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Multiple models are recognised by their abilities to accurately describe nonlinear dynamic behaviours of a wide variety of
nonlinear systems with a tractable model in control engineering problems. Multiple models are built by the interpolation
of a set of submodels according to a particular aggregation mechanism, among themheterogeneous multiple modelis of
particular interest. This multiple model is characterized by the use ofheterogeneous submodelsin the sense that their
state spaces are not the same and consequently they can be of various dimensions. Thanks to this feature, the complexity
of the submodels can be well adapted to the complexity of the nonlinear system introducing flexibility and generality
in the modelling stage. This paper deals with the off-line identification of nonlinear systems based on heterogeneous
multiple model. Three optimisation criteria (global, local and combined) are investigated to obtain the submodel parameters
according to the expected modelling performances. Particular attention is paid to the potential problems encountered in the
identification procedure with a special focus on an undesirable phenomenon calledno output tracking effect. The origin of
this problem is explained and an effective solution is suggested to overcome this problem in the identification task. The
abilities of this model are finally illustrated via relevant identification examples showing the effectiveness of the proposed
methods.
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1. Introduction

Effectively dealing with many problems in control engi-
neering, such as modelling, control and diagnosis, gener-
ally needs the use of nonlinear models instead of the stan-
dard linear time-invariant (LTI) models. These last can
be satisfactorily used to represent a mildly nonlinear sys-
tem in some situations as proposed by Mäkilä and Parting-
ton (2003). However, they have fundamental limitations
in their abilities to deal with highly nonlinear behaviours
and complex interactions in a large operating range, for
example, when an extended working range of the system
(global behaviour) must be considered in preference to a
reduced operating range in the neighbourhood of an oper-
ating point (local behaviour).

Nonlinear models are frequently obtained from a the-

oretical modelling on the basis ofa priori knowledge on
the nature and the intrinsic mechanisms of the systems.
These white-box models are often extensive, complex and
their usability for real-world applications (control, state
estimation, etc.) often requires some simplifications. Be-
sides, thea priori knowledge on relatively complex sys-
tems is partially or totally unavailable in many practi-
cal situations and consequently the theoretical modelling
fails. In this quite common case, experimental modelling
(identification) from measurements must be used as an
alternative to the theoretical modelling. Nonlinear sys-
tem identification has been the focus of a great deal of
attention in the past decades and several models with ade-
quate algorithms have been proposed, for instance tempo-
ral Volterra series, kernel estimators, block oriented mod-



els, radial basis function network, artificial neural net-
works, fuzzy models, neuro-fuzzy models, multiple mod-
els, etc. (Sjöberget al., 1995; Babuška, 1998; Ljung,
1999; Nelles, 2001). Nevertheless, the adequate struc-
ture selection among these multitude of existing structural
nonlinear models is particularly critical for the success of
the identification task as well as the model usability. Ide-
ally, as mentioned by Edwards and Hamson (2001),the
success of a model depends on how easily it can be used
and how accurate are its predictions. Note also that any
model will have a limited range of validity and should not
be applied outside this range. In summary, an accurate
modelling in a large domain of validity must be accom-
plished by models as simple as possible to cope with real-
world problems.

Multiple models, also known aslocal model net-
works, are recognised by their abilities to capture highly
nonlinear behaviours in a wide operational range of the
system with an exploitable model (Johansen and Foss,
1993; Murray-Smith and Johansen, 1997; Leith and Leit-
head, 1999). Indeed, multiple models offer good trade-off
between accuracy, complexity and usability. In this mod-
elling approach, the operating space of the system is de-
composed in a finite number of possibly overlapping op-
erating zones. The closeness to each of them is quanti-
fied by aweighting function. Linear models (submodels)
are then able to describe the dynamics of the system in-
side each operating region. The global modelling of the
system is finally performed by considering the contribu-
tion of each submodel according to the operating point of
the system. In this way a single complex model which
parameters are not easily identifiable is replaced by a set
of submodels judiciously interconnected via an interpola-
tion mechanism. Different structures of multiple models
can be derived according to the interpolation mechanism.
However, as stated by Filev (1991), two main structures
can be clearly distinguished based on the use ofhomo-
geneousor heterogeneous submodels. A comparison, be-
tween these multiple models has been recently proposed
by Gregorčič and Lightbody (2008).

In the first one, all the submodels share the same state
space and consequently they are calledhomogeneous sub-
models. A good example of this kind of multiple model
is given by the well knownTakagi-Sugeno(TS) multi-
ple model proposed by Takagi and Sugeno (1985), in a
fuzzy modelling framework, and by Johansen and Foss
(1993) in a multiple model modelling framework. This
multiple model structure, called herehomogeneous multi-
ple model, has largely been adopted for nonlinear mod-
elling and its abilities of dealing with highly nonlinear
systems are unquestionable (Murray-Smith and Johansen,
1997; Babuška, 1998; Abonyi and Babuška, 2000; Ver-
dult et al., 2002; Kiriakidis, 2007). That kind of mod-
els has also been largely studied to cope with fault detec-
tion and estimation (Xuet al., 2012) or fault-tolerant con-

 

trol (Rodrigues et al., 2007; Ichalal et al., 2012). From 
a structural point of view, the aggregation of submod-
els is achieved via a time varying weighted sum of the 
submodel parameters (Gregorčič and Lightbody, 2008). 
Hence, the system complexity inside each operating zone 
must be quite similar because the submodels have the 
same dimension and in some cases the number of parame-
ters needed for system description is inevitably increased 
(overparametrization). This fact is known as the curse of 
dimensionality where the number of parameters needed 
for an accurate representation increases extremely rapidly 
along with the nonlinear system complexity (Leith and 
Leithead, 1999).

