made to thin and harvest, respectively, while X(θk) and X(ηk) = xnew denote the sizes of X
immediately following these interventions. The Faustmann on-going rotation problem is one of maximizing

E

[ ∞∑
k=1

(
e−αθkg1(X(θk−))I{θk<∞} + e−αηkg2(X(ηk−))I{ηk<∞}

)]
. (3)

Let V f (xnew, 1) denote the optimal value for the Faustmann problem.
The mathematical modeling of forest growth with the aim of determining on-going optimal harvesting

decisions began with the paper by Faustmann (1849) which considered the case of deterministic growth.
Since 1849, a large literature has developed on this topic. The bibliography by Newman (2002) provides a
partial but extensive up-to-date (2002) list of references on the economics of forest rotation. We concentrate
our comments on some papers using stochastic models. Nordstrøm (1975) modelled the growth process
deterministically but introduced randomness with prices that followed a finite-state Markov chain in discrete
time. Miller and Voltaire (1983) consider a diffusion process for the tree size and solve the rotation problem.
A limitation of this model is that tree sizes will become negative. Clarke and Reed (1989) use a geometric
Brownian motion for the forest size to ensure positivity and an age-dependent geometric Brownian motion for
the price process. Using optimal stopping methods, the paper analyzes both the Wicksell single-period and
Faustmann on-going harvest rotation problems. Willassen (1998) considers a general stochastic differential
equation model for the growth process in continuous time and uses impulse control methods to solve the
problem. Buongiorno (2001) and others employ Markov decision processes to model the growth process in
discrete time; Buongiorno reformulates the problem as a finite-dimensional linear program. Sødal (2002)
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restricts his analysis to decision times that are hitting times of the growth process at fixed levels and
uses an intuitive mark-up pricing approach to characterize the value as a nonlinear optimization problem.
Additional work on the Wicksell single-period problem for stochastic growth models include papers by
Alvarez and Koskela (see, e.g., Alvarez and Koskela (2005)), among others. Penttinen (2006) includes
thinning considerations in his models but only in terms of cost, not with the possibility of the growth
dynamics improving.

Though our exposition is expressed entirely in terms of forests, their harvest, rotation and thinning,
the paper by Miller and Voltaire (1983) discusses how the rotation problem is a paradigm that has many
additional economic applications.

The thinning and harvest decisions represent times when the decision maker elects to switch from one
diffusion process to the other. Switching problems have also been considered in the literature where from a
mathematical point of view such decisions are phrased in terms of optimal stopping, impulse control or more
general stochastic control problems. The traditional approach is one of solving the Hamilton-Jacobi-Bellman
(HJB) equation or variational or quasi-variational inequalities associated with the given problem (see, e.g.,
Baldursson and Karatzas (1997), Brekke and Øksendal (1994), Duckworth and Zervos (2001), Lumley and
Zervos (2001), Zervos (2002) and references therein, for a short selection of recent publications). This
indirect approach seeks the solutions to a family of optimization problems that are parametrized by the
initial position of the process. The mathematical challenge is to prove optimality within a large class of
policies and to prove the existence of a solution of an HJB-equation or variational inequality under weak
conditions and mild regularity assumptions imposed on the data.

The thinning-and-harvest problem is also similar to entry-and-exit problems in economics in which the
decision maker determines times at which to enter a market and times at which to exit from the market.
This type of problem was introduced by Brennan and Schwartz (1985) and further analyzed by Dixit (1989)
and Dixit and Pindyck (1994). These papers, as do some of the ones mentioned in the previous paragraph,
only consider a single diffusion process rather than switching diffusions.

This paper approaches the optimal switching problem quite differently by concentrating on the opti-
mization problem corresponding to a single initial value rather than addressing the parametrized family of
problems. The stochasticity of the problem is captured by occupation measures that must satisfy an identity
(see (7) below) for a large class of test functions. The class is rich enough that one is able to reconstruct
the stochastic process, though this paper does not take advantage of this fact; see, for example, (Kurtz and
Stockbridge, 1998, 2001) for more details. The measures become the variables for an infinite-dimensional
linear program that provides an upper bound on the optimal value. The constraints of this linear program
are then relaxed to obtain an auxiliary linear program for which a further upper bound is easily determined.
This final upper bound arises as the value of a nonlinear optimization problem in two variables. Using
optimal values of these variables allows one to determine sequences of decision times such that the value of
the original problem equals the highest upper bound and hence these times are seen to be optimal.

This paper is organized as follows. Section 2 concentrates on the Wicksell single thinning-and-harvesting
cycle problem, beginning by placing a restriction on the class of decision times. The restricted stochastic
problem is imbedded in an infinite-dimensional linear program in Section 2.1 having variables in a space
of triplets of measures. Section 2.2 develops the auxiliary linear program and corresponding nonlinear op-
timization problem in such a manner that all of the values for the various problems can be related by
inequalities. It also characterizes an optimal solution within the class of restricted decision times. The
unrestricted problem is shown to have the same value in Section 2.3 and hence the optimal thinning and
harvest times for the restricted problem are seen to be optimal for the unrestricted problem as well. Sec-
tion 3 examines the Faustmann thinning-and-harvesting rotation problem. The strong Markov property is
employed in Section 3.1 to reduce the Faustmann problem to a Wicksell single-cycle problem with a slight
modification to the harvest payoff function. As a result, the value is characterized as the solution to a
different nonlinear optimization problem. Illustrative examples using a mean-reverting growth process are
given in Sections 2.4 and 3.2.

The imbedding of the stochastic problem in an infinite-dimensional linear program can often be sharpened
to show equivalence between the formulations. Kurtz and Stockbridge (1998) establishes this equivalence
for absolutely continuous stochastic control problems, Cho and Stockbridge (2002) proves this for optimal
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stopping problems in which the processes exclude singular behavior (such as the thinning decisions of this
paper) and Helmes and Stockbridge (2007) extends this result to processes having singular behavior. These
results are proven with less regularity of the payoff functions, typically only requiring semi-continuity. The
linear programming formulation then allows one to employ numerical techniques to approximate the optimal
solutions. A variety of such numerical approaches are possible, including approximating the diffusion process
by a continuous-time Markov chain, characterizing the measures using their moments and using finite-
elements to determine densities for approximating measures. The determination of the occupation measures
of an optimal process can then be used to determine other quantities of interest about the process. The
model and analysis of this paper do not require the equivalence since the equality of the values is derived
from the exact analysis.

The linear programming approach extends, for example, to the type of problem considered by Lumley
and Zervos (2001) in which in addition to the times at which to begin production or shut it down, the
decision maker needs to select the level of production as well. For such problems, the occupation measures
would include a component related to the level of production.

1.1. Detailed Formulation
We begin with a precise formulation of the growth model with thinning. Assume the coefficients μ and

σ are continuous and are such that the process Xy, y = 1, 2, is a weak solution of the stochastic differential
equation

dXy(t) = μ(Xy(t), y) dt+ σ(Xy(t), y) dW (t), Xy(0) = 0, (4)

(see Ethier and Kurtz, 1986, Section 5.3, pg. 291, for details) and that these solutions are unique in distri-
bution. Let Ay denote the generator of the process Xy given by Ayf(x) = μ(x, y)f ′(x) + (σ2(x, y)/2)f ′′(x).
The uniqueness in distribution then implies that the martingale problems for Ay are well-posed and hence
that each Xy is a strong Markov process (see Ethier and Kurtz, 1986, Theorem 4.4.2, pg. 184). We wish
to take advantage of the strong Markov property to piece together the solutions X1 and X2 to form a
weak solution (X,Y ) of (1) at all times other than thinning and harvest times. Let {Ft} denote a common
filtration with respect to which X1 anf X2 are weak solutions of (4) for their respective values of y.

