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The aim of this work is to study how the asymptotic boundary of a minimal hypersurface in H n × R determines the behavior of the hypersurface at finite points, in several geometric situations.

Introduction

In this article we discuss how, in several geometric situations, the shape at infinity of a minimal surface in H 2 × R determines the shape of the surface itself. A beautiful theorem in minimal surfaces theory is the Schoen's characterization of the catenoid [START_REF] Schoen | Uniqueness, symmetry, and embeddedness of minimal surfaces[END_REF]. It can be stated as follows. Let M ⊂ R 3 be a complete immersed minimal surface with two annular ends. Assume that each end is a graph, then M is a catenoid. On the other hand, there exists a complete minimal annulus immersed in a slab of R 3 [START_REF] Rosenberg | Toubiana A cylindrical type complete minimal surface in a slab of R 3[END_REF]. A characterization of the catenoid in the hyperbolic space, assuming regularity at infinity, was established by G. Levitt and H. Rosenberg in [START_REF] Levitt | Symmetry of constant mean curvature hypersurfaces in hyperbolic space[END_REF]. In a joint work with L. Hauswirth [START_REF] Hauswirth | A Schoen theorem for minimal surfaces in H 2 × R[END_REF], the authors of the present article proved a Schoen type theorem in H 2 × R, in the class of finite total curvature surfaces.

Our first result is a new Schoen type theorem in H 2 × R. Namely, we replace Schoen's assumption each end is a graph with the assumption each end is a vertical graph whose asymptotic boundary is a copy of the asymptotic boundary of H 2 (Theorem 2.1).

Our second result is a maximum principle in a vertical (closed) halfspace. Assume that M is a complete minimal surface, possibly with finite boundary, properly immersed in H 2 × R and that the boundary of M, if any, is contained in the closure of a vertical halfspace P + . Assume further that the points at finite height of the asymptotic boundary of M are contained in the asymptotic boundary of the halfspace P + . Then M is entirely contained in the halfspace P + , unless M is equal to the vertical halfplane ∂P + (Theorem 3.1).

Then we generalize our results to higher dimensions. Theorem 2.1 and Theorem 3.1 in higher dimension are analogous to the 2-dimensional case. In order to generalize Theorem 2.1, we first need to give a characterization of the n-catenoid analogous to that of the 2-dimensional case (Theorem 4.2, see also [START_REF] Bérard | Minimal hypersurfaces in H n × R, total curvature and index[END_REF]). Moreover in the higher dimensional case, it is worthwhile to state some interesting consequences of our results. Let S ∞ be a closed set contained in an open slab of ∂ ∞ H n × R with height equal to π/(n -1) such that the projection of S ∞ on ∂ ∞ H n × {0} omits an open subset. We prove that there is no complete properly immersed minimal hypersurface M whose asymptotic boundary is S ∞ (Theorem 4.5-( 2)). Finally we prove an Asymptotic Theorem (Theorem 4.6), that implies the following non-existence result. There is no horizontal minimal graph over a bounded strictly convex domain, see [START_REF] Earp | Uniform a priori estimates for a class of horizontal minimal equations[END_REF]Equation (3)], given by a positive function g continuous up to the boundary, taking zero boundary value data (Remark 4.1).
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A characterization of the catenoid in

H 2 × R
We are going to prove the characterization of the catenoid presented in the Introduction. Any surface in H 2 × R with constant third coordinate is a complete totally geodesic surface called a slice. For any s ∈ R, we denote by Π s the slice H 2 × {s} and we set

Π + s = {(p, t) | p ∈ H 2 , t > s} and Π - s = {(p, t) | p ∈ H 2 , t < s}. For simplicity Π stands for Π 0 . Lemma 2.1. Let Γ + and Γ -be two Jordan curves in ∂ ∞ H 2 × R which are vertical graphs over ∂ ∞ H 2 × {0} and such that Γ + ⊂ ∂ ∞ Π + and Γ -⊂ ∂ ∞ Π -. Assume that Γ - is the symmetry of Γ + with respect to Π. Let M ⊂ H 2 ×
R be an immersed, connected, complete minimal surface with two ends E + and E -. Assume that each end is a vertical graph and that 

∂ ∞ M = Γ + ∪ Γ -, that is ∂ ∞ E + = Γ + and ∂ ∞ E -= Γ -. Then M is symmetric with respect to Π. Furthermore, each part M ∩ Π ± is
+ . Since ∂ ∞ M = Γ + ∪ Γ -, then M ∩ Π t + = ∅
, by the maximum principle. We denote by E + the end of M whose asymptotic boundary is Γ + . As E + is a vertical graph, there exists ε > 0 such that M + t + -ε is a vertical graph, then we can start Alexandrov reflection [START_REF] Alexandrov | Uniqueness theorems for surfaces in the large, V[END_REF].

We keep doing the Alexandrov reflection with Π t , doing t ց 0. By applying the interior or boundary maximum principle, we get that, for t > 0, the surface M + * t stays above M - t . Therefore we get that M + 0 is a vertical graph and that M + * 0 stays above M - 0 . Doing Alexandrov reflection with slices coming from below, one has that M - 0 is a vertical graph and that M - * 0 stays below M + 0 , henceforth we get M + * 0 = M - 0 . Thus M is symmetric with respect to Π and each component of M \ Π is a graph. Therefore we can show, as in the proof of [START_REF] Schoen | Uniqueness, symmetry, and embeddedness of minimal surfaces[END_REF]Theorem 2], that the whole surface M is embedded. This completes the proof. Definition 2.1. A vertical plane is a complete totally geodesic surface γ × R where γ is any complete geodesic of H 2 . Theorem 2.1. Let M ⊂ H 2 × R be an immersed, connected, complete minimal surface with two ends. Assume that each end is a vertical graph whose asymptotic boundary is a copy of ∂ ∞ H 2 . Then M is rotational, hence M is a catenoid.

Proof. Up to a vertical translation, we can assume that the asymptotic boundary is symmetric with respect to the slice Π. We use the same notations as in the proof of Lemma 2.1. We know from Lemma 2.1 that M is symmetric with respect to Π and that M + 0 and M - 0 are vertical graphs. Therefore, at any point of M ∩ Π the tangent plane of M is orthogonal to Π. We have ∂ ∞ M = ∂ ∞ H 2 ×{t 0 , -t 0 } for some t 0 > 0. Since M is embedded, M separates H 2 × [-t 0 , t 0 ] into two connected components. We denote by U 1 the component whose asymptotic boundary is ∂ ∞ H 2 × [-t 0 , t 0 ] and by U 2 the component such that

∂ ∞ U 2 = ∂ ∞ H 2 × {t 0 , -t 0 }. Let q ∞ ∈ ∂ ∞ H 2 and
let γ ⊂ H 2 be an oriented geodesic issuing from q ∞ , that is q ∞ ∈ ∂ ∞ γ. Let q 0 ∈ γ be any fixed point. For any s ∈ R, we denote by P s the vertical plane orthogonal to γ passing through the point of γ whose oriented distance from q 0 is s. We suppose that s < 0 for any point in the geodesic segment (q 0 , q ∞ ). For any s ∈ R, we call M s (l) the part of M \ P s such that (q ∞ , t 0 ), (q ∞ , -t 0 ) ∈ ∂ ∞ M s (l) and let M * s (l) be the reflection of M s (l) about P s . We denote by M s (r) the other part of M \ P s and by M * s (r) its reflection about P s . It will be clear from the following two Claims, why we can start the Alexandrov reflection principle with respect to the vertical planes P s and obtain the result. By assumptions there exists s 1 < 0 such that for any s < s 1 the part M s (l) has two connected components and both of them are vertical graphs. We deduce that ∂M s (l) has two (symmetric) connected components, each one being a vertical graph. We recall that Π + := {t > 0} and Π -:= {t < 0}. Claim 1. For any s < s 1 , we have that M * s (l) ∩ Π + stays above M s (r) and M * s (l) ∩ Π - stays below M s (r). Consequently M * s (l) ⊂ U 2 for any s < s 1 . Observe that M * s (l) ∩ Π + and M s (r) ∩ Π + have same asymptotic boundary and that ∂ (M * s (l) ∩ Π + ) = ∂M s (r) ∩ Π + . Therefore the asymptotic and finite boundaries of any lifting up of M * s (l) is above the asymptotic and finite boundaries of M s (r). Hence any lifting up of M * s (l) is above M s (r) by the maximum principle, which ensures that the whole M * s (l) ∩ Π + stays above M s (r) for any s < s 1 , as desired. The proof of the other assertion is analogous. Then, Claim 1 is proved. We set

σ = sup s ∈ R | M * t (l) ∩ Π + stays above M t (r) ∩ Π + for any t ∈ (-∞, s) . Claim 2. We have M * σ (l) = M σ (r)
. Thus, given a geodesic γ ⊂ H 2 , there exists a vertical plane P σ orthogonal to γ such that M is symmetric with respect to P σ Note that we also have ∞,s) . In order to prove Claim 2, we first establish the following fact. Assertion. For any s such that

σ = sup s ∈ R | M * t (l) ⊂ U 2 for any t ∈ (-
M * s (l) ∩ Π ⊂ U 2 then M * s (l) ⊂ U 2 . As M is symmetric with respect to Π the intersection M ∩ Π is constituted of a finite number of pairwise disjoint Jordan curves C 1 , . . . , C k . Since M ∩ Π + is a vertical graph we deduce (C j × R) ∩ M = C j for any j = 1, . . . , k.
Moreover, since M is connected and is symmetric about Π, we get that M ∩ Π + is connected. Let D j ⊂ Π be the Jordan domain bounded by C j , j = 1, . . . , k. Noticing that:

• (M ∩ Π + ) \ (D j × R) = ∅, • M ∩ Π + is connected, • M ∩ (C j × R) = C j , • ∂ ∞ M ∩ Π + = ∂ ∞ H 2 × {t 0 }, we get that (M ∩ Π + ) ∩ (D j × R) = ∅, j = 1, . . . , k. Hence, D i ∩ D j = ∅ for any i = j. Therefore, M ∩ Π + is a vertical graph over Π \ ∪D i .
This implies that, for any ε > 0, the vertical translation (M * s (l) ∩ Π + ) + (0, 0, ε) stays above M. This proves the Assertion. Let us continue the proof of Claim 2. The definition of σ implies that M * σ+ε (l)∩U 1 = ∅, for ε small enough. We deduce from the Assertion that M * σ+ε (l) ∩ Π is not contained in U 2 for any small enough ε > 0. Hence we infer that M * σ (l)∩Π and M σ (r)∩Π are tangent at an interior or boundary point lying in some Jordan curve

C j contained in M ∩ Π. Since M * σ (l) ⊂ U 2 , M σ (r) ⊂ ∂U 2
and the tangent plane of M is vertical along M ∩ Π, we are able to apply the maximum principle (possibly with boundary) to conclude that M * σ (l) = M σ (r), that is P σ is a plane of symmetry of M. This proves Claim 2. For any α ∈ (0, π/2] consider a family of vertical planes making an angle α with P σ , generated by hyperbolic translations along the horizontal geodesic P σ ∩ Π. Now, doing the Alexandrov reflection principle with this family of planes, we find a vertical plane of symmetry of M, say P α . Hence M is invariant by the rotation of angle 2α around the vertical geodesic P α ∩ P σ . Choosing an angle α such that π/α is not rational, we find that M is invariant by rotation around the axis P α ∩ P σ . This concludes the proof of Theorem 2.1, as desired.

Remark 2.1. For any integer n, there exists a minimal surface in H 2 × R which is a vertical graph, whose asymptotic boundary is a copy of ∂ ∞ H 2 and whose finite boundary is constituted of n smooth Jordan curves in the slice Π, see [START_REF] Sa Earp | An asymptotic theorem for minimal surfaces and existence results for minimal graphs in H 2 × R[END_REF]Theorem 5.1]. In the same article the second and third author asked about the existence of such graphs with two boundary curves in Π cutting orthogonally the slice Π. Theorem 2.1 implies that the answer to this question is negative.

3. Maximum Principle in a vertical halfspace of H 2 × R.
In this section we prove some maximum principle in a vertical halfspace. More precisely, we prove that, under some geometric assumptions, the behavior of the asymptotic boundary of M at finite height, determines the behaviour of M. Definition 3.1. We call a vertical halfspace any of the two components of (H 2 ×R)\P , where P is a vertical plane. Theorem 3.1. Let M be a complete minimal surface, possibly with finite boundary, properly immersed in H 2 × R. Let P be a vertical plane and let P + be one of the two halfspaces determined by P.

If ∂M ⊂ P + and ∂ ∞ M ∩ (∂ ∞ H 2 × R) ⊂ ∂ ∞ P + , then M \ ∂M ⊂ P + , unless M ⊂ P.
For the proof of Theorem 3.1 we need to consider the one parameter family of surfaces M d , d > 0, that have origin in [7, Section 4] and whose geometry is described in [ 

connected component of (∂ ∞ H 2 × {0}) \ ({p, q} × {0}). Let H(d) = +∞ cosh -1 (d) d cosh 2 u -d 2 du, d > 1
be the positive number defined in (1) of [START_REF] Sa Earp | An asymptotic theorem for minimal surfaces and existence results for minimal graphs in H 2 × R[END_REF]. Notice that lim We observe that in the description above, γ can be any geodesic of H 2 .

d-→1 H(d) = +∞ and lim d-→+∞ H(d) = π/2. Let α d in ∂ ∞ H 2 × {H(d)} and α -d in ∂ ∞ H 2 × {-H(d)} be the two curves that project vertically onto α. Let L d , R d be two vertical segments in ∂ ∞ H 2 × R of height 2H(d) such that the curve L d ∪ α d ∪ R d ∪ α -d is a closed simple curve. Then ∂ ∞ M d = L d ∪ α d ∪ R d ∪ α -d . Now
Proof of Theorem 3.1. The proof is an application of the maximum principle between the surface M and the one parameter family of surfaces M d .

We choose the geodesic γ, in order to construct the M d 's, as follows. Let γ ⊂ H 2 be any geodesic such that

• P1: The halfspace Q γ is strictly contained in (H 2 × R) \ P + . • P2: ∂ ∞ γ ∩ ∂ ∞ P = ∅. Now, notice that (1) The intersection of ∂ ∞ M with ∂ ∞ (H 2 × R) \ ∂ ∞ P + contains no points at finite height. (2) The asymptotic boundary of any vertical translation M d is contained in the asymptotic boundary of Q γ ⊂ H 2 × R \ P + .
We claim that M d and M are disjoint for any d > 1. Indeed, letting p -→ q (recall that p, q are the endpoints of the geodesic γ), one has that M d collapses to a vertical segment in ∂ ∞ H 2 × R. Suppose that, when p -→ q, the surfaces M d always have a nonempty intersection with M. Then, there would exists a point of the asymptotic boundary of M at finite height in ∂ ∞ (H 2 × R) \ ∂ ∞ P + , giving a contradiction with (1). Then, if M ∩ M d = ∅, we would obtain a last intersection point between M and some modified M d letting p -→ q, contradicting the maximum principle. Therefore, by the maximum principle, any vertical translation of M d and M are disjoint. Let d -→ 1. By the maximum principle, there is no first point of contact between M d and M. As we can apply the maximum principle between any vertical translation of M d and M, one has that M is contained in the closed halfspace H 2 × R \ Q γ for any geodesic γ satisfying the properties P1 and P2. Therefore, M is included in the closure of P + . Now we have one of the following possibilities:

• Some points of the interior of M touches ∂P + = P, then, by the maximum principle, M ⊂ P. • M \ ∂M is contained in the halfspace P + . The result is thus proved. Let us give a definition, before stating some consequences of Theorem 3.1.

Definition 3.2. We say that L ⊂ ∂ ∞ (H 2 × R) is a line if L = {p} × R for some p ∈ ∂ ∞ H 2 . Given vertical lines L 1 , . . . , L k in ∂ ∞ H 2 ×
R, we define the set P (L 1 , . . . , L k ) as follows. Let P i the vertical plane such that

∂ ∞ P i ∩ (∂ ∞ H 2 × R) = L i ∪ L i+1 (with the convention that L k+1 = L 1 )
. Denote by Pi the halfspace determined by the vertical plane P i such that j L j ⊂ ∂ ∞ Pi . Then, we set P (L 1 , . . . , L k ) := ∩ i Pi .

Corollary 3.1. Let M be a complete minimal surface, possibly with finite boundary, properly immersed in

H 2 × R and let Γ = ∂ ∞ M ∩ (∂ ∞ H 2 × R). Let L 1 , . . . , L k be vertical lines in ∂ ∞ H 2 × R. If Γ ⊂ L 1 ∪ • • • ∪ L k and ∂M ⊂ P (L 1 , . . . , L k ), then M \ ∂M is contained in P (L 1 , . . . , L k ), unless M is contained in one of the P i .
Proof. By Theorem 3.1, M is contained in every halfspace Pi determined by the vertical plane P i such that j L j ⊂ ∂ ∞ Pi , unless it is contained in one of the P i . Hence it is contained in P (L 1 , . . . , L k ), by definition, unless it is contained in one of the P i .

Corollary 3.2. Let M be a complete minimal surface properly immersed in H 2 × R.

Let P be a vertical plane. If ∂ ∞ M ∩ (∂ ∞ H 2 × R) ⊂ ∂ ∞ P, then M = P.
Proof. By Theorem 3.1, M is contained in the closure of both halfspaces determined by P, hence it is contained in P. Then M = P because it is complete. Corollary 3.3. Let M be a complete minimal surface properly immersed in H 2 × R.

Suppose that the asymptotic boundary of M is contained in the asymptotic boundary of a totally geodesic plane

S of H 2 × R. Then M = S.
Proof. The proof is a simple consequence of the maximum principle and of the previous results. We do it for completeness. First assume that the asymptotic boundary of M is contained in the asymptotic boundary of a slice, say {t = 0}. Then, for n sufficiently large, the slice {t = n} is disjoint from M. Now, we translate the slice {t = n} down. The first contact point, cannot be interior because of the maximum principle, hence M must stay below the slice {t = 0}. One can do the same reasoning with slices coming from the bottom, and M must stay above the slice {t = 0}. Hence M coincides with the slice {t = 0}. If the the asymptotic boundary of M is contained is the asymptotic boundary of a vertical plane, the result follows by Corollary 3.2.

Corollary 3.4. Let M be a complete minimal surface properly immersed in H 2 × R. Assume that the projection of the asymptotic boundary of M into ∂ ∞ H 2 omits a closed interval α joining two points p and q. Let γ be the horizontal geodesic in H 2 whose the asymptotic boundary is {p, q} and let Q γ be the halfspace determined by γ × R whose asymptotic boundary contains α.

Then M is contained in H 2 × R \ Q γ . Proof. By hypothesis ∂ ∞ M ∩ (∂ ∞ H 2 × R) is contained in the asymptotic boundary of (H 2 × R) \ Q γ .
The result follows by Theorem 3.1 with 

P + = (H 2 × R) \ Q γ .
f tt = (n -1)(1 + f 2 t ) coth(f ), f (0) = a > 0, f t (0) = 0. Theorem 4.1 ([2]
). For a > 0, the maximal solution I a , f (a, •) gives rise to the generating curve C a , parametrized by t → tanh(f (a, t)), t , of a complete minimal rotational hypersurface C a (n-catenoid) in H n × R, with the following properties.

(1) The interval I a is of the form I a =] -T (a), T (a)[ where

T (a) = sinh n-1 (a) ∞ a sinh 2n-2 (u) -sinh 2n-2 (a) -1/2 du.
(2) f (a, •) is an even function of the second variable.

(3) For all t ∈ I a , f (a, t) ≥ a. For later use, we need the following result. Altough we believe that the result is classical, we give a proof for the sake of completeness. The reader is referred to [4, chapter VII] or [13, chapter 9, addendum 3] for the proof of the analogous statement in Euclidean space. Proposition 4.1. Let S ⊂ H n be a finite union of connected, closed and embedded (n -1)-submanifolds C j , j = 1, . . . , k, such that the bounded domains whose boundary are the C j are pairwise disjoint. Assume that for any geodesic γ ⊂ H n , there exists a (n -1)-geodesic plane π γ ⊂ H n of symmetry of S which is orthogonal to γ. Then S is a (n -1)-geodesic sphere of H n .

Proof. We will proceed the proof by induction on n 2. First assume that n = 2. By hypothesis, there exist two geodesics c 1 , c 2 ⊂ H 2 of symmetry of the closed curve S intersecting at some point p ∈ H 2 and making an angle α = 0 such that π/α is not rational. For any q ∈ S, denote by C q the circle centered at p passing through q. Then C q is contained in S. Let q = q be points of S. If C q = C q then the geodesic disks bounded by C q and C q are not disjoint, since they have the same center, which contradicts the hypothesis. Consequently, we get C q = C q and we conclude that S is a circle.

Let n ∈ N, n 3. Assume that the statement holds for k = 2, . . . , n -1. Let π 0 ⊂ H n be a (n -1)-geodesic plane of symmetry of S.

Claim 1. S ∩ π 0 is a (n -2)-geodesic sphere of π 0 .
Indeed, let γ ⊂ π 0 be a geodesic. By hypothesis there exists a (n -1)-geodesic plane π γ ⊂ H n orthogonal to γ which is a plane of symmetry of S. Since π γ is orthogonal to π 0 , then S ∩ π 0 is symmetric about π γ ∩ π 0 (which is a (n -2)-geodesic plane of π 0 ), see [START_REF] Sa Earp | Introduction à la géométrie hyperbolique et aux surfaces de Riemann[END_REF]Lemme 3.3.15]. As π 0 is a (n -1) hyperbolic space, S ∩ π 0 satisfies the assumptions of the statement in H n-1 . By the induction hypothesis we deduce that S ∩ π 0 is a (n -2)-geodesic sphere of π 0 . This proves Claim 1. Let p 0 ∈ π 0 and ρ 0 > 0 be respectively the center and the radius of the (n -2)-geodesic sphere S ∩ π 0 . Claim 2. Let π 1 ⊂ H n be a (n -1)-geodesic plane of symmetry of S orthogonal to π 0 . Then S ∩ π 1 is a (n -2)-geodesic sphere of π 1 with center p 0 and radius ρ 0 .

Claim 1 yields that S ∩ π 1 is a (n -2)-geodesic sphere of π 1 . Since π 0 and π 1 are orthogonal, then the geodesic sphere S ∩ π 0 is symmetric about π 1 . Therefore p 0 ∈ π 1 . If n > 3, then (S ∩ π 0 ) ∩ π 1 is (n -3)-geodesic sphere with center p 0 and radius ρ 0 of π 0 ∩π 1 (which is a (n-2) hyperbolic space). If n = 3, then (S ∩π 0 )∩π 1 is constituted of two points whose the distance is 2ρ 0 . In both cases we infer that diam H n (S ∩ π 1 ) 2ρ 0 and then the radius of the geodesic sphere S ∩ π 1 is ρ 1 ρ 0 . Analogously we can show that ρ 0 ρ 1 . We deduce that ρ 1 = ρ 0 , that is S ∩ π 0 and S ∩ π 1 have both center at p 0 and radius ρ 0 . This proves Claim 2. Claim 3. Let π 2 ⊂ H n be any (n -1)-geodesic plane of symmetry of S. Then S ∩ π 2 is a (n -2)-geodesic sphere of π 2 with center p 0 and radius ρ 0 .

Since S is symmetric with respect to π 0 and π 2 , π 0 and π 2 are distinct and S is compact, then the (n -1)-geodesic planes π 0 and π 2 cannot be disjoint. Then, we find a third (n -1)-geodesic plane π 3 of symmetry of S, orthogonal to both π 0 and π 2 . Claim 2 implies that S ∩ π 2 is a (n -2)-geodesic sphere of π 2 with center p 0 and radius ρ 0 . This proves Claim 3. Now we finish the proof of the Proposition as follows. Let p ∈ S and let π ⊂ H n be any (n -1)-geodesic plane passing through p and p 0 . Let γ ⊂ H n be the geodesic through p 0 orthogonal to π. By Claim 2, there exists a (n -1)-geodesic plane π γ of symmetry of S and orthogonal to γ. Claim 3 ensures that p 0 ∈ π γ , then π γ = π. Claim 3 yields also that S ∩ π is (n -2)-geodesic sphere of π with center p 0 and radius ρ 0 , thus d H n (p, p 0 ) = ρ 0 . This shows that S is the (n -1)-geodesic sphere of H n of radius ρ 0 and center p 0 . Now we establish a characterization of the n-catenoid, that is a generalization to higher dimension of Theorem 2.1. Theorem 4.2. Let M ⊂ H n × R be an immersed, connected, complete minimal hypersurface with two ends. Assume that each end is a vertical graph whose asymptotic boundary is a copy of ∂ ∞ H n . Then M is a n-catenoid.

Proof. Up to a vertical translation, we can assume that the asymptotic boundary of M is symmetric with respect to Π := H n × {0}. We set Γ

+ := ∂ ∞ M ∩ {t > 0} and recall that Γ + is a copy of ∂ ∞ H n . As usual we set M + := M ∩ {t > 0}.
Next Claim can be shown in the same fashion as in H 2 × R (see Lemma 2.1 and the proof of Claim 2 of Theorem 2.1). For this reason we just state it. Claim. M is symmetric about Π, and each connected component of M \ Π is a vertical graph. Moreover, for any geodesic γ ⊂ Π there exists a vertical hyperplane P γ ⊂ H n ×R orthogonal to γ which is a n-plane of symmetry of M. Therefore,

π γ := P γ ∩ Π is a (n -1)-plane of symmetry of Σ := M ∩ Π.
Using the result of the Claim we get that Σ satisfies the assumptions of Proposition 4.1. Then Σ is a (n -1)-geodesic sphere of Π, since Π = H n × {0}. Let C ⊂ H n × R be the catenoid through Σ and orthogonal to Π. We set C + := C ∩ {t > 0}. Both C + and M + are vertical along their common finite boundary Σ, hence they are tangent along Σ. Let t C (resp. t M ) the height of the asymptotic boundary of C + (resp. M + ). Suppose for example that t C t M . Then, lifting upward and downward M + , we obtain that M + is above C + . Therefore we deduce that M + = C + by applying the boundary maximum principle. The case t M t C is analogous. We conclude that M = C and the proof is completed.

In order to establish the generalization in higher dimension of Theorem 3.1, we need to state some existence results, established for n 3, in [2, Theorem 3.8], inspired by [START_REF] Sa Earp | An asymptotic theorem for minimal surfaces and existence results for minimal graphs in H 2 × R[END_REF]Proposition 2.1]. In fact, we only need the d > 1 case, but we state the whole result for the sake of completeness.

Theorem 4.3 ([2]

). There exists a one parameter family {M d , d > 0} of complete embedded minimal hypersurfaces in H n × R invariant under hyperbolic translations.

(1) If d > 1, then M d consists of the union of two symmetric vertical graphs over the exterior of an equidistant hypersurface in the slice H n × {0}.

The asymptotic boundary of M d is topologically an (n -1)-sphere which is homologically trivial in ∂ ∞ H n × R. More precisely, we set for d > 1:

S(d) = cosh(a) ∞ 1 (t 2n-2 -1) -1/2 (cosh 2 (a)t 2 -1) -1/2 dt, where d =: cosh n-1 (a).
Then, the asymptotic boundary of M d consists of the union of two copies of an hemisphere S n-1 

+ × {0} of ∂ ∞ H n × {0}
n × R such that ∂ ∞ M = S ∞ . Let Q ⊂ H n × R be a vertical halfspace whose asymptotic boundary is contained in U × R. Then M is contained in H n × R \ Q. (2) Assume that S ∞ is contained in an open slab whose height is equal to π n-1 .
Then, there is no complete connected properly immersed minimal hypersurface M in H n × R with asymptotic boundary S ∞ .

Proof. The first statement is a consequence of Theorem 4.4 and the proof is analogous to that of Corollary 3.4. Let us prove the second statement. Assume, by contradiction, that there is such a minimal hypersurface M with asymptotic boundary S ∞ . Then, up to a vertical translation, we can assume that M is contained in the slab S := {ε < t < π n-1 -ε} for some ε > 0, and thus S ∞ ⊂ ∂ ∞ S. By assumption, there exists a (n -1)-geodesic plane π ⊂ H n × {0} such that a component π + of H n × {0} \ π satisfies:

(1) ∂ ∞ π + ⊂ U.

(

) M ∩ (π + × R) = ∅. Let C ⊂ H n × (0, π n-1 2 
) be any n-catenoid such that a component of its asymptotic boundary stays stricly above ∂ ∞ S and the other component stays strictly below ∂ ∞ S. We take a connected and compact piece K of C such that its boundary lies in the boundary of the slab S. Let q ∈ M be a point and let q 0 ∈ H n × {0} be the vertical projection of q. Let p ∞ ∈ ∂ ∞ π + be an asymptotic point. Denote by γ ⊂ ∂ ∞ H n × {0} the complete geodesic passing through q 0 such that p ∞ ∈ ∂ ∞ γ. We can translate K along γ such that the translated K is contained in the halfspace π + × R. Now we come back translating K towards M along γ. Observe that the boundary of the translated copies of K does not touch M. Therefore, doing the translations of K along γ we find a first interior point of contact between M and a translated copy of K. Hence, M = C by the maximum principle, which leads to a contradiction. This completes the proof. Now we state a generalization of the Asymptotic Theorem proved in [10, Theorem 2.1]. Our result establishes some obstruction for the asymptotic boundary of a complete properly immersed minimal hypersurface in H n × R. 

Assume that:

(1) There is some point q ∞ ∈ ∂ Pr(Γ) such that q ∞ ∈ Pr(∂Γ).

(2) Γ ⊂ ∂ ∞ H n × (t 0 , t 0 + π n-1 ) for some real number t 0 . Then, there is no properly and completely immersed minimal hypersurface (maybe with finite boundary) M ⊂ H n ×R such that ∂ ∞ M = Γ and M ∪Γ is a continuous n-manifold with boundary.

Proof. Assume, by contradiction, that there is such a minimal hypersurface M. Since q ∞ ∈ ∂Pr(Γ) and q ∞ ∈ Pr(∂Γ), there exists a (n -1)-geodesic plane ω ⊂ H n × {0} such that a component ω + of H n × {0} \ ω satisfies:

(1) q ∞ ∈ ∂ ∞ ω + , q ∞ ∈ ∂ ∞ ω and ∂ ∞ ω + ∩ Pr(∂Γ) = ∅.

(2) If M 0 denotes the component of M ∩ (ω + × R) containing q ∞ in its asymptotic boundary, then (a) M 0 ⊂ H n × (t 0 , t 0 + π n-1 ) for some real number t 0 . (b) ∂M 0 ⊂ ω × (t 0 +2ε, t 0 -2ε + π n-1 ) for some ε > 0. Again, since q ∞ ∈ ∂Pr(Γ) and q ∞ ∈ Pr(∂Γ), there exists a (n -1)-geodesic plane π ⊂ H n × {0} such that a component π + of H n × {0} \ π satisfies:

(1) π + ⊂ ω + .

(2) ∂ ∞ π + ∩ Pr(Γ) = ∅.

(3) M 0 ∩ (π + × R) = ∅. Therefore we can find a compact part K of a n-catenoid satisfying:

(1) K is connected.

(2) K ⊂ π + × (t 0 + ε, t 0ε + π n-1 ). ( 3) ∂K ⊂ H n × {t 0 +ε, t 0 -ε + π n-1 }. We deduce consequently that M 0 ∩ K = ∅. Then, considering the horizontal translated copies of K and arguing as in the proof of Theorem 4.5, we get a contradiction with the maximum principle, which concludes the proof.

The following result is an immediate consequence of Theorem 4.6. 

Remark 3 . 1 .

 31 There exist examples of minimal surfaces with asymptotic boundary equal to two vertical halflines, lines and a curve at finite height, see[START_REF] Earp | Parabolic and Hyperbolic Screw motion in H 2 × R[END_REF] Equation (32)] and[START_REF] Sa Earp | An asymptotic theorem for minimal surfaces and existence results for minimal graphs in H 2 × R[END_REF] Proposition 2.1 (2)].

4 .

 4 Some generalizations to H n × R.Let us recall the construction and the properties of the n-catenoids in H n × R, n 3, established, by P. Bérard and the second author in [2, Proposition 3.2]. Given any a > 0 we denote by I a , f (a, •) , where I a ⊂ R is an interval, the maximal solution of the following Cauchy problem:

( 4 ) 5 )( 6 ) 7 )

 4567 The derivative f t (a, •) is positive on ]0, T (a)[, negative on ] -T (a), 0[. (The function f (a, •) is a bijection from [0, T (a)[ onto [a, ∞[, with inverse function λ(a, •) given by λ(a, ρ) = sinh n-1 (a) ρ a sinh 2n-2 (u)sinh 2n-2 (a) -1/2 du. The catenoid C a has finite vertical height h R (a) := 2T (a), (The function a → h R (a) increases from 0 to π (n-1) when a increases from 0 to infinity. Furthermore, given a = b, the generating catenaries C a and C b intersect at exactly two symmetric points.

1 +× 2 )

 12 in parallel slices t = ±S(d), glued with the finite cylinder ∂S n-[-S(d), S(d)] The vertical height of M d is 2S(d). The height of the family M d is a decreasing function of d and varies from infinity (when d → 1) to π/(n -1) (when d → ∞). (If d = 1, then

Theorem 4 . 6 (

 46 Asymptotic Theorem). Let Γ ⊂ ∂ ∞ H n × R be a connected (n -1)submanifold with boundary. Let Pr : ∂ ∞ H n × R → ∂ ∞ H n bethe projection on the first factor.

Corollary 4 . 1 .Remark 4 . 1 .

 4141 Let S ∞ ⊂ ∂ ∞ H n × R be a (n -1)-closed continuous submanifold. Considering the halfspace model for H n , we can assume that S ∞ ⊂ R n-1 × R.If S ∞ is strictly convex in Euclidean sense, then there is no complete connected properly immersed minimal hypersurface M in H n × R, possibly with finite boundary, with asymptotic boundary S ∞ and such that M ∪ S ∞ is a continuous n-manifold with boundary. It follows from Corollary 4.1 that there is no horizontal minimal graph in H n × R, [9, Equation (3)], given by a positive function g ∈ C 2 (Ω) ∩ C 0 (Ω), whereΩ ⊂ R n-1 × R ⊂ ∂ ∞ H n ×R is a bounded strictly convex domain in Euclidean sense, assuming zero value on ∂Ω.

  10, Proposition 2.1]. This family of surfaces was already used, for example, in [8, Example 2.1]. First we describe the asymptotic boundary of M d , for d > 1. Consider a horizontal geodesic γ in H 2 , with asymptotic boundary {p, q} and let α be the closure of a

  Denote by Z d the closure of the non mean convex side of the cylinder over the curve γ d . Then, M d is contained in Z d which is contained in Q γ . Notice that any vertical translation of the surface M d is contained in Z d . Moreover, any vertical translation of M d is arbitrarily close to Q γ if d is sufficiently close to 1.

we describe the position of M d in the ambient space, for d > 1. Denote by Q γ the halfspace determined by γ × R, whose asymptotic boundary contains the curve α. Let γ d be the curve in Q γ ∩ (H 2 × {0}) at constant distance cosh -1 (d) from γ. M d contains the curve γ d .

  M 1 consists of a complete (non-entire) vertical graph over a halfspace in H n × {0}, bounded by a totally geodesic hyperplane P . It takes infinite boundary value data on P and constant asymptotic boundary value data. The asymptotic boundary of M 1 is the union of a spherical cap S of ∂ ∞ H n ×{c} with a half vertical cylinder over ∂S. (3) If d < 1, then M d is an entire vertical graph with finite vertical height. Its asymptotic boundary consists of a homologically non-trivial (n -1)-sphere in ∂ ∞ H n × R. The hypersurfaces M d are the analogous in higher dimension of the surfaces M d in H 2 × R. Also, as in H 2 × R, by (vertical ) hyperplane we mean a complete totally geodesic hypersurface Π × R, where Π is any totally geodesic hyperplane of H n × {0}. Theorem 4.5. Let S ∞ ⊂ ∂ ∞ H n × R be a closed set whose the vertical projection on ∂ ∞ H n × {0} omits an open subset U.

	Obviously, the analogous in higher dimension of Corollaries 3.1, 3.2, 3.3 hold as well.
	Part (1) of next Theorem is a generalization in higher dimension of Corollary 3.4, while
	part (2) was proved, for n = 2 by the second and the third authors [10, Corollary 2.2]

Moreover, we call a vertical halfspace any component of (H n × R) \ P where P is a vertical hyperplane. Thus, working with the hypersurfaces M d exactly in the same way as in Theorem 3.1, we obtain the following result.

Theorem 4.4. Let M be a complete minimal hypersurface properly immersed in H n × R, possibly with finite boundary. Let P be a vertical geodesic hyperplane and P + one of the two halfspaces determined by P.

If ∂M ⊂ P + and ∂ ∞ M ∩ (∂ ∞ H n × R) ⊂ ∂ ∞ P + , then M \ ∂M ⊂ P + , unless M ⊂ P. (1)

Let M be a complete minimal hypersurface properly immersed in H
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