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Abstract. Response surface methodology is an efficient method for approximating the output of 

complex, computationally expensive codes. Challenges remain however in decreasing their 

construction cost as well as in approximating high dimensional output instead of scalar values. We 

propose a novel approach addressing both these challenges simultaneously for cases where the 

expensive code solves partial differential equations involving the resolution of a large system of 

equations, such as by finite element. Our method is based on the combination of response surface 

methodology and reduced order modeling by projection, also known as reduced basis modeling. 

The novel idea is to carry out the full resolution of the system only at a small, appropriately 

chosen, number of points. At the other points only the inexpensive reduced basis solution is 

computed while controlling the quality of the approximation being sought. A first application of 

the proposed surrogate modeling approach is presented for the problem of identification of 

orthotropic elastic constants from full field displacement measurements based on a tensile test on a 

plate with a hole. A surrogate of the entire displacement field was constructed using the proposed 

method. A second application involves the construