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ON THE ONE-SIDED EXIT PROBLEM FOR STABLE PROCESSES IN

RANDOM SCENERY

FABIENNE CASTELL, NADINE GUILLOTIN-PLANTARD, FRANÇOISE PÈNE, AND BRUNO SCHAPIRA

Abstract. We consider the one-sided exit problem for stable Lévy process in random scenery,
that is the asymptotic behaviour for T large of the probability

P

[

sup
t∈[0,T ]

∆t ≤ 1
]

where

∆t =

∫

R

Lt(x) dW (x).

Here W = (W (x))x∈R is a two-sided standard real Brownian motion and (Lt(x))x∈R,t≥0 the
local time of a stable Lévy process with index α ∈ (1, 2], independent from the process W . Our
result confirms some physicists prediction by Redner and Majumdar.

1. Introduction

Random processes in random scenery are simple models of processes in disordered media with
long-range correlations. These processes have been used in a wide variety of models in physics
to study anomalous dispersion in layered random flows [13, 5], diffusion with random sources, or
spin depolarization in random fields (we refer the reader to Le Doussal’s review paper [11] for
a discussion of these models). Let us also mention the fact that these processes are functional
limits of random walks in random scenery [9, 6, 7, 4, 8]. The persistence properties of these
models were studied by Redner [15, 16] and Majumdar [12]. The interested reader could refer to
the recent survey paper [1] for a complete description of already known persistence probabilities
and exponents. Supported by physical arguments, numerical simulations and comparison with
the Fractional Brownian Motion, Redner and Majumdar conjectured the persistence exponents.
In this paper we rigorously prove their conjecture up to logarithmic factors. Before stating our
main result, we present the process we are interested in.

Let W = (W (x))x∈R be a standard two-sided real Brownian motion and Y = (Yt)t≥0 be a
strictly stable Lévy process with index α ∈ (1, 2] such that Y0 = 0. More precisely, for some
positive scale-parameter c, the characteristic function of the random variable Y1 is given by

∀θ ∈ R, E[eiθY1 ] = exp
{

− c|θ|α
(

1 + iγ sgn(θ) tan(πα/2)
)}

where γ ∈ [−1, 1]. We will denote by (Lt(x))x∈R,t≥0 a continuous version with compact support
of the local time of the process (Yt)t≥0. The processes W and Y are defined on the same
probability space and are assumed to be independent. We consider the random process in

random scenery (∆t)t≥0 defined as

∆t =

∫

R

Lt(x) dW (x).
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The process ∆ is known to be a continuous δ-self-similar process with stationary increments,
with

δ := 1− 1

2α
.

This process can be seen as a mixture of Gaussian processes, but it is neither Gaussian nor
Markovian. In this article, we study the asymptotic behaviour of

F(T ) := P

[

sup
t∈[0,T ]

∆t ≤ 1
]

as T → +∞. Our main result is the following one.

Theorem 1. For any α ∈ (1, 2], there exists a constant c = c(α) > 0, such that for T large

enough,

T−1/(2α)(log T )−c ≤ P

[

sup
t∈[0,T ]

∆t ≤ 1
]

≤ T−1/(2α)(log T )+c.

2. Lower Bound

For a certain class of stochastic processes (Xt)t≥0 (to be specified below), Molchan [14] proved
that the asymptotic behavior of

P

[

sup
t∈[0,T ]

Xt ≤ 1
]

is related to the quantity

I(T ) := E

[

(
∫ T

0
eXt dt

)−1
]

.

We refer to [2] where the relationship between both quantities is clearly explained as well as the
heuristics.

Theorem 2 (Statement 1, [14]). Let (Xt)t≥0 be a continuous process, self-similar with index

H ∈ (0, 1), with stationary increments s.t. for every θ > 0,

E

[

exp
(

θ max
t∈[0,1]

|Xt|
)]

< +∞.