In the second multiple model structure, the submod-
els do not share the same state space and consequently 
they are called heterogeneous submodels. This feature of-
fers some degrees of freedom of particular interest to cope 
with the curse of dimensionality. Indeed, the dimensions 
of the submodels can be different and they can be adjusted 
to fit with the system complexity inside each operating 
zone. In this way, the flexibility and the generality of this 
multiple model structure are undoubtedly increased. This 
kind of multiple model, initially proposed by Filev (1991), 
is reported in the literature under several designations, 
such as local-state local model network (Gawthrop, 1995), 
multiple local models (Gatzke and Doyle III, 1999; Venkat 
et al., 2003; Vinsonneau et al., 2005), local model net-
works by blending the outputs (Gregorčič and Light-
body, 2000; Gregorčič and Lightbody, 2008), multiple 
model for models with non common state (Kanev and Ver-
haegen, 2006), neuro-fuzzy decoupling multiple model 
scheme (Uppal et al., 2006) and recently decoupled mul-
tiple model (Orjuela et al., 2006; Orjuela et al., 2008; Or-
juela et al., 2009). Despite their different names, these ap-
proaches share a similar multiple model structure. In the 
sequel, this multiple model is called heterogeneous multi-
ple model. The previously quoted works have illustrated 
successful implementations of this structure for mod-
elling (Venkat et al., 2003; Vinsonneau et al., 2005; Or-
juela et al., 2006), control (Gawthrop, 1995; Gatzke and 
Doyle III, 1999; Gregorčič and Lightbody, 2000), state es-
timation and diagnostic (Kanev and Verhaegen, 2006; Up-
pal et al., 2006; Orjuela et al., 2008; Orjuela et al., 2009) 
and have shown its relevance. Hence, this kind of multi-
ple model can be used as an interesting alternative to the 
homogeneous multiple model.

The main contribution of this paper is to provide a 
supervised off-line identification algorithm for nonlinear 
systems based on the heterogeneous multiple model struc-
ture. The proposed algorithm is based on a specific anal-
ysis (sensitivity function computation) of the parameter 
identification of submodels using different optimisation 
criteria (local, global or combined local/global). Indeed, 
according to the expected model performances three cost 
criteria to be minimised are presented and the relation-



ship between them is discussed. A particular attention is
paid to the practical implementation and potential prob-
lems encountered in the identification procedure. Indeed,
an undesirable identification phenomenon, calledno out-
put tracking effect, is clearly revealed and a modification
of the multiple model structure is proposed to reduce its
impact on the identification quality. These topics seem
poorly investigated in the literature related to this kind of
multiple model.

The remaining of the paper is organised as follows.
In Section 2, the heterogeneous multiple model is pre-
sented. The parametric identification problem is stated in
Section 3 and three cost criteria are proposed. The iden-
tification procedure using these criteria is exposed in Sec-
tion 4 and the computation of the sensitivity functions is
detailed. The Section 5 is devoted to the explanation of
theno output tracking effectand a way to overcome this
problem is proposed. Finally, the abilities of this multi-
ple model to cope with nonlinear system identification are
assessed in Section 6 by means of different identification
examples. Some concluding remarks and directions for
future researches are presented in Section 7.

2. Heterogeneous multiple model structure

This section is devoted to the description of the hetero-
geneous multiple model structure. A mathematical for-
mulation of this multiple model is firstly detailed. The
weighting function definition employed in this paper is af-
terwards proposed.

2.1. The heterogeneous multiple model structure.
The state space structure of the heterogeneous multiple
model used in this work is given by:

xi(k + 1) = Ai(θi)xi(k) +Bi(θi)u(k) (1a)

+ Di(θi),

yi(k) = Ci(θi)xi(k), (1b)

y(k) =

L
∑

i=1

µi(ξ(k))yi(k), (1c)

wherexi ∈ R
ni andyi ∈ R

p are respectively the state
vector and the output of theith submodel;u ∈ R

m is the
input andy ∈ R

p is the output of the multiple model.
The matricesAi ∈ R

ni×ni , Bi ∈ R
ni×m, Di ∈ R

ni

andCi ∈ R
p×ni of each submodel are constant matrices

whose entriesθi must be determined.
The numberL of submodels is intuitively given

by thegranularity of the operating space decomposition
needed for an accurate representation of the system un-
der investigation. The complete partition of the operat-
ing space of the system intoL operating zones is per-
formed using a characteristic variableξ(k) of the sys-
tem calleddecision variablethat is assumed to be known

and real-time available. The distance to each operating
zone is quantified with the help of theweighting functions
µi(ξ(k)) (cf. Section 2.2). The outputyi(k) of the sub-
models are unmeasurable internal signals of the model (1),
only u(k) andy(k) are available for parameter identifica-
tion.

It is worth noting from (1) that each submodel
evolves independently in its own state space depending on
the input control and its initial condition. Hence, the state
space dimensionni of each submodel can be different
from another and it can be adjusted to correctly describe
the system behaviour in each operating zone. It can be
expected from this feature that some flexibility in the rep-
resentation of nonlinear systems will be introduced. This
multiple model is then suited for black-box modelling of
complex systems with variable structure in the operating
space such as biologic and chemical systems whose state
dimension (e.g. the number of products or species) may
vary according to the operating conditions. This feature
also offers the possibility to apply model order reduction
techniques on the submodels to reduce the global model
complexity. It can be noticed that other multiple model
structures can be obtained by blending the inputs of the
submodels instead of the outputs (Vinsonneauet al., 2005)
or by blending both of them.

2.2. Weighting function definition. The weighting
functionsµi(ξ(k)) ∈ [0, 1] : Rw → R

1 quantify the rel-
ative contribution of each submodel to the global model
according to the current operating point of the system by
means of the decision variableξ ∈ R

w. This last vari-
able is a real-time available characteristic variable of the
system, e.g. the system input.

Here, the weighting functions are obtained from nor-
malised multidimensional Gaussian basis functions:

ωi(ξ(k)) =

w
∏

j=1

exp
(

−(ξj(k)− ci,j)
2
/σ2

j

)

, (2a)

µi(ξ(k)) = ωi(ξ(k))/

L
∑

j=1

ωj(ξ(k)), (2b)

whereξj is the jth component of the decision variable
vectorξ, the two parametersci,j andσj are respectively
employed to place the centre and to chose the overlapping
of weighting functions in the operating space. It can be
noted that other mathematical definition can be used. In
every case, the weighting functionsµi(ξ(k)) must satisfy
the following convex sum properties:

L
∑

j=1

µj(ξ(k)) = 1 ∀k (3a)

0 ≤ µj(ξ(k)) ≤ 1, ∀j = 1 · · · L, ∀k. (3b)

According to the operating space decomposition, the
weighting functions (2) can be qualified asstrongly over-



lapped for smooth decomposition orweakly overlapped
for hard decomposition as depicted in Fig. 1 and Fig. 2.
The relationship between the functionsωi(ξ(k)) and
µi(ξ(k)) is also shown in this figure. The overlapping
between these functions can be viewed as the overlapping
between the validity regions of the submodels. As it will
be pointed out in Section 3.3, these notions play an impor-
tant role in the potential interpretation given to the iden-
tified submodels. Throughout this paper and for the sake
of simplicity, the weighting functionsµi(ξ(k)) are written
µi(k).
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Fig. 1. Strongly overlapped weighting functions.ωi(ξ) (left)
andµi(ξ) (right) for σi = 0.3.
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Fig. 2. Weakly overlapped weighting functions.ωi(ξ) (left) and
µi(ξ) (right) for σi = 0.1.

3. Parametric identification problem

The multiple model parametric identification generally
deals with three main issues: 1) the decision variable
ξ(k) selection, 2) the choice of the weighting functions
µi(k) for operating space decomposition, 3) the submodel
parameter estimation for a given multiple model struc-
ture. The model validation constitutes the final stage of
the identification procedure, for example with the help of
appropriated correlation tests (Billings and Zhu, 1994).
Unfortunately, these issues are not straightforward and
their simultaneous resolution leads to a very hard nonlin-
ear problem. Hence, a systematic procedure for multiple
model identification is not available despite the great ef-
fort made in this direction.

Here, the three mentioned identification problems are
tackled as follows. The chosen decision variableξ(k) is

 

an entry or the complete input vector u(k) of the sys-
tem. Indeed, the evolution of the current operating point 
of the system is a priori driven by the input system sig-
nal. This choice provides a solution to the first problem 
without loss of generality. Concerning the second prob-
lem, it is assumed that the operating space decomposition 
is a priori known (supervised case). Several ways can be 
employed to obtain this decomposition. The use of the 
static regime characteristic of the system is for example a 
simple way to perform this partition. In fact, this charac-
teristic provides very helpful informations about the local 
linear behaviours as well as the operating points (Venkat 
et al., 2003). Clustering algorithms (Gustafson-Kessel 
Algorithm, Fuzzy c-means, Fuzzy c-varieties, etc.) are 
also very useful to deal with the operating space decom-
position in an efficient way (Babǔska, 1998; Dumitrescu 
et al., 2000). The last quoted problem, but not the least, is 
investigated in the sequel.

The basis of the heterogeneous multiple model iden-
tification by minimising the error between the system and 
the model outputs is exposed in Gray et al. (1996). In 
McLoone and Irwin (2003) the identification is achieved 
using a heterogeneous structure with a particular class of 
submodels known as velocity-based local models. The 
use of these submodels provides transparency of the over-
all network because the submodels are always affine. In 
Venkat et al. (2003) the input/output data for submodel 
identification are generated in one particular small oper-
ating zone of the nonlinear system, the linearity of the 
submodel associated with each set of data is ensured 
in this way. Hence, the submodel identification can be 
independently accomplished via standard linear identifi-
cation techniques. However a great number of experi-
ments are necessary to obtain the independent data se-
quences for submodel identification. In Vinsonneau et al.
(2005) the identification of heterogeneous multiple model 
with blended inputs is performed with a global total least 
square technique. In this section, the multiple model iden-
tification mainly deals with the submodel parameter esti-
mation θi in (1). Different optimisation criteria to accom-
plish the identification task are proposed and compared in 
the following sections.

3.1. Submodel parametric identification problem. 
The set of parameters to be identified can be gathered in a 
partitioned vector θ as follows:

θ = [θ1 · · · θi · · · θL]
T ∈ R

q, (4)

where each blockθi is formed by the unknown parameters
of theith submodel:

θi = [θi,1 · · · θi,q · · · θi,qi ]
T ∈ R

qi , (5)

whereθi,k, (k = 1 · · · qi) is a scalar parameter to be es-
timated,qi the number of parameters of theith submodel



andq =
∑L

i=1 qi the total number of parameters of the
multiple model.

The statement of the identification problem, ad-
dressed in this paper, can be formulated as follows:for
given weighting functions and for a given set of in-
put/output data of a MISO system, the parameters of the L
submodels must be determined.The relative accuracy of
the identified multiple model is evaluated and quantified
via a cost functionJ(θ) to be minimised, in other words:

θ̂ = argmin
θ

J(θ). (6)

The optimisation criterionJ(θ) generally quantifies the
output model quality with respect to the system output.
According to the choice of this criterion and thanks to the
flexibility of the multiple models some modelling specifi-
cations can be introduced (for example, a global represen-
tation of the systems and/or its local representation) in the
identification procedure as proposed in the next section.

3.2. Optimisation criteria. Three optimisation crite-
ria (global, local and combined) to be minimised can be
employed in the parameter identification of multiple mod-
els (Yenet al., 1998; Abonyi and Babuška, 2000; Johansen
and Babuška, 2003). Obviously, the choice of a criterion
is related to the expected performances of the model as
well as its future applications.

Global criterion.The global criterion is defined by:

JG(θ) =
1

2

N
∑

k=1

ε2(k), (7a)

JG(θ) =
1

2

N
∑

k=1

(y(k)− yS(k))
2, (7b)

whereN is the number of training data andε(k) theglobal
error betweeny(k) the output of the identified multiple
model (1c) andyS(k) the system output given by the data.
This criterion encourages the global approximation be-
tween the nonlinear system and the multiple model be-
haviour across the operating space. This criterion is in-
teresting when the multiple model is used forpredictions
without any interpretation of the submodels. Indeed, the
local behaviours of submodels inside each operating zone
are not considered by (7).

Local criterion. The following weighting local crite-
rion is firstly introduced for each submodel:

JL,i(θi) =
1

2

N
∑

k=1

µi(k)ε
2
i (k), (8a)

JL,i(θi) =
1

2

N
∑

k=1

µi(k)(yi(k)− yS(k))
2, (8b)

whereεi(k) is the local error between theith submodel
outputyi(k) given by (1b) and the system outputyS(k).

The classic least-squares algorithm can be applied for
each submodel identification when a hard operating space
decomposition is considered, i.e. whenµi(k) are not over-
lapped. In this particular case, the multiple model output
y(k) is given by the submodel outputyi(k) according to
the operating point. However, the outputs of the submod-
els are simultaneously available and a more general local
criterion can be defined by considering the contribution of
all submodels:

JL(θ) =
1

2

L
∑

i=1

JL,i(θi). (9)

This criterion takes into account the local approximation
provided by the submodels inside each operating zone and
some interpretation can eventually be accorded, e.g. a lo-
cal linearisation of the nonlinear system around operating
points. Hence, each submodel is identified by only con-
sidering data inside its associated validity region accord-
ing to the weighting termµi(k) in (8). In comparison to
the global criterion (7), a great number of submodels can
be necessary to provide a good global characterisation of
the system.

Combined criterion. A trade-off of global and local
criteria can be obtained by the combined criterion defined
by (Yenet al., 1998):

JC(θ) = αJG(θ) + (1− α)JL(θ). (10)

The use of this criterion makes it possible the so-called
multi-objective optimisation in which the two above crite-
ria are more or less taken into account according to the
weight given by the scalarα ∈ [0, 1]. The influence
of α on the trade-off between local model interpretabil-
ity and the accurate global approximation is investigated
in (Johansen and Babuška, 2003). Some modelling con-
flicts between the local and the global objectives are also
pointed out in this paper and the way to detect and solve
these conflicts is analysed.

3.3. Link between the criteria and the operating
space decomposition. The weighting functions are used
for zoning the operating space of the system. As previ-
ously mentioned, the operating space decomposition can
be performed in a first step froma priori knowledge of the
system. The expected results of the identification proce-
dure according to the criterion selection are consequently
conditioned by this partition.

Notice in particular that even if a local criterion is
used, the local behaviour interpretation of the multiple
model cannot be accomplished when the operating zones
are strongly overlapped. Indeed, some submodels have
a large validity zone and consequently a local interpreta-
tion inside a very delimited validity region is not well ad-
equate. In opposition, a global interpretation can always



be made because the multiple model is built for accom-
plishing this objective. The local and global features of
the submodels are conditioned by the appropriate choice
of the weighting functions i.e. by the operating space de-
composition.

4. Submodel parametric identification

An analytical solution of the considered identification
problem given by (6) is not available because the opti-
misation problem remains nonlinear with respect to the
submodel parameters. Hence, the proposed parametric es-
timation of the unknown parameter vectorθ is based on an
iterative minimisation procedure of a criterionJ (global,
local or combined) according to the Gauss-Newton al-
gorithm associated with the Levenberg and Marquardt
method given by the following recurrence relation (Walter
and Pronzato, 1997; Ljung, 1999; Nelles, 2001):

θ(m+1) = θ(m) (11)

− ∆(m)(H(θ(m)) + λ(m)I)−1G(θ(m)),

whereθ(m) is the estimated parameter vector at themth

iteration, θ(m+1) is the evaluated vector at the next it-

eration,H(θ(m)) = ∂2J
∂θ∂θT

∣

∣

∣

θ=θ(m)
is the Hessian ma-

trix and G(θ(m)) = ∂J
∂θ

∣

∣

θ=θ(m) the gradient vector at
the current iteration. In the sequel we shall simply write
H(θ) = H(θ(m)) andG(θ) = G(θ(m)). The computation
of G(θ) andH(θ) is based on the calculation ofsensitivity
functionsof the multiple model output with respect to the
submodel parameters. The step size∆(m) and the regular-
isation parameterλ(m) enhance the velocity and conver-
gence avoiding some numerical problems, for example a
bad numerical conditioning of the Hessian matrix (Walter
and Pronzato, 1997; Ljung, 1999).

4.1. Computation ofGG(θ) and HG(θ) with a global
criterion. The global gradientGG(θ) is calculated by
differentiating the global criterion (7) with respect to the
parameter vectorθ:

GG(θ) =
∂JG(θ)

∂θ
, (12a)

GG(θ) =

N
∑

k=1

ε(k)
∂y(k)

∂θ
, (12b)

by using (1c), it follows:

∂y(k)

∂θ
=

L
∑

i=1

µi(k)
∂yi(k)

∂θ
. (13)

The ∂yi(k)
∂θ

are the first order sensitivity functions of the
ith submodel output with respect to the unknown parame-
ters of the multiple model.

 

The Hessian matrix HG(θ) is obtained by differenti-
ating the gradient vector (12) with respect to θ as follows:

HG(θ) =
∂2JG(θ)

∂θ∂θT
, (14a)

HG(θ) =

N
∑

k=1

ǫ(k)
∂2y(k)

∂θ∂θT
+

N
∑

k=1

∂y(k)

∂θ

∂y(k)

∂θT
. (14b)

Remark that the computation of the Hessian matrix (14)
becomes very arduous due to the required computations
of both first and second order sensitivity functions. How-
ever, the second order sensitivity functions can be ne-
glected thanks to the Gauss-Newton method (Walter and
Pronzato, 1997; Ljung, 1999; Nelles, 2001). In this case,
the Hessian is computed by only considering the first or-
der sensitivity functions already employed in the gradient
computation. Finally, the approximate HessianH̃G(θ) is
given by:

H̃G(θ) =
N
∑

k=1

∂y(k)

∂θ

∂y(k)

∂θT
. (15)

4.2. Computation of GL(θ) and HL(θ) with a local
criterion. The gradient vectorGL(θ) and the Hessian
matrixHL(θ) computations considering the local criterion
(9) are similar to the previous case. The local gradient
GL(θ) is given by:

GL(θ) =
∂JL(θ)

∂θ
, (16a)

GL(θ) =

L
∑

i=1

N
∑

k=1

µi(k)εi(k)
∂yi(k)

∂θ
, (16b)

and the approximate of its associated Hessian matrix
H̃L(θ) by:

H̃L(θ) =
L
∑

i=1

N
∑

k=1

µi(k)
∂yi(k)

∂θ

∂yi(k)

∂θT
. (17)

4.3. Computation of the sensitivity functions. Using
(1b), the sensitivity functions are defined as follows:

∂yi(k)

∂θp,q
=

∂Ci

∂θp,q
xi(k) + Ci

∂xi(k)

∂θp,q
,

i = 1, · · · , L
p = 1, · · · , L
q = 1, · · · , qi

(18)

whereθp,q is a scalar parameter to be estimated, already
introduced in Section 3.1. The sensitivity of the local state
xi with respect to the parameters at the timek + 1 is per-
formed by the derivation of (1a) with respect to each pa-
rameterθp,q to be identified:

∂xi(k + 1)

∂θp,q
=

∂Ai

∂θp,q
xi(k) +Ai

∂xi(k)

∂θp,q
(19)

+
∂Bi

∂θp,q
u(k) +

∂Di

∂θp,q
, i = 1, · · · , L.



A very interesting feature in the heterogeneous multiple
model identification is that the same sensitivity functions
∂yi(k)
∂θ

are used for parametric estimation with a global
or a local criterion reducing in this way the computation
effort.

4.4. Parametric estimation algorithm. The identifi-
cation procedure described so far can be summarised by
the following identification algorithm.

Require: Weighting function definition
Require: Initial parameter vectorθ(0), initial

state vectorx(0), initial state sensitivities
∂xi(0)
∂θp,q

Require: Maximal number of iterationsmmax

Require: Maximal value of the gradient norm
ǫ > 0

Require: 0 ≤ α ≤ 1 in the criterionJC(θ)
given by (10)

Require: m = 1, ∆(1) ≈ 0 andλ(1) >> 0 in
(11)

1: repeat
2: Multiple model simulation from evalua-

tion of (1)
3: Sensitivity function computation from

(18) and (19)
4: Gradient vectorG computation from (12)

and (16)
5: Hessian matrixH computation from (15)

and (17)
6: Update the vectorθ(m) from (11)
7: EvaluateJ (m)

C

8: if J (m−1)
C < J

(m)
C then

9: Go to stage 6, increaseλ(m) and de-
crease∆(m)

10: else
11: m ⇐ m+ 1
12: Increase∆(m) and decreaseλ(m)

13: end if
14: until ‖G‖ < ǫ ormmax ≤ m

Some practical implementation aspects of this algo-
rithm are discussed in the sequel. It is worth noting that
the sensitivity functions (18) and (19) are generic forms.
They can be simplified in the algorithm implementation
because the parameters of each submodel are completely
independent of the parameters of the other submodels.
Consequently, the number of sensitivity functions to be
computed can be considerably reduced as follows:

∂yi(k)

∂θp
= 0, for p 6= i

i = 1, · · · , L
p = 1, · · · , L.

(20)

The practical implementation complexity of the proposed
identification algorithm is largely reduced thanks to these
simplifications.

Remark that two classic problems can be encoun-
tered when using iterative nonlinear algorithms (Ljung,
1999; Nelles, 2001; Walter and Pronzato, 1997). The first
one concerns thesufficiently richinput signal. In the mul-
tiple model framework the whole operating zones of the
system must be excited by the input on the one hand, and
the decision variableξ(k) must be selected to trigger all
submodels on the other hand. Let us remember that here
the decision variable is the input of the system and there-
fore the identification can be well accomplished by suffi-
cient rich input. The second classic problem is related to
the appropriate choice of an initial parameter guessθ0 to
ensure the algorithm convergence towards a global opti-
mum solution or to the best local optimum. Indeed, sev-
eral local optimal solutions are often available for nonlin-
ear optimisation problems. In this particular case, several
choices of initial parameters may be necessary to reach
the best local optimum solution ensuring in this way the
best identitication of the nonlinear system under investi-
gation. An interesting procedure to judiciously choose the
initial parameters is to perform a first identification con-
sidering a hard operating space decomposition by means
of classic least-square algorithm using the local criterion
(8). The submodel parameters obtained in this way can be
employed as starting point in the identification algorithm.

4.5. Link between local and global approaches. The
aim of this section is to investigate the similarities of the
identification approaches using either a local or a global
approach. Some algebraic manipulations are needed to
highlight the similarities between the gradient vectors
GG(θ) andGL(θ). Firstly, the global errorε(k) can be
rewritten as follows:

ε(k) =

L
∑

j=1

µj(k) (yj(k)− yS(k)) , (21a)

ε(k) =
L
∑

j=1

µj(k)εj(k), (21b)

using the convex properties (3) of the weighting functions.
Secondly, the expression ofε(k) given by (21b) can be
replaced in the equation (12) ofGG(θ) as follows:

GG(θ) =

N
∑

k=1

L
∑

i=1

L
∑

j=1

µi(k)µj(k)εj(k)
∂yi(k)

∂θ
. (22)

The main difference between the gradient vectors (12) and
(16) only comes from the considered estimation error. A
global errorε(k) = y(k) − yS(k) is considered in the
first case whereas a local errorεi(k) = yi(k) − yS(k)
is used in the second one. However, thanks to algebraic
manipulations the same local error as well as the same
sensitivity functions∂yi(k)

∂θ
appear in the global gradient

vector (22) and in the local one (16).



Now, the limit case where the weighting functions
are not overlapped (i.e. very hard operating space decom-
position) is considered for the sake of clarity. In this limit
case, these two gradient vectors are identical because:

{

µi(k)µj(k) = 1 if i = j,

µi(k)µj(k) = 0 otherwise.
(23)

Hence, it can be expected thatGL(θ) ≈ GG(θ) when
weakly overlapped weighting functions are employed.
The same comparison between Hessian matricesHG(θ)
andHL(θ), respectively given by (15) and (17), enables to
show thatHL(θ) ≈ HG(θ).

In conclusion, it can be expected that both optimi-
sation criteria provide similar results when weakly over-
lapped weighting functions are considered because the
gradient vectors and the Hessian matrices are similar. In
fact, the optimisation directions are also very similar in
these two cases. In other words, local properties of the
submodels can be obtained using a global criterion when
the operating zones are weakly overlapped (cf. Example
6.1) but global properties of the submodels can not be ex-
pected to be found when weighting functions are weakly
overlapped. For strongly overlapped weighting functions,
it is advisable to choose the combined criterion (10) to
weight the submodels interpretation with respect to the
quality of the global model.

5. On the no output tracking effect

In some particular modelling situations, undesirable dis-
continuities arise in the multiple model output (cf. Exam-
ple 6.2). Indeed, an abrupt change of the decision variable
ξ(k) can cause an abrupt jump from one output submodel
directly to another output introducing a discontinuity in
the multiple model output (Gatzke and Doyle III, 1999).
Let us remember that the multiple model output is given
by the weighted sum of the submodel outputs which are
not necessary close in the operating space. Therefore,
their distance may produce a discontinuity in the multi-
ple model output because the submodel outputs do not
instantly respond. This phenomenon, called here theno
output tracking effect, happens when the outputs of the
submodels taken into consideration are far apart. The im-
pact of this phenomenon decreases when the outputs are
close and it completely vanishes if all the outputs are iden-
tical at the transition time.

This undesirable phenomenon unavoidably reduces
the quality of the identified multiple model. It acts in
the identification procedure as an internal perturbation
strongly distorting the submodel identification results.
The chosen decision variable, the operating space decom-
position and the dynamics of the submodels play a more
or less important role in theno output tracking effect. It is
important to notice that this phenomenon is not systematic
and only appears in particular cases.

 

Considering strongly overlapped weighting func-
tions and a large number of operating zones is not always 
an efficient way to avoid this phenomenon. These con-
straints undoubtedly increase the complexity of the mul-
tiple model and reduce some degrees of freedom in the 
modelling stage, e.g. local modelling with strongly over-
lapped weighting functions can not be well achieved (see 
Section 3.3). Furthermore, the previous solutions do not 
provide a systematic solution to the no output tracking ef-
fect as shown in Example 6.2. Here, a modified heteroge-
neous multiple model, depicted on Fig. 3, is proposed to 
deal with this problem.

F1(., .)

F2(., .)

F3(., .)

ξ(k) ξ̃(k) µi(ξ̃(k))

Submodel 1

Submodel 2

Submodel L

Π

Π

Π

Σ
u(k) ũ(k) ỹ(k) y(k)

µ1(.)

µ2(.)

µL(.)

Fig. 3. Modified heterogeneous multiple model structure.

The main idea is to find a way to progressively
take into consideration the contribution of each submodel.
Three filters (with transfer functionsF1, F2 andF3) are
introduced in the multiple model structure. These filters
respectively act on the input, the decision variableξ(k)
and the output of the multiple model. The proposedmod-
ified heterogeneous multiple modelis given by:

ũ(k) = F1(z
−1, θF1)u(k), (24a)

ξ̃(k) = F2(z
−1, θF2)ξ(k), (24b)

xi(k + 1) = Ai(θi)xi(k) +Bi(θi)ũ(k) (24c)

+Di(θi),

yi(k) = Ci(θi)xi(k), (24d)

ỹ(k) =

L
∑

i=1

µi(ξ̃(k))yi(k), (24e)

y(k) = F3(z
−1, θF3)ỹ(k), (24f)

wherey(k) is the modified multiple model output,z−1 is
the one step delay operator,F1(z

−1, θF1), F2(z
−1, θF2)

andF3(z
−1, θF3) are the three additional filters andθFi

is
the parameter vector of theith filter to be identified.

These three filters, often first or second order low-
pass filters, are integrated in the multiple model structure
and their parameters should be estimated in the identifica-
tion procedure. The new augmented unknown parameter
vectorθ is then given by:

θ =
[

θT1 . . . θTi . . . θTL θTF1
θTF2

θTF3

]T
. (25)

where each blockθi has already been defined in (5) and
the blocksθF1 , θF2 andθF3 are formed by the parameters



of the three additional filters to be identified. The iden-
tification procedure is achieved as proposed in Section 4
including the additional sensitivity functions of the multi-
ple model output with respect to the filter parameters.

It can be noticed that a systematic guideline for selec-
tion of these three filters cannot be provided in a straight-
forward way. Indeed, a systematic use of the additional
filters is not always needed to overcome theno output
tracking effectas shown in Section 6. These filters must
be considered as supplementary degrees of freedom to en-
hance the identification task with few parameters when the
no output tracking effectis detected. In many cases, theno
output tracking effectcan be avoided by only using the fil-
terF2 (i.e. using filtered decision variables̃ξ(k)) because
abrupt jumps of the weighting functions are avoided.

6. Identification examples

In this section, the developed method is applied to three
nonlinear system identification problems allowing to as-
sess the effectiveness of the method as well as its lim-
its. The performance of the models are assessed using the
Mean Square Error(MSE) and theVariance-Accounted-
For (VAF) indicators:

MSE=
1

N

N
∑

k=1

(yS(k)− y(k))2, (26)

VAF = max

{

1−
var(yS(k)− y(k))

var(yS(k))
, 0

}

× 100, (27)

whereyS(k) andy(k) are the system and the model output
and where var(.) denotes the variance of a signal (Verdult
et al., 2002). These indicators are computed using the val-
idation data in the proposed examples.

6.1. Example 1: identification case. The following
nonlinear system is considered:

y(k + 1) = (0.6− 0.1a(k))y(k) + a(k)u(k), (28a)

a(k) =
0.6− 0.06y(k)

1 + 0.2y(k)
. (28b)

The operating space is decomposed inL = 2 oper-
ating zones according to the static characteristic of (28).
The decision variable is the system inputξ(k) = u(k).
The parameters of the weighting functions (2) arec1 =
−0.9, c2 = 0.9 andσi = 0.9. This choice ensures the
blending of submodels but it is not however unique and
the parameters of the weighting functions could be opti-
mised. The structure of the submodels is:

xi(k + 1) = aixi(k) + biu(k), (29)

whereai andbi are scalar parameters to be identified con-
sidering a global criterion (7). The identification is carried

out using a data set of 750 samples generated by a smooth
input signal with random magnitudeu(k) ∈ [−0.9, 0.9].
A second data set of 750 samples is employed for the val-
idation purpose.

The identification results are displayed on Fig. 4. In
this figure, the nonlinear system is denotedNLS and the
identified multiple modelMM . The upper part of this
figure shows a comparison between the nonlinear system
and the identified submodels. Clearly, each submodel pro-
vides a local representation of the system behaviour. In
fact, the first submodel provides a good approximation for
negative input values. In contrast, the second submodel
provides good approximation for positive input values.
The global modelling of the nonlinear system (bottom of
the figure) is finally obtained by appropriately considering
the contribution of each submodel via middle overlapped
weighting functions. The proposed multiple model rep-
resents local as well as global behaviour of the nonlinear
system and the performance indicators are MSE=0.0012
and VAF=99.72%.
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Fig. 4. System identification results using validation data.

6.2. Example 2: on the no output tracking effect.
The goal of this identification example is to show theno
output tracking effect. The following system is consid-
ered:

x(k + 1) = ax(k) + sin(γu(k))(β − u(k)), (30)

with a = 0.95, γ = 0.8π andβ = 1.5.
The operating space is intentionally decomposed in

L = 6 operating zones using the system input as the de-
cision variable, i.e.ξ(k) = u(k). The parameters of the



weighting functions (2) arec1 = 0, c2 = 0.2, c3 = 0.4,
c4 = 0.6, c5 = 0.8, c6 = 1 andσi = 0.2. The submodel
structure is given by:

xi(k + 1) = aixi(k) + biu(k) + di, (31)

whereai, bi anddi are scalars to be identified. A global
criterion (7) can be used for the identification task be-
cause the weighting functions are strongly overlapped.
The identification is carried out using a data set of 5000
samples generated by a piecewise input signal with ran-
dom duration and magnitudeu(k) ∈ [0, 1], a second data
set of 5000 samples is employed for the validation pur-
pose.

The comparison between the nonlinear system and
the multiple model behaviours is depicted in Fig. 5.
Clearly, the system behaviour is not well represented by
the identified multiple model. The performance indica-
tors are MSE=9.66 and VAF=52.22%. Indeed, the sys-
tem output is not well tracked by the multiple model out-
put, in particular due to “picks” causing a loss of qual-
ity. These “picks” are undesirable and result in theno
output tracking effectpreviously presented in Section 5.
One can see on Fig. 5 that theno output tracking effect
remains important despite the large number of submodels
and the strongly overlapped weighting functions voluntary
employed in this example.
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Fig. 5. The no output tracking effect. System and multiple
model output validation.