For the Wicksell problem, recall θ and η denote the thinning and harvesting times, respectively; θ and
η are required to be {Ft}-stopping times with θ ≤ η. For a given pair (θ, η), define the paired process
(X,Y ) as follows. The initial values are X(0) = xnew and Y (0) = 1. For 0 < t < θ, X(t) = xnew +X1(t)
and Y (t) = 1. At time θ, X jumps from X(θ−) to X(θ), where X(θ) has distribution π on a bounded
interval [xmin, xmax], with xmin > 0, and Y (θ) = 2. The thinned level of the forest X(θ) is assumed to be
independent of the thinning time θ. For t > θ, X(t) = X(θ) +X2(t− θ). Since the Wicksell payoff ends at
the harvest time, we may stop the process at η and specify X(η) = X(η−).

The Faustmann model is quite similar, but with a couple of important changes. The thinning and harvest
times are {θk} and {ηk}, respectively. Define η0 = 0. These decision times must be {Ft}-stopping times
that satisfy ηk−1 ≤ θk ≤ ηk, for each k ∈ N. Again, for each k ∈ N, let {X(k)

y } be a sequence of independent
processes satisfying (4), y = 1, 2. At each harvest time ηk−1, set (X(ηk−1), Y (ηk−1)) = (xnew, 1) and for
ηk−1 ≤ t < θk, set X(t) = xnew +X

(k)
1 (t− ηk−1) and Y (t) = 1. At each thinning time θk, X(θk) is chosen

from [xmin, xmax] according to π, independently of {θk} and {ηk} and Y (θk) = 2. Then for θk ≤ t < ηk,
define X(t) = X(θk)+X

(k)
2 (t−θk) and Y (t) = 2. Notice that at the times θk, the forest is thinned to a level

X(θk) within some range and this is assumed to happen instantaneously, and at the times ηk, the forest is
instantaneously harvested and replanted so X(ηk) = xnew, with a corresponding decrease X(ηk)−X(ηk−)
to the process. Observe for each cycle, the process has “poorer growth” dynamics (4) with y = 1 between
ηk−1 and θk and “better growth” dynamics (4) with y = 2 for times between θk and ηk.

Let A denote the set of pairs of admissible decision rules (θ, η) for the Wicksell problem and, with a
slight abuse of notation, let A also denote the sequence of pairs {(θk, ηk)} for the Faustmann problem.

We place additional restrictions on the coefficients μ and σ through the behavior of the process at the
boundaries. Assume ∞ is a natural boundary point (see (Borodin and Salminen, 2002, II.1.6, pp. 14, 15) or
(Itô and McKean, Jr., 1974, pp. 128-131)) so that the forest does not grow without bounds in a finite time.
Also assume that 0 is either a natural, entrance-not-exit or exit-not-entrance boundary point. In the former

4



two cases, the forest will never die out in finite time (since xnew > 0) whereas the last condition implies
that once the forest fails, it never recovers on its own. For models in which 0 is an exit boundary point, the
objective function would be non-positive for those decision times θ and η that exceed the hitting time ζ of
X at 0.

We note that {Ft} is the filtration associated with the weak solution to (1) so it may contain more
information than that arising from the observations of the process X. Since the stopping times in A are
{Ft}-stopping times, these may in principle be determined using information contained in {Ft} that is not
generated by X. Our results nevertheless show that optimal decision rules exist within the subclass of
hitting times of the process.

Before addressing the reward structure for the class of problems under consideration, it is important to
describe some additional structure to the problem. The change in dynamics occurs only when the thinning
and harvesting decisions are made and hence Y changes only at these decision times. As a result, except at
the thinning and harvest decision times, the generator of the pair (X,Y ) is

Af(x, y) = μ(x, y)∂f∂x (x, y) + σ2(x,y)
2

∂2f
∂x2 (x, y)

operating on functions f : R
+ × {1, 2} → R that are twice-continuously differentiable in x for each y. Due

to the discounting at rate α, the eigenvalue problem

Af = αf (5)

plays a central role in the analysis. Under the conditions assumed in this paper, for each y ∈ {1, 2},
Af(·, y) = αf(·, y) has a nonnegative, strictly increasing solution ψy (unique up to a positive multiplicative
constant) and furthermore ψy(0+) ≥ 0 and limx→∞ ψy(x) = ∞ (see Borodin and Salminen, 2002, II.1.10,
pp. 18, 19). The specification of the model and the strictly increasing functions ψ1 and ψ2 are used to
determine restrictions on the payoff functions g1 and g2 allowed in this paper.

Condition 1. The payoff functions g1 and g2 are assumed to satisfy the following:

(a) g1 and g2 are continuous and non-decreasing on [0,∞);

(b) g1(xnew) < 0 and g2(xmax) ≤ 0;

(c) there exists some x <∞ such that g2(x) > 0 and g1(x) + ψ2(xmin)
ψ2(x)

· g2(x) > 0; and

(d) for y = 1, 2, lim
x→∞

gy(x)
ψy(x)

= 0.

Condition 1(a) implies that a higher value of X yields a larger profit, whereas Condition 1(b) indicates
there is non-zero cost to immediately thin a replanted forest and no profit from immediately harvesting
the thinned forest. Condition 1(c) means that a sufficiently large value of X will return a positive profit
for both harvesting and for thinning followed by harvesting; should this not be the case, then the optimal
times θ and η would be infinite so that no cost is incurred. Finally, Condition 1(d) places a restriction on
how quickly the reward rate can grow relative to the size of X. This condition will be needed in order to
eliminate decisions to thin or harvest at arbitrarily large values from being near-optimal decisions.

2. Wicksell Single Thinning-and-Harvesting Cycle

This section analyzes the single-cycle problem of deciding when to thin and when to harvest a forest
so as to maximize (2) over (θ, η) ∈ A with θ ≤ η. The examination of this problem, however, begins
by restricting the decisions to a smaller collection A1 of {Ft}-stopping times. The restricted problem
is imbedded in an infinite-dimensional linear program from which an auxiliary linear program is derived
and a finite-dimensional nonlinear optimization problem arises. An optimal pair (θ∗, η∗) of decision times
is determined using an optimal solution to the nonlinear problem. Finally, the optimal solution for the
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restricted problem is shown to be optimal for the unrestricted problem and these results are illustrated by
an example.

Let A1 denote the collection of pairs of {Ft}-stopping times (θ, η), with θ ≤ η, for which there exists
some K < ∞ such that P (X(t) ≤ K, 0 ≤ t ≤ η) = 1. For such stopping times, the process X is bounded
away from ∞. Note that K may differ for different (θ, η) ∈ A1. Let V wr (xnew, 1) denote the optimal value
over the restricted collection of pairs of stopping times.

2.1. Linear Program Imbedding
Select (θ, η) ∈ A1 arbitrarily and define the process λθ by λθ(t) = I[0,t](θ). Notice that λθ starts at 0

and jumps to 1 at the random time θ after which it remains at 1. Let D = C2
c (R

+ × {1, 2}), the space
of twice-continuously differentiable functions having compact support. For f ∈ D, an application of Itô’s
formula results in

e−αtf(X(t), Y (t)) = f(xnew, 1) +
∫ t

0

e−αs[Af − αf ](X(s), Y (s)) ds

+
∫ t

0

e−αs
∫

[f(x, 2)− f(X(s−), Y (s−))]π(dx) dλθ(s)

+
∫ t

0

e−αsσ(X(s), Y (s)) ∂f∂x (X(s), Y (s)) dW (s).

The conditions on f imply that the stochastic integral is a martingale so the optional sampling theorem (see
Ethier and Kurtz, 1986, Theorem 2.2.13) establishes that

e−α(t∧η)f(X(t ∧ η), Y (t ∧ η)) − f(xnew, 1)−
∫ t∧η

0

e−αs[Af − αf ](X(s), Y (s)) ds

−
∫ t∧η

0

e−αs
∫

[f(x, 2)− f(X(s−), Y (s−))]π(dx) dλθ(s)

= f(xnew, 1) +
∫ t∧η

0

e−αsσ(X(s), Y (s)) ∂f∂x (X(s), Y (s)) dW (s)

and hence taking expectations and letting t→∞ results in Dynkin’s formula:

E
[
e−αηf(X(η), Y (η))I{η<∞}

] − E

[∫ η

0

e−αs[Af − αf ](X(s), Y (s)) ds
]

− E

[∫ η

0

e−αs
∫

[f(x, 2)− f(X(s−), Y (s−))]π(dx) dλθ(s)
]

(6)

= f(xnew, 1).

Now define three measures as follows: let νη denote the discounted distribution of (X(η), Y (η)); let
νθ denote the discounted distribution of (X(θ−), Y (θ−)); and define the expected discounted occupation
measure ν0 so that for each G1 ∈ B(R+) and y ∈ {1, 2}

ν0(G1 × {y}) = E

[∫ η

0

e−αsIG1×{y}(X(s), Y (s)) ds
]
.

Observe that Y (η) = 2 and Y (θ−) = 1 so νη and νθ can be (and, in the sequel, are) measures on R
+. Notice

also that the total masses of νη and νθ are bounded above by 1 and the total mass of ν0 is bounded above
by 1/α. Finally observe that the discounting implies that the sets {θ = ∞} and {η = ∞} contribute no
mass to νθ and νη.
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For a function h on [xmin, xmax], define 〈h, π〉 =
∫
h(x)π(dx). Using the definitions of the measures νθ,

νη and ν0 along with the fact that π is a probability measure, (6) can be rewritten as∫
f(x, 2) νη(dx) −

∫
[Af − αf ](x, y) ν0(dx× dy)

−
∫

[〈f(·, 2), π〉 − f(x, 1)] νθ(dx) = f(xnew, 1) (7)

and this identity holds for all f ∈ D and (θ, η) ∈ A1. (The identity (7) also holds for all (θ, η) ∈ A but the
ensuing argument requires the stopping times to be in A1.) These measures can be used to evaluate the
expected payoff (2) resulting in ∫

g1(x) νθ(dx) +
∫
g2(x) νη(dx). (8)

Since for stopping times (θ, η) ∈ A1, the measures νη, νθ and ν0 satisfy (7) and the corresponding value of
(2) is given by (8), the stochastic decision problem on when to thin and harvest over the restricted class of
decision rules is imbedded in the linear program⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Maximize
∫
g1 dνθ +

∫
g2 dνη

Subject to
∫
f(x, 2) νη(dx)−

∫
[Af − αf ](x, y) ν0(dx× dy)

− ∫
[〈f(·, 2), π〉 − f(x, 1)] νθ(dx) = f(xnew, 1), ∀f ∈ D,∫

1 dνθ ≤ 1,∫
1 dνη ≤ 1,∫
1 dν0 ≤ 1/α,

νθ, νη, ν0 measures.

(9)

Let V wlp (xnew, 1) denote the value of (9). The above argument immediately implies the following comparison
of values.

Theorem 1. V wr (xnew, 1) ≤ V wlp (xnew, 1).

2.2. Auxiliary Linear Program and Nonlinear Optimization
The goal now is to simplify the linear program into an auxiliary linear program in a manner that becomes

more tractable and for which the values can be easily related. Choose any (θ, η) ∈ A1 and let K denote
the bound corresponding to this pair. Recall, for each y ∈ {1, 2}, ψy is a strictly increasing solution to
Af(·, y) = αf(·, y). Let f(x, y) = a1ψ1(x)I{1}(y) + a2ψ2(x)I{2}(y) for some a1, a2 ∈ R. This function does
not have compact support so cannot be immediately used in (7). Let ξ : R

+ → R
+ be a mollifying function

satisfying ξ(x) = x for x ≤ K and ξ ∈ C2
c (R

+). Considering the function f̃(x, y) = ξ(x) ·f(x, y), we see that
f̃ ∈ D so can be used in (7). Moreover, for x ≤ K, ∂f̃∂x = ∂f

∂x and ∂2f̃
∂x2 = ∂2f

∂x2 . Since X(t) ≤ K a.s. for t ≤ η,
it immediately follows that [Af̃ − αf̃ ](X(t), Y (t)) = 0 for all t ≤ η and therefore∫

a2ψ2(x) νη(dx)−
∫

[a2〈ψ2, π〉 − a1ψ1(x)] νθ(dx) = a1ψ1(xnew). (10)

Thus when restricting the pairs of decision times (θ, η) to the subcollection A1, the identity (7) extends to
the function f = a1ψ1I{1} + a2ψsI{2}, for any a1, a2 ∈ R.

We now define an auxiliary linear program by replacing the infinite collection of constraints in (9) by two
constraints derived from (10) in which the first constraint selects a1 = a2 = 1, while the second constraint
takes a1 = 0 and a2 = 1. Further relax the conditions by removing the total mass constraints on νθ, νη and
ν0, thus eliminating ν0 from the linear program. The auxiliary linear program is⎧⎪⎪⎨

⎪⎪⎩
Maximize

∫
g1(x) νθ(dx) +

∫
g2(x) νη(dx)

Subject to
∫

[ψ1(x)− 〈ψ2, π〉] νθ(dx) +
∫
ψ2(x) νη(dx) = ψ1(xnew),∫ 〈ψ2, π〉 νθ(dx)−

∫
ψ2(x) νη(dx) = 0,

νη, νθ measures.

(11)
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Inherent in the formulation (11) is the feasibility requirement on the measures that the function ψ1 is
integrable with respect to νθ and ψ2 is integrable with respect to νη. Denoting the value of the auxiliary
linear program by V waux(xnew, 1), again the next theorem follows from the above discussion.

Theorem 2. V wlp (xnew, 1) ≤ V waux(xnew, 1).

We now turn to the analysis of (11) which is a special case of a general linear programming problem
(A.1) in Appendix A. A remark is necessary, however, in order that Proposition 1 can be applied. One
assumption on the model (A.1) is that the integrands in the constraints be positive. The only integrand
in (11) for which this is questionable is ψ1(x) − 〈ψ2, π〉. Recall, the solutions ψ1 and ψ2 are unique up to
a multiplicative constant so one may multiply ψ1 by a sufficiently large constant in order to achieve this
positivity; we assume the solution ψ1 satisfies ψ1(xmin) > 〈ψ2, π〉. Note this condition is satisfied when
ψ1(xmin) > ψ2(xmax).

Theorem 3. Assume g1 and g2 satisfy Condition 1. Let F = {(u, v) : u ≥ xnew, v ≥ xmax}. Then the
value of the auxiliary linear program has the following bound:

V waux(xnew, 1) ≤ ψ1(xnew) · sup
u,v∈F

g1(u)ψ2(v) + 〈ψ2, π〉g2(v)
ψ1(u)ψ2(v)

. (12)

Moreover, optimizers (u∗w, v
∗
w) of the right-hand side of (12) exist in F and the hitting times

θ∗ = inf{t > 0 : X(t−) = u∗w} and η∗ = inf{t ≥ θ∗ : X(t−) = v∗w} (13)

are optimal thinning and harvesting times, respectively, for the restricted Wicksell single-cycle problem. The
optimal value for the restricted problem is

V wr (xnew, 1) =
g1(u∗w)ψ2(v∗w) + 〈ψ2, π〉g2(v∗w)

ψ1(u∗w)ψ2(v∗w)
· ψ1(xnew). (14)

Proof. Begin by normalizing the first constraint of (11) by dividing both sides by ψ1(xnew). The resulting
formulation then matches the general linear program (A.1) so Proposition 1 can be applied, establishing the
bound (12). Now rewrite the bounding ratio in (12) as

ψ1(xnew)
ψ1(u)

·
[
g1(u) +

〈ψ2, π〉
ψ2(v)

· g2(v)
]

from which one can see that optimizing over v only involves optimizing the ratio g2(v)
ψ2(v)

. By Condition 1(c),

there exists some x for which g2(x) > 0. The function ψ2 is strictly positive on (0,∞) so the ratio g2(x)
ψ2(x)

> 0.
By continuity of g2 and ψ2 and Condition 1(d), the maximum value is achieved at some location v∗w <∞.

Now turning to the optimization over u, we seek to maximize the ratio
g1(u)+

〈ψ2,π〉g2(v∗w)
ψ2(v∗w)

ψ1(u) . Condition 1(c)
implies this ratio will be strictly positive for some sufficiently large value of u. Since limu→∞ ψ1(u) = ∞,
the increase of g1 in the numerator by the constant 〈ψ2,π〉g2(v∗w)

ψ2(v∗w) does not affect the limiting value as u→∞
and hence Condition 1(d) establishes the existence of a maximizer u∗w <∞.

Finally, using a pair (u∗w, v
∗
w) of maximizers of the ratio in (12), define the decision times θ∗ and η∗ as

in (13). The measure νθ∗ will concentrate all of its mass on {u∗w} and similarly νη∗ is a point mass on {v∗w}.
The two constraints of the auxiliary linear program (11) form the system{

[ψ1(u∗w)− 〈ψ2, π〉] νθ∗({u∗w}) + ψ2(v∗w) νη∗({v∗w}) = ψ1(xnew),
〈ψ2, π〉 νθ∗({u∗w}) − ψ2(v∗w) νη∗({v∗w}) = 0

from which one readily determines that νθ∗({u∗w}) = ψ1(xnew)
ψ1(u∗w) and νη∗({v∗w}) = ψ1(xnew)

ψ1(u∗w) · 〈ψ2,π〉
ψ2(v∗w) . Hence this

choice of thinning and harvesting times achieves the upper bound (14).
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Remark 1. Let θu = inf{t > 0 : (X(t−), Y (t−)) = (u, 1)} denote the first hitting time of u by X under
dynamics given by Y (t) = 1 when X(0) = xnew. It is well-known that

E
[
e−αθu

]
=
ψ1(xnew)
ψ1(u)

(15)

(see Borodin and Salminen, 2002, II.1.10, p. 18). Now let ηv = inf{t > 0 : (X(t), Y (t)) = (v, 2)} be the
first hitting time by X of v under dynamics given by Y (t) = 2. Conditioning on X(θu) = x, we have
E

[
e−α(ηv−θu)|X(θu) = x

]
= ψ2(x)/ψ2(v) and since X(θu) has distribution π on [xmin, xmax], it follows that

E
[
e−α(ηv−θu)

]
= 〈ψ2, π〉/ψ2(v) and hence that E [e−αηv ] = ψ1(xnew)/ψ1(u) · 〈ψ2, π〉/ψ2(v). The ratio in

(12) can be expressed as

ψ1(xnew)
ψ1(u)

· g1(u) +
ψ1(xnew)
ψ1(u)

· 〈ψ2, π〉
ψ2(v)

· g2(v) (16)

= E
[
e−αθug1(X(θu−))I{θu<∞} + e−αηvg2(X(ηv))I{ηv<∞}

]
.

Thus the nonlinear optimization problem (12) maximizes (2) over the hitting times of the paired process
(X,Y ) at thinning and harvesting levels (u, 1) and (v, 2), respectively.

Remark 2. Let d1(u) = E
[
e−αθu

]
= ψ1(xnew)/ψ1(u) denote the expected discount factor arising from the

rule to thin the forest when (X,Y ) reaches level (u, 1) and let d2(v) = E
[
e−α(ηv−θu)

]
= 〈ψ2, π〉/ψ2(v) be

the expected discount factor associated with the rule to harvest when (X,Y ) hits (v, 2), starting at time θu
in location X(θu). The bound (12) then takes the form d1(u)[g1(u)+d2(v)g2(v)]. The first order optimality
conditions are therefore {

d′1(u)[g1(u) + d2(v)g2(v)] + d1(u)g′1(u) = 0

d′2(v)g2(v) + d2(v)g′2(v) = 0

which can be rewritten as ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u ∂
∂u [g1(u) + d2(v)g2(v)]
[g1(u) + d2(v)g2(v)]

= −ud
′
1(u)

d1(u)

vg′2(v)
g2(v)

= −vd
′
2(v)

d2(v)
.

The second equation shows that the optimal harvesting level v∗w occurs where the elasticity of the harvest
payoff function g2 equals the negative of the elasticity of the harvesting discount factor d2. The optimal
thinning level u∗w, however, occurs where the partial elasticity of the combined payoffs for thinning g1 and
discounted harvesting d2(v)g2(v) equals the negative of the elasticity of the thinning discount factor d1.

2.3. Optimality for the Unrestricted Problem
The results of Section 2.2 determine an optimal pair of thinning and harvesting times (θ∗, η∗) ∈ A1 for

the restricted problem. This subsection demonstrates that this pair of decision times is also optimal for the
unrestricted problem.

Theorem 4. Assume g1 and g2 satisfy Condition 1. Then V w(xnew, 1) = V wr (xnew, 1) and hence the
thinning and harvest times (θ∗, η∗) of Theorem 3 is an optimal pair for the unrestricted stochastic forestry
problem.

Proof. Choose (θ, η) ∈ A arbitrarily. Select a sequence Kn ↗∞ and define τKn = inf{t > 0 : X(t) = Kn}.
Since ∞ is a natural boundary point, it follows that τKn ↗∞ as n→∞. Observe that {(θ∧ τKn , η∧ τKN )}
is a sequence of decision rules within the restricted collection A1 and hence

V wr (xnew, 1) ≥ E
[
e−α(θ∧τKn )g1(X(θ ∧ τKn))I{θ∧τKn )<∞}
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+e−α(η∧τKn )g2(X(η ∧ τKn))I{η∧τKn )<∞}
]

= E
[
e−α(θ∧τKn )g1(X(θ ∧ τKn))I{θ∧τKn )<∞}I{θ<∞}

]
+E

[
e−α(θ∧τKn )g1(X(θ ∧ τKn))I{θ∧τKn )<∞}I{θ=∞}

]
+E

[
e−α(η∧τKn )g2(X(η ∧ τKn))I{η∧τKn<∞}I{η<∞}

]
(17)

+E
[
e−α(η∧τKn )g2(X(η ∧ τKn))I{η∧τKn<∞}I{η=∞}

]
.

Consider the first expectation on the right-hand side of (17). Observe that on the set where θ is finite, i. e.
{θ <∞}, θ(ω) ∧ τKn(ω) = θ(ω) for n sufficiently large. Thus

lim
n→∞ e

−α(θ∧τKn )g1(X(θ ∧ τKn))I{θ∧τKn<∞}I{θ<∞} = e−αθg1(X(θ))I{θ<∞}

and hence Fatou’s lemma implies that

E
[
e−αθg1(X(θ))I{θ<∞}

] ≤ lim
n→∞E

[
e−α(θ∧τKn )g1(X(θ ∧ τKn))I{θ∧τKn<∞}I{θ<∞}

]
.

Analyzing the second term, notice that on the set {θ = ∞}, θ ∧ τKn = τKn so

E
[
e−α(θ∧τKn )g1(X(θ ∧ τKn))I{θ∧τKn}I{θ=∞}

]
= E

[
e−ατKn g1(X(τKn))I{τKn<∞}I{θ=∞}

]
≤ g1(Kn)E

[
e−ατKn I{τKn<∞}

]
= g1(Kn) · ψ1(xnew)

ψ1(Kn)

and the right-hand side converges to 0 by Condition 1(d). The same analyses applies to the third and fourth
expectations in (17) with the result that

V wr (xnew, 1) ≥ E
[
e−αθg1(X(θ))I{θ<∞} + e−αηg2(X(η))I{η<∞}

]
.

Taking the supremum over (θ, η) ∈ A implies V wr (xnew, 1) ≥ V w(xnew, 1). The reverse inequality follows
immediately from the fact that A1 ⊂ A.