Then, as T → +∞,

E

[

(
∫ T

0
eXt dt

)−1
]

= HT−(1−H)
(

E

[

max
t∈[0,1]

Xt

]

+ o(1)
)

.

By applying this result to our random process ∆ we get

Proposition 2.1. For any α ∈ (1, 2], as T → +∞,

E

[

(
∫ T

0
e∆t dt

)−1
]

=

(

1− 1

2α

)

T−1/(2α)
(

E

[

max
t∈[0,1]

∆t

]

+ o(1)
)

.

Proof. The process (∆t)t≥0 being continuous, self-similar with index δ := 1− 1
2α , with stationary

increments, it is enough to prove that for every θ > 0,

E

[

exp
(

θ max
t∈[0,1]

|∆t|
)]

< +∞. (1)
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Let θ > 0. We have

E

[

exp
(

θ max
t∈[0,1]

|∆t|
)]

=

∫ ∞

0
P

(

exp (θ max
t∈[0,1]

|∆t|) ≥ λ
)

dλ

≤ 2 +

∫ ∞

2
P

(

max
t∈[0,1]

|∆t| ≥
log(λ)

θ

)

dλ.

Since the process (∆t)t is symmetric,

P

(

max
t∈[0,1]

|∆t| ≥
log(λ)

θ

)

≤ 2 P

(

max
t∈[0,1]

∆t ≥
log(λ)

θ

)

≤ 4 P(∆1 ≥ (log λ)/θ),

using the maximal inequality for the process ∆ (see Theorem 2.1 in [10]). Moreover, from
Theorem 5.1 in [10], there exist positive constants C and γ (depending on α) s.t. for every
λ > 0,

P(∆1 ≥ λ) ≤ C exp(−γλ2α/(1+α)).

Since the function λ → exp(−γ((log λ)/θ)2α/(1+α)) is integrable at infinity for any α ∈ (1, 2] and
any θ > 0, assertion (1) follows. �

Aurzada’s proof of the lower bound in the H-index Fractional Brownian Motion (BH(t))t≥0

case (see [2]) rests on both following arguments: the self-similarity of the FBM and the inequality
(valid for a large enough)

(E|BH(t)−BH(s)|a)1/a = C(a)|t− s|H , t, s ≥ 0 (2)

with C(a) ≤ caν , for some c and ν > 0. Our random process ∆ being self-similar, it is enough to
prove assertion (2) to derive the lower bound. The increments of the process ∆ being stationary,
by self-similarity, we have for every t, s ≥ 0,

E[|∆t −∆s|a] = |t− s|δa E[|∆1|a]
≤ |t− s|δa E[|∆1|2([a]+1)]a/(2([a]+1))

Conditionally to the process Y , the random variable ∆1 is centered Gaussian with variance

V1 :=

∫

R

L2
1(x) dx.

From the independence of both processes Y and W and from the formula of the even moments
of the centered reduced Gaussian law, we can derive the even moments of the random variable
∆1, namely, for any m ∈ N,

E[∆2m
1 ] = E[V m

1 ]
(2m)!

2mm!
.

First of all, from Stirling’s formula, for m large enough, we have

(2m)!

2mm!
≤ C.

(2

e

)m
mm.

Moreover,

E[V m
1 ] =

∫ +∞

0
P[V1 ≥ λ1/m] dλ.

From Corollary 5.6 in [10], there exist positive constants C and ξ s.t. for every λ > 0,

P[V1 ≥ λ] ≤ Ce−ξλα
.
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So, we have (the constant C may change from line to line but does not depend on m ≥ 1)

E[V m
1 ] ≤ 2 + Cm

∫ +∞

21/m
e−ξλα

λm−1 dλ

≤ Cm

∫ ∞

0
e−ξλ2

λ
2m
α dλ

≤ Ccm/αmm/α,

for some constants C, c > 0. It is now easy to derive (2) namely

(E|∆t −∆s|a)1/a = C(a)|t− s|δ, t, s ≥ 0 (3)

where C(a) ≤ caν with ν := 1
2(1 +

1
α).

3. Upper bound

As in [14] and [2], the main idea of the proof is to bound I(T ) from below by restricting the
expectation to a well-chosen set of paths.

Observe that, conditionally to Y , (∆t)t is a centered Gaussian process with covariance

E[∆t∆s|(Yt)t] =

∫

R

Lt(x)Ls(x) dx ≥ 0.

We will use several times the fact that, due to this fact and to Slepian’s lemma, for every
0 ≤ u < v < w and every real numbers a, b, we have

P

[

sup
t∈[u,v]

∆t ≤ a, sup
t∈[v,w]

∆t ≤ b
∣

∣

∣
(Yt)t

]

≥ P

[

sup
t∈[u,v]

∆t ≤ a
∣

∣

∣
(Yt)t

]

P

[

sup
t∈[v,w]

∆t ≤ b
∣

∣

∣
(Yt)t

]

(4)

and

P

[

sup
t∈[u,v]

∆t ≤ a, sup
t∈[v,w]

(∆t −∆v) ≤ b
∣

∣

∣
(Yt)t

]

≥ P

[

sup
t∈[u,v]

∆t ≤ a
∣

∣

∣
(Yt)t

]

P

[

sup
t∈[v,w]

(∆t −∆v) ≤ b
∣

∣

∣
(Yt)t

]

.

(5)
Let p > 0 and β > 0. We define

aT := (log T )p and βT :=
a
1− 1

2α
− 1

4α2

T

(log aT )β
.

For any t > 0, we write |Lt|2 the random variable
(∫

R
L2
t (x) dx

)1/2
. Let us consider the event

AT = {|LaT |2 ≥ βT }.

Lemma 3. For all p > 0 and all β > 0,

P[Ac
T ] = O

(

(log aT )
−2αβa

− 1
2α

T

)

as T → +∞.

Proof. First we notice that |LaT |2 has the same distribution as a
1− 1

2α
T |L1|2 and that, by the

Cauchy-Schwartz inequality, we have

1 =

∫

R

L1(x) dx ≤ |L1|2
√
S, with S := sup

s∈[0,1]
Ys − inf

s∈[0,1]
Ys.
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Hence we have

P[Ac
T ] = P[|LaT |2 < βT ]

= P[|L1|2 < a
− 1

4α2

T (log aT )
−β ]

≤ P[S > a
1

2α2

T (log aT )
2β ]

≤ P[ sup
s∈[0,1]

Ys > a
1

2α2

T (log aT )
2β/2] + P[ sup

s∈[0,1]
(−Ys) > a

1
2α2

T (log aT )
2β/2] (6)

and so, for T large enough, due to Theorem 4.a in [3], we have

P[Ac
T ] = O(a

− 1
2α

T (log aT )
−2αβ).

(Remark that in the case γ = 1, from (8) in [3], the first probability in (6) is zero and Theorem
4.a [3] can be applied to the Lévy process (−Yt)t≥0 which is strictly stable with index α and
γ = −1). The lemma follows. �

Let us define the function

φ(t) :=

{

1 0 ≤ t < aT
1− βT aT ≤ t ≤ T

Clearly, we have

E

[

(
∫ T

0
e∆t dt

)−1
∣

∣

∣
(Yt)t

]

≥
(
∫ T

0
eφ(t) dt

)−1

P

[

∀t ∈ [0, T ],∆t ≤ φ(t)
∣

∣

∣
(Yt)t

]

.

When p(1− 1
2α − 1

4α2 ) > 1, it is easy to show that
∫ T

0
eφ(t) dt = O(aT ).

By Slepian’s lemma (see (4)), we have

P

[

∀t ∈ [0, T ],∆t ≤ φ(t)
∣

∣

∣
(Yt)t

]

≥

≥ P

[

∀t ∈ [0, aT ],∆t ≤ 1
∣

∣

∣
(Yt)t

]

.P
[

∀t ∈ [aT , T ],∆t ≤ 1− βT

∣

∣

∣
(Yt)t

]

.

Remark that

P

[

∀t ∈ [aT , T ],∆t ≤ 1− βT

∣

∣

∣
(Yt)t

]

≥ P

[

∆aT ≤ −βT ;∀t ∈ [aT , T ],∆t −∆aT ≤ 1
∣

∣

∣
(Yt)t

]

.

Conditionally to (Yt)t, the increments of the process (∆t)t being Gaussian and positively corre-
lated, by Slepian’s lemma (see (5)), we get

P

[

∀t ∈ [aT , T ],∆t ≤ 1− βT

∣

∣

∣
(Yt)t

]

≥ P

[

∆aT ≤ −βT |(Yt)t

]

P

[

∀t ∈ [aT , T ],∆t −∆aT ≤ 1
∣

∣

∣
(Yt)t

]

.

Conditionally to (Yt)t, the random variable ∆aT is centered Gaussian with variance |LaT |22 and so

P[∆aT ≤ −βT |(Yt)t] = F (− βT
|LaT

|2
) where F is the distribution function of the Normal distribution

N (0, 1). On the event AT , we then have

P[∆aT ≤ −βT |(Yt)t] ≥ F (−1).

Moreover,

∆t −∆aT =

∫

L̃t−aT (x− YaT ) dW (x)

where L̃ is the local time of the process (Ỹt)t≥0 defined as Ỹt := YaT+t − YaT for t ≥ 0. Con-

ditionally to (Yt)t, the processes (∆t − ∆aT )t≥aT and (
∫

L̃t−aT (x) dW (x))t≥aT have the same
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distribution and P

[

∀t ∈ [aT , T ],∆t −∆aT ≤ 1
∣

∣

∣
(Yt)t

]

is therefore (Ỹt)t−measurable. Finally, on

the event AT , we get
∫ T
0 eφ(t)dt

F (−1)
E

[

(
∫ T

0
e∆t dt

)−1
∣

∣

∣
(Yt)t

]

≥

≥ P

[

∀t ∈ [0, aT ],∆t ≤ 1
∣

∣

∣
(Yt)t

]

P

[

∀t ∈ [aT , T ],∆t −∆aT ≤ 1
∣

∣

∣
(Yt)t

]

.

Both probabilities in the right hand side are respectively measurable with respect to the σ-fields
σ(Ys, s ≤ aT ) and σ(YaT+s−YaT , s ≥ 0) (which are independent one from the other) then we get

∫ T
0 eφ(t)dt

F (−1)
E

[

(
∫ T

0
e∆t dt

)−1
]

≥

≥
∫ T
0 eφ(t)dt

F (−1)
E

[

(
∫ T

0
e∆t dt

)−1

1AT

]

≥ E

[

P

[

∀t ∈ [0, aT ],∆t ≤ 1
∣

∣

∣
(Yt)t

]

1AT

]

P

[

∀t ∈ [aT , T ],∆t −∆aT ≤ 1
]

≥
(

P

[

∀t ∈ [0, aT ],∆t ≤ 1
]

− P

[

Ac
T

])

P

[

∀t ∈ [0, T − aT ],∆t ≤ 1
]

.

Let c be the exponent appearing in the lower bound. We choose β > c/(2α) and p such that
p(1 − 1

2α − 1
4α2 ) > 1. Due to Lemma 3 and to the lower bound of F(T ), the first term in the

right hand side is larger than C(log aT )
−ca

−1/(2α)
T for T large enough. The second term is clearly

larger than

P

[

∀t ∈ [0, T ],∆t ≤ 1
]

.

Therefore, we get

P

[

∀t ∈ [0, T ],∆t ≤ 1
]

≤ C(log aT )
c(aT )

1+ 1
2αE

[

(
∫ T

0
e∆t dt

)−1
]

and the upper bound follows using the equivalent for I(T ) in Proposition 2.1.
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