The modified heterogeneous multiple model (24)
proposed in Section 5 is now employed to improve the
identification, i.e. to attenuate theno output tracking ef-
fect. Here, the structures of the filtersF1, F2 andF3 are
given by:

ũ(k + 1) = α1ũ(k) + (1− α1)u(k + 1), (32a)

ξ̃(k + 1) = α2ξ̃(k) + (1 − α2)ξ(k + 1), (32b)

y(k + 1) = α3y(k) + (1− α3)ỹ(k + 1), (32c)

whereα1, α2 andα3 are supplementary parameters to be
estimated based on the ideas proposed in section 5. As

 

seen from Fig. 6, the modified heterogeneous multiple 
model provides an accurate representation of the system 
dynamics. The performance indicators are largely im-
proved: MSE=0.0029 and VAF=99.98%. The proposed 
strategy is an effective way to eliminate the no output 
tracking effect and consequently to recover the approxi-
mation abilities of the multiple model.
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Fig. 6. The no output tracking effect. System and modified mul-
tiple model output validation.

6.3. Example 3: nonlinear system identification.
The following system, firstly proposed by Narendra and
Parthasarathy (1990) for neural networks identification,
is considered as a benchmark for black-box identifica-
tion technique evaluation (Verdultet al., 2002; Nie, 1994;
Boukhriset al., 1999; Wenet al., 2007):

y(k + 1) =
u(k)

1 + y2(k − 1) + y2(k − 2)
(33)

+
y(k)y(k − 1)y(k − 2)u(k − 1) (y(k − 2)− 1)

1 + y2(k − 1) + y2(k − 2)
.

The identification is achieved by considering a global
criterion and an operating space uniformly partitioned in
L = 4 operating zones. The parameters of the weighting
functions (2) arec1 = −1, c2 = −0.33, c3 = 0.33, c4 = 1
andσi = 0.4. The identification task is accomplished us-
ing a partially modified multiple model. Indeed, the de-
cision variableu(k) is filtered by the low-pass filter (32b)
and consequently only the filterF2 is employed. The mod-
ified multiple model is composed with four second-order
submodels.

In this benchmark, the identification is carried out
using a data set of 800 samples generated by a piece-
wise input signal with random duration and magnitude
u(k) ∈ [−1, 1]. The model validation is assessed using
a second data set of 800 samples generated by an input
signal given by:
{

u(k) = sin( 2π
250k) if k ≤ 500,

u(k) = 0.8 sin( 2π
250k) + 0.2 sin(2π25 k) if k > 500.



The identification is carried out by successively con-
sidering the noise-free output case and the noisy output
case. In this latter case, a normally distributed random
signal with zero mean and standard deviation equal to one
is employed to disturb the system output. The obtained
identification results in these two cases are respectively
shown in Fig. 7 and Fig. 8.
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Fig. 7. Model validation in the noise-free case identification.
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Fig. 8. Model validation in the noise case identification.

Table 1 shows a comparison between our results and
those found in the literature using other models. Remark
that the two performance indicators MSE and VAF are
not always computed in these works and the noise case
is not considered. It can be pointed out that the identi-
fied multiple model yields comparable performances to
those obtained with the other methods with few param-
eters (four second-order submodels). The abilities of this
multiple model to cope with nonlinear system identifica-
tion are clearly shown.

7. Conclusion and further directions

In this work, the abilities of heterogeneous multiple model
to deal with the identification of nonlinear systems are in-
vestigated. With respect to classic multiple model struc-
tures, the heterogeneous multiple model enables to use

Model name and reference MSE VAF

Neuro-fuzzy network with 34 rules 0.00028 –
(Nie, 1994) –
TS MM, with seven 3rd-order models 0.0003 –
(Boukhriset al., 1999) –
TS MM, with four 3rd-order models 0.0002 99.9%

(Verdult et al., 2002)

BPWARX, with 10 BPWA functions 0.112 97.9%

(Wenet al., 2007)

The proposed method (noise-free case) 0.00067 99.7%

The proposed method (noise case, SNR=17dB)0.0053 97.7%

Table 1. Performance indicator comparisons (TS MM: Takagi-
Sugeno Multiple Model (homogeneous model), BP-
WARX: Piecewise-Affine Basis Function AutoRegres-
sive eXogenous models).

heterogeneous submodels with different dimensions ac-
cording to the complexity of the system inside each op-
erating region. The main advantage of this model is the
flexibility degree in the operating space decomposition of
the system.

An identification algorithm is presented and three
cost criteria (local, global or combined global/local) are
provided according to the expected model performance.
The relationship between these criteria is highlighted. An
effective solution to avoid the undesirableno output track-
ing effectis also proposed and the results obtained show
the effectiveness of the proposed identification algorithm.

The proposed identification algorithm can be ex-
tended in order to optimise the operating space decompo-
sition. Indeed, the weighting functions associated to each
operating region are supposed to be known in this work,
even if they can also be optimised as the submodel param-
eters using the same optimisation procedure. In this way,
the approximation abilities of the multiple model can be
enhanced but the complexity of the optimisation problem
increases because the total number of the parameters to be
identified also increases. A solution to this problem can
however be found via atwo level iterative algorithm. In
the first level, the proposed parametric identification can
be used assuming that the weighting functions are known.
The weighting function identification is performed in the
second level by assuming that the submodels are known.
Finally, the perspectives of this study are the extension of
the proposed identification procedure to include the opti-
misation of the operating space decomposition according
to the multiple model dimension, i.e. submodel orders and
their number.
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