2.4. Example
For simplicity, we illustrate the single cycle thinning-and-harvesting problem by looking at the case in

which X is a mean reverting process for both dense and thinned forests. The key feature of this model are
particular mean levels for dense and thinned forests to which the process is attracted. In our formulation,
the mean levels are 1/γy, with γy > 0. When the process is smaller than 1/γy, the drift will be positive, but
when the process exceeds this level, the drift will be negative. These levels therefore act as natural targets
for the sizes of the dense and thinned forest or for the size of an individual tree in a dense or thinned forest,
depending on what the process X models for each type of forest. Specifically, the process X satisfies (1),
where for y = 1, 2, μ(x, y) = μ̄(1 − γyx) and σ(x, y) = σ̄

√
x, with μ̄ and σ̄ being fixed positive constants.

This model is an example of a process on the state space (0,∞) for which the left end-point 0 is an entrance-
not-exit boundary point. For simplicity, we take the distribution π of the size of the thinned forest stand
X(θ) to be a unit point mass at xthin which means X(θ) = xthin following the decision to thin.

The differential operators for the mean-reverting model are A(y)f(x) = μ̄(1− γyx)f ′(x) + (σ̄2/2)xf ′′(x),
y = 1, 2. The increasing solutions of the eigenfunction equation (5) are given by

ψy(x) = KM

(
α

γyμ̄
,
2μ̄
σ̄2
,
2γyμ̄
σ̄2

x

)
, (18)
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in which KM (a, b, z) denotes the Kummer M -function

KM (a, b, z) = 1 +
az

b
+

(a)2
(b)2

z2

2!
+ · · ·+ (a)n

(b)n
zn

n!
+ · · · ,

where for c = a, b, (c)n := c(c+ 1)(c+ 2) · . . . · (c+ n− 1), (c)0 := 1 (see Abramowitz and Stegun (1965) for
details). For instance, KM (a, b, z) is a solution of the ordinary differential equation

zf ′′(z) + (b− z)f ′(z)− af(z) = 0;

an alternative notation for the Kummer M -function is KM (a, b, z) = 1F1(a, b; z) in Abramowitz and Stegun
(1965).

For illustrative purposes we choose the thinning and harvesting reward functions g1 and g2 as follows:

gy(x) = x · δy · 1+tanh(
y(x−zy))
2 − cy, y = 1, 2, (19)

where for y = 1 and 2, δy, �y, zy and cy are nonnegative constants. Nice interpretations can be given
to the parameters: δy represents the long-term growth rate of timber values (for large values of x) when
� > 0; the quantity cy may include a common shift in value that applies to all timber sizes (e.g., property
tax or transportation costs per tree Davies (1996), Table 1); �y is a scaling factor and zy is close to the
inflection point where profits increase the most. This form for the harvesting payoff function g2 gives a
reasonable family of functions that provide good approximations to the “Tree Value Conversion Standards”
(see Mendel, DeBald, and Dale (1976)) which estimate the harvesting payoffs based on the size (diameter at
breast height - dbh) and grade of the tree. An example of the fit for sugar maples is provided in Appendix
B; appropriate choices of parameters also provide good fits of g2 for the TVCS of other tree varieties as well.
(The tree value conversion standards were revisited in the publication DeBald and Dale (1991); we base our
illustration on the original paper by Mendel, DeBald, and Dale (1976).) The form (19) of payoff function
can be used for g1 to obtain good approximations of the “Fuel Value” (see Morrow (1981)). Notice that this
class of functions includes affine functions when � = 0.

The paper Morrow (1981) lists the TVCS values corresponding to hardwood trees having dbh in the
range from 10 inches to 28 inches and comments that trees with dbh in the range of 4 to 10 inches are worth
nothing except for fuelwood, but are in the most need of thinning. He further adds that trees with dbh in
the range of 10-14 inches have marginal value for timber and the rate of value increase is high, especially
for thinned trees. The situation is reversed when the trees have dbh in the range 24 to 28 inches with
high values but low growth rates. The function class (19) for g2 captures this type of value change while
appropriate choices of γy in the mean-reverting stochastic growth model will provide the observed type of
growth. Morrow also indicates that trees with dbh of 20 inches “do not just occur; they are the result of
thinning young stands, good sites, or a combination of both.”

Table 1 illustrates the optimal thinning and harvesting levels u∗w and v∗w, respectively, for a particular
choice of parameters along with the optimal expected discounted payoff V w(xnew, 1) for thinning and har-
vesting. The particular choice of �1 = 0 and z1 = 0 indicates that a good fit to the fuelwood values is given
by an affine function. First observe that the value of g1(u∗w) is slightly negative indicating that it is optimal
to spend money to thin the forest to receive the benefit of larger and more valuable trees when one harvests.
Thus thinning is important in order to develop more valuable trees rather than as a source of income. Notice
also the effect of increasing the thinned size of the forest is to thin earlier but this has no impact on the
decision to harvest. Intuitively, when xthin is small, the decision to thin would remove larger trees so as to
allow smaller, good quality trees to grow to full size and be harvested. When xthin is large, however, the
results indicate that the smaller competing trees would be thinned leaving larger trees for later harvest.

These values in Table 1 should be compared with those when thinning is not applied and the process X
only evolves according to the mean-reverting regime with parameters μ = 1, σ2 = 0.03 and 1/γ1 = 100, and
the reward function is given by g2. The choice of g2 for this comparison provides an optimistic value since
the trees in a dense forest will not grow to the same size or grade as for a thinned forest, but there will be
some trees of sufficient size so that the use of the fuelwood payoff function g1 would not be appropriate. The
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xthin u∗
w v∗

w V w(xnew, 1)
10. 29.3 61.7 3.257
12.5 28.0 61.7 3.493
15. 26.5 61.7 3.770
17.5 24.9 61.7 4.097
20. 23.1 61.7 4.487
22.5 21.0 61.7 4.957
25. 18.8 61.7 5.526

Table 1: Optimal thinning levels u∗
w and harvesting levels v∗

w (in cm) for the Wicksell-Model as well as values of V w(xnew, 1)
for various xthin values (in cm) using two mean reverting processes; μ1 = μ2 = 1, σ2

1 = σ2
2 = 0.03; 1/γ1 = 100, 1/γ2 = 120,

α = 0.03, xnew = 0.5, δ1 = 0.7345, �1 = 0, z1 = 0, c1 = 9.1748, δ2 = 1.8254, �2 = 0.04502, z2 = 56.6523, c2 = 4.3862.

optimal harvesting level of the corresponding Wicksell problem equals 58.8 and the optimal value is 4.47.
Moreover, the expected harvesting time is ∼ 87 years. For the case with thinning, when xthin = 20 cm or
xthin = 22.5 cm in Table 1 (and the associated selection of parameters and payoff functions), for example,
the two phases – before thinning and after thinning – have an average length of 22-25 years and 61-64 years
respectively. Hence, thinning might slightly increase the average optimal cash flow while the average time
up to harvesting is about the same. (The integral formula for the mean hitting time τb of a level b > x0 of a

mean-reverting process is E[τb] =
∫ b
x0

∫ v
0
e
− R v

z
2μ(u,y)
σ2(u,y)

du · 2
σ2(z,y) dz dv, with μ(x, y) and σ(x, y) specified at the

beginning of this example (Karlin and Taylor, 1981, pp. 192-197); this formula has been used to determine
these mean thinning and harvest times.)

The optimal values u∗w, v∗w and thinning level xthin serve as recommendations to the forester who would
be given the task of determining how to implement thinning and harvesting. Additional comments about
the model and implementation are given in Section 4 of concluding remarks.

3. Faustmann Infinite-Cycle Rotation Problem

In contrast with the Wicksell problem whose goal is to maximize the expected discounted reward for
thinning and harvesting a forest one time, the Faustmann problem allows the forest to be replanted after
each harvest and therefore rewards are earned over an infinite number of thinning and harvesting cycles.

3.1. Reduction to a Wicksell Single-Cycle Problem
This section analyzes the Faustmann problem by using the strong Markov property to relate it to a

Wicksell problem for an adjusted payoff function.
We assume the dynamics of the forest growth process X follow (1), that thinning occurs at times {θk}

with the thinned state X(θk) having distriubtion π and that harvesting and replanting happens at times
ηk at which point the process X reinitializes at xnew. The Faustmann objective is to maximize (3) over all
{(θk, ηk)} ∈ A. Note, we assume θk ≤ ηk ≤ θk+1 for every k. Recall V f (xnew, 1) denotes the optimal value
for the Faustmann problem.

To facilitate understanding of the argument for this section, we use a subscript on the expectation
operator, e.g. Exnew [·], to indicate the initial position of the process X. This notation is important when
using the strong Markov property.

Theorem 5. Assume g1 and g2 satisfy Condition 1. Then the optimal value for the Faustmann infinite
thinning-and-harvesting cycle problem is characterized by the nonlinear optimization problem

V f (xnew, 1) = sup
u,v∈F

g1(u)ψ2(v) + 〈ψ2, π〉g2(v)
ψ1(u)ψ2(v)− ψ1(xnew)〈ψ2, π〉 · ψ1(xnew). (20)

Moreover, an optimal pair (u∗f , v
∗
f ) exists and the thinning and harvest times are given by the successive

hitting times of X to the levels u∗f and v∗f , namely, setting η∗0 = 0, define, for k = 1, 2, 3, . . . ,

θ∗k = inf{t > η∗k−1 : X(t−) = u∗f} and η∗k = inf{t > θ∗k : X(t−) = v∗f}. (21)
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The optimal value is therefore

V f (xnew, 1) =
g1(u∗f )ψ2(v∗f ) + 〈ψ2, π〉g2(v∗f )

ψ1(u∗f )ψ2(v∗f )− ψ1(xnew)〈ψ2, π〉 · ψ1(xnew). (22)

Proof. In preparation for the analysis, notice that for k ≥ 2, θk ≥ η1; define θ̃k−1 = θk − η1. Also recall
that on the set {η1 < ∞}, X(η1) = xnew and observe that the summands of (3) are 0 for k ≥ 2 on the set
{η1 = ∞}. Then using the strong Markov property in the second last equality below, we have

Exnew

[ ∞∑
k=1

e−αθkg1(X(θk−))I{θk<∞}

]

= Exnew
[
e−αθ1g1(X(θ1−))I{θ1<∞}

]
+ Exnew

[ ∞∑
k=2

e−αθkg1(X(θk−))I{θk<∞}

]

= Exnew
[
e−αθ1g1(X(θ1−))I{θ1<∞}

]
+ Exnew

[
Exnew

[
e−αη1I{η1<∞}

∞∑
k=2

e−α(θk−η1)g1(X(η1 + (θk − η1)−))I{η1+(θk−η1)<∞}

∣∣∣∣∣Fη1
]]

= Exnew
[
e−αθ1g1(X(θ1−))I{θ1<∞}

]
+ Exnew

[
e−αη1I{η1<∞}Exnew

[ ∞∑
k=1

e−αθ̃kg1(X(η1 + θ̃k−))I{η1+θ̃k<∞}

∣∣∣∣∣Fη1
]]

= Exnew
[
e−αθ1g1(X(θ1−))I{θ1<∞}

]
+ Exnew

[
e−αη1I{η1<∞}EX(η1)

[ ∞∑
k=1

e−αθ̃kg1(X(θ̃k−))I{θ̃k<∞}

]]

= Exnew
[
e−αθ1g1(X(θ1−))I{θ1<∞}

]
+ Exnew

[
e−αη1I{η1<∞}Exnew

[ ∞∑
k=1

e−αθ̃kg1(X(θ̃k−))I{θ̃k<∞}

]]
.

Define η̃k−1 = ηk−η1, for k ≥ 2. The same analysis can be applied to the rewards obtained from harvesting
and thus

Exnew

[ ∞∑
k=1

(
e−αθkg1(X(θk−))I{θk<∞} + e−αηkg2(X(ηk−))I{ηk<∞}

)]

= Exnew

⎡
⎣e−αθ1g1(X(θ1−))I{θ1<∞} + e−αη1g2(X(η1−))I{η1<∞} (23)

+ e−αη1I{η1<∞}Exnew

[ ∞∑
k=1

(
e−αθ̃kg1(X(θ̃k−))I{θ̃k<∞} + e−αη̃kg2(X(η̃k−))I{η̃k<∞}

)]]
.

Denote the infinite sequences by (θ̃, η̃) = {(θ̃k, η̃k)} and notice (θ̃, η̃) ∈ A. Observe

V f (xnew, 1)

= sup
(θ̃,η̃)∈A

Exnew

[ ∞∑
k=1

(
e−αθ̃kg1(X(θ̃k−))I{θ̃k<∞} + e−αη̃kg2(X(η̃k−))I{η̃k<∞}

)]
.

Taking the supremum of the right-hand side of (23) over (θ̃, η̃) ∈ A implies

Exnew

[ ∞∑
k=1

(
e−αθkg1(X(θk−))I{θk<∞} + e−αηkg2(X(ηk−))I{ηk<∞}

)]
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≤ Exnew
[
e−αθ1g1(X(θ1−))I{θ1<∞} + e−αη1g2(X(η1−))I{η1<∞} + e−αη1I{η1<∞}V

f (xnew, 1)
]

= Exnew
[
e−αθ1g1(X(θ1−))I{θ1<∞} + e−αη1 [g2(X(η1−)) + V f (xnew, 1)]I{η1<∞}

]
= Exnew

[
e−αθ1g1(X(θ1−))I{θ1<∞} + e−αη1 g̃2(X(η1−))I{η1<∞}

]
where g̃2(x) = g2(x) + V f (xnew, 1). Thus the Faustmann infinite-cycle rotation problem is bounded above
by a Wicksell single-cycle problem using the thinning payoff function g1 and a shifted harvesting payoff
function g̃2. In a similar manner, begin by taking the supremum of the left-hand side of (23) over (θ, η) ∈ A,
then the supremum of the right-hand side over (θ̃, η̃) ∈ A and finally the supremum of the right-hand side
over (θ1, η1) in the Wicksell admissible set to obtain the opposite inequality and hence the value V f (xnew, 1)
equals the value Ṽ w(xnew, 1) of this Wicksell problem. Theorem 3 establishes existence of optimizers u∗f
and v∗f for which the value of this Wicksell problem (and hence the Faustmann problem) is

V f (xnew, 1) = Ṽ w(xnew, 1) =
g1(u∗f )ψ2(v∗f ) + 〈ψ2, π〉g̃2(v∗f )

ψ1(u∗f )ψ2(v∗f )
· ψ1(xnew). (24)

Substituting g̃2(v∗f ) = g2(v∗f ) + V f (xnew, 1) into (24) and solving for V f (xnew, 1) yields

V f (xnew, 1) =
ψ1(xnew)[g1(u∗f )ψ2(v∗f ) + ψ2(xthin)g2(v∗f )]

ψ1(u∗f )ψ2(v∗f )
·
[
1− ψ1(xnew)〈ψ2, π〉

ψ1(u∗f )ψ2(v∗f )

]−1

=
g1(u∗f )ψ2(v∗f ) + ψ2(xthin)g2(v∗f )
ψ1(u∗f )ψ2(v∗f )− ψ1(xnew)〈ψ2, π〉 · ψ1(xnew). (25)

Now define (θ, η) ∈ A to be the successive hitting times of u∗f and v∗f defined in (21). Then X(θ∗k−) = u∗f
andX(η∗k−) = v∗f and the evaluation of (3) then involves determining the value of the infinite series comprised
of the Laplace transform of the successive hitting times of the levels u∗f or v∗f . The evaluation of these series
is given in Appendix C with the result that the expected discounted reward obtained using this policy
achieves the bound (25).

The final point to be addressed is the demonstration that (u∗f , v
∗
f ) is an optimizing pair for the nonlinear

optimization problem (20). To see this, the equality of V f (xnew, 1) and Ṽ w(xnew, 1) in (24) implies that

V f (xnew, 1) = sup
u,v∈F

g1(u)ψ2(v) + 〈ψ2, π〉g̃2(v)
ψ1(u)ψ2(v)

· ψ1(xnew)

and hence for each u, v ∈ F ,

V f (xnew, 1) ≥ g1(u)ψ2(v) + 〈ψ2, π〉g̃2(v)
ψ1(u)ψ2(v)

· ψ1(xnew)

=
g1(u)ψ2(v) + 〈ψ2, π〉g2(v)

ψ1(u)ψ2(v)
· ψ1(xnew) +

ψ1(xnew)〈ψ2, π〉
ψ1(u)ψ2(v)

· V f (xnew, 1).

Solving for V f (xnew, 1) yields for each u, v ∈ F ,

V f (xnew, 1) ≥ g1(u)ψ2(v) + 〈ψ2, π〉g2(v)
ψ1(u

ψ
2 (v)− ψ1(xnew)〈ψ2, π〉

· ψ1(xnew)

with equality for (u∗f , v
∗
f ), establishing (20).

Remark 3. A similar remark to that of Remark 2 holds for the Faustmann problem. Specifically, let

d1(u, v) =
ψ1(xnew)ψ2(v)

ψ1(u)ψ2(v)− ψ1(xnew)〈ψ2, π〉 and d2(u, v) =
ψ1(xnew)〈ψ2, π〉

ψ1(u)ψ2(v)− ψ1(xnew)〈ψ2, π〉
14



denote the sums of the expected thinning discount factors and the expected harvesting discount factors,
respectively, when thinning occurs at level u and harvesting occurs at level v. Observe the nonlinear function
(20) to be maximized takes the form d1(u, v)g1(u)+d2(u, v)g2(v). Also note that d1(u, v) = ψ2(v)

〈ψ2,π〉 ·d2(u, v).

Letting g(u, v) = ψ2(v)
〈ψ2,π〉 · g1(u) + g2(v), (20) can be written as d2(u, v)g(u, v). The first order optimality

conditions for (u∗f , v
∗
f ) yield ⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

u∗f
∂g
∂u (u∗f , v

∗
f )

g(u∗f , v
∗
f )

= − u∗f
∂d2
∂u (u∗f , v

∗
f )

d2(u∗f , v
∗
f )

v∗f
∂g
∂v (u

∗
f , v

∗
f )

g(u∗f , v
∗
f )

= − v∗f
∂d2
∂v (u∗f , v

∗
f )

d2(u∗f , v
∗
f )

and since
∂d1
∂u (u, v)
d1(u, v)

=
∂d2
∂u (u, v)
d2(u, v)

it follows that at a pair (u∗f , v
∗
f ) of optimizers, the partial elasticities of the payoff function g equal the

negative of the partial elasticities of the discount factors:{
ELu[g](u∗f , v

∗
f ) = −ELu[d1](u∗f , v

∗
f )

ELv[g](u∗f , v
∗
f ) = −ELv[d2](u∗f , v

∗
f )

Notice that the payoff function g is valued in currency at the time of harvesting, not its present-value.

3.2. Example
The illustration of the Faustmann solution uses the same model formulation as for the Wicksell problem.

Recall the growth process X satisfies (1) with μ(x, y) = μ̄(1− γyx) and σ(x, y) = σ̄
√
x, where μ̄, σ̄ and γy

are fixed positive constants, while each thinning decision produces a value of X(θk) = xthin and harvesting
restarts the forest value at X(ηk) = xnew. Also recall that the differential operators for the mean-reverting
model are A(y)f(x) = μ̄(1−γyx)f ′(x)+(σ̄2/2)xf ′′(x), y = 1, 2, the increasing solutions of the eigenfunction
equation (5) are given by (18) and the payoff functions are as in (19).

Table 2 displays the optimal thinning and harvesting levels u∗f and v∗f along with the optimal payoff
for the Faustmann problem. Comparing these values with Table 1, one observes the effect of optimizing
over infinitely many cycles reduces both the optimal thinning and harvesting levels while at the same time
increases the payoff received. Moreover, these optimal thinning and harvesting levels are in agreement with
the comments by Morrow (1981) on the need to thin a stand of hardwoods when dbh is in the 4 to 10 inch
range and the valuation of the trees is high when dbh is 24 to 28 inches (∼ 60 cm to ∼ 70 cm).

xthin u∗
f v∗

f V f (xnew, 1)
10. 28.5 60.7 3.405
12.5 27.0 60.7 3.677
15. 25.3 60.6 4.002
17.5 23.5 60.4 4.396
20. 21.4 60.3 4.879
22.5 19.0 60.1 5.481
25. 16.1 59.9 6.249

Table 2: Optimal thinning levels u∗
f and harvesting levels v∗

f (in cm) for the Faustmann-Model as well as values of V f (xnew, 1)

for various xthin values (in cm) using two mean reverting processes; μ1 = μ2 = 1, σ2
1 = σ2

2 = 0.03; 1/γ1 = 100, 1/γ2 = 120,
α = 0.03, xnew = 0.5, δ1 = 0.7345, �1 = 0, z1 = 0, c1 = 9.1748, δ2 = 1.8254, �2 = 0.04502, z2 = 56.6523, c2 = 4.3862.
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4. Concluding Remarks

This paper has examined a variation of the Wicksell single cycle and Faustmann on-going harvest rotation
problems that includes thinning of the forest to promote better growth dynamics. The model adopts a
deterministic pricing function. This choice can be understood to be derived from aggregate data over a
long-term horizon and thus the problem under consideration treats rotation management as a long-term
investment. One might use this problem to determine an approximate age or size of tree at which harvesting
would occur. Then when one approaches the harvesting and marketing of the forest, one would take a
short-term view and use a stochastic pricing model to decide on the precise harvesting time.

The analysis in this paper replaces the stochastic model by an infinite-dimensional linear program over
a space of (deterministic) measures. This approach proved to be quite tractable for the problems under
study in this paper. An interesting feature of this analysis is the reduction of the Faustmann infinite-cycle
problem to a Wicksell single-cycle problem through the use of the strong Markov property for the growth
process.

The results for the thinning-and-harvest problems immediately reduce to the known results for the
harvest only problems. When there is no change in dynamics allowed, there is only one strictly increasing
solution to the eigenvalue problem Af = αf and there would be no dependence on a Y process. For the
Wicksell problem, one eliminates the g2 term from the optimization problem (12) since this would provide
a second harvest opportunity. Theorem 3 then reduces to the known solution (see, e.g., Sødal (2002)). The
reduction for the Faustmann problem is even more immediate. When harvesting is the only decision to
make, there would be a single payoff function g, only one reinitializing point xnew, one decision level u∗ and
as above only one increasing function ψ. The expression (22) in Theorem 5 then simplifies to the known
result.

This methodology can be easily adapted to include additional features to the model. For instance, the
owner of the forest stand may receive a running payment stream that depends on the size of the forest; such
payments might represent the amenity value of the forest or carbon credit payments that are received as
long as the forest is allowed to grow (see Helmes and Stockbridge (2010) for a single-cycle example using
this methodology). The dynamics may also include sudden destruction due to fire or pests. Assuming the
occurrences of such destruction are modelled by a Poisson process with some probability distribution on the
size of the forest following the occurrence, the methods of this paper apply with only a minor modification
to the generator A and an adjustment to the discount factor α.
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Appendix A. Optimization of Linear Program (11)

In this appendix, we prove that an optimal choice of measures for (11) will place point masses on
locations which maximize (12). To do so, however, we phrase the problem more generally as one of finding
finite measures ν1 and ν2 so as to solve the linear programming problem⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Maximize
∫
g1(x) ν1(dx) +

∫
g2(y) ν2(dy)

Subject to
∫
F1(x) ν1(dx) +

∫
F2(y) ν2(dy) = 1,∫

G1(x) ν1(dx)−
∫
G2(y) ν2(dy) = 0,

(A.1)

in which Fi are non-negative, measurable, Gi are positive, measurable and gi are measurable functions on
measurable spaces (Ei,Fi), i = 1, 2. To be feasible, the measures ν1 and ν2 must be such that for i = 1, 2,
Fi and Gi are integrable with respect to νi.
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Proposition 1. Define the functions H(x, y) = F1(x)G2(y) + G1(x)F2(y) and h(x, y) = g1(x)G2(y) +
G1(x)g2(y) and assume H is strictly positive. Then an upper bound on the optimal value of (A.1) is given
by ∫

g1(x) ν1(dx) +
∫
g2(y) ν2(dy) ≤ sup

(x,y)

h(x, y)
H(x, y)

and if the function h/H has a global maximum, then this bound is achieved.

Proof. Let (ν1, ν2) be a feasible pair of measures and note that at least one (hence both) measures have
positive mass. Let ν = ν1 × ν2 be the product measure on (E1 × E2,F1 ×F2). Observe that∫

H dν =
∫
F1 dν1

∫
G2 dν2 +

∫
G1 dν1

∫
F2 dν2

=
(∫

F1 dν1 +
∫
F2 dν2

)∫
G2 dν2

where the second constraint has been used and hence∫
H∫
G2 dν2

dν = 1.

Thus a probability measure ν̃ can be defined by taking H/(
∫
G2 dν2) to be the density with respect to ν.

Now observe that ∫
h dν =

∫
g1 dν1

∫
G2 dν2 +

∫
G1 dν1

∫
g2 dν2

=
(∫

g1 dν1 +
∫
g2 dν2

)∫
G2 dν2.

So as a result, ∫
g1 dν1 +

∫
g2 dν2 =

∫
h∫

G2 dν2
dν =

∫
h

H
· H∫

G2 dν2
dν =

∫
h

H
dν̃.

For any probability measure ν̃, the value of the objective is bounded above by supx,y
h(x,y)
H(x,y) . Moreover, when

the ratio h/H achieves its maximum, say at (x∗, y∗), an optimal pair of measures (ν∗1 , ν
∗
2 ) can be determined

by taking ν̃ = δ{(x∗,y∗)}. This then implies that the corresponding product measure ν∗ also places a point

mass on {(x∗, y∗)} having mass
R
G2 dν2

H(x∗,y∗) and moreover that the measure ν∗1 is a point mass on {x∗} and
similarly ν∗2 is a point mass on {y∗}. Now utilizing the two constraints of the linear program, we are able
to determine the masses of ν∗1 and ν∗2 from the system of equations

F1(x∗) ν∗1{x∗}+ F2(y∗) ν∗2{y∗} = 1
G1(x∗) ν∗1{x∗} −G2(y∗) ν∗2{y∗} = 0

yielding

ν∗1{x∗} =
G2(y∗)

F1(x∗)G2(y∗) +G1(x∗)F2(y∗)
, ν∗2{y∗} =

G1(x∗)
F1(x∗)G2(y∗) +G1(x∗)F2(y∗)

.
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dbh Tree Value Conversion Standards
(in cm) (TVCS)

25 0
30 1
35 3
40 8
45 17
50 29
60 58
70 94

Table B.3: Typical Change in Size and Value with Growth of a Sugar Maple

Appendix B. Payoff Function g2

The form of the harvesting payoff function g2(x) = xδ2 · 1+tanh(
2(x−z2))
2 −c2 is chosen since the parameters

δ2, �2, z2 and c2 provide enough flexibility to accurately capture pricing data. For example, Morrow (1981)
reports pricing data (based on 1972 prices) over their growth cycle for a number of different varieties of trees.
Table B.3 displays the data for the growth of a sugar maple; dbh stands for the diameter at breast height.
Tree Value Conversion Standards (TVCS) provide a measure of a tree’s worth, based on the comparative
value of the quantity and quality of expected yield of one-inch lumber, taking into account conversion costs
such as harvesting, transporting, and milling. It is a standard by which trees of different sizes can be
compared, but it excludes most price effects of inflation and the marketplace. A fit of this pricing data using
the parameters δ2 = 1.8254, �2 = 0.04502, z2 = 56.6523 and c2 = 4.3862 is displayed in Figure B.1. We
can see this family of pricing functions provides an excellent fit to the data; very good fits are also provided
with an appropriate change in the parameters for the prices corresponding to other varieties of trees.

40 50 60 70

20

40

60

80

Figure B.1: Fit of g2 to (dbh,TVCS) data in Table B.3.

Appendix C. Expected Discount Factors

Consider the thinning-and-harvesting rule whereby a dense forest is thinned whenever it reaches level
u and is harvested whenever a thinned forest achieves size v. Recall, the initial state of the forest is
(X(0), Y (0)) = (xnew, 1) indicating that the stand is dense and new. Define the “zeroeth” harvesting time
η0 = 0. Now define the successive thinning and harvest times (for k = 1, 2, 3, . . .) by θk = inf{t ≥ ηk−1 :
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X(t−) = u} and ηk = inf{t ≥ θk : X(t−) = v}. We seek to determine the expressions for the expected
discount factors

E

[ ∞∑
k=1

e−αθk
]

and E

[ ∞∑
k=1

e−αηk
]
.

To determine E [e−αηk ] define η̃k = ηk − θk and observe that η̃k gives the first hitting time of level v of the
process X under the dynamics with Y (t) = 1 starting at time θk in location X(θk) having distribution π on
[xmin, xmax] independent of θk. Recall from Remark 1, the Laplace transform of η̃k is given by 〈ψ2, π〉/ψ2(v).
Using the strong Markov property and subscripts on the expectation operator to indicate the initial value
of X, we have

Exnew
[
e−αηk

]
= Exnew

[
e−α[θk+(ηk−θk)]

]
= Exnew

[
e−αθkExnew

[
e−α(ηk−θk)

∣∣∣Fθk]]
= Exnew

[
e−αθkEX(θk)

[
e−αη̃k

]]
(C.1)

= Exnew
[
e−αθk

]
E

[
EX(θk)

[
e−αη̃k

]]
= Exnew

[
e−αθk

] · 〈ψ2, π〉
ψ2(v)

.

Similarly, let θ̃k = θk − ηk−1, note θ̃k is the first hitting time of X (with Y (t) = 1) started at time ηk−1 in
location xnew and E[e−αθ̃k ] = ψ1(xnew)/ψ1(u). Applying the strong Markov property, we have

Exnew
[
e−αθk

]
= Exnew

[
e−α[ηk−1+(θk−ηk−1)]

]
= Exnew

[
e−αηk−1Exnew

[
e−α(θk−ηk−1)

∣∣∣Fηk−1

]]
= Exnew

[
e−αηk−1EX(ηk−1)

[
e−αθ̃k

]]
(C.2)

= Exnew
[
e−αηk−1

] · ψ1(xnew)
ψ1(u)

.

Iterating (C.1) and (C.2) determines the summands of each series and hence yields

E

[ ∞∑
k=1

e−αηk
]

=
∞∑
k=1

(
ψ1(xnew)
ψ1(u)

· 〈ψ2, π〉
ψ2(v)

)k
=

1

1− ψ1(xnew)〈ψ2,π〉
ψ1(u)ψ2(v)

· ψ1(xnew)〈ψ2, π〉
ψ1(u)ψ2(v)

=
ψ1(xnew)〈ψ2, π〉

ψ1(u)ψ2(v)− ψ1(xnew)〈ψ2, π〉
and

E

[ ∞∑
k=1

e−αθk
]

=
∞∑
k=1

(
ψ1(xnew)
ψ1(u)

)k
·
( 〈ψ2, π〉
ψ2(v)

)k−1

=
ψ2(v)
〈ψ2, π〉

∞∑
k=1

(
ψ1(xnew)
ψ1(u)

· 〈ψ2, π〉
ψ2(v)

)k

=
ψ1(xnew)ψ2(v)

ψ1(u)ψ2(v)− ψ1(xnew)〈ψ2, π〉 .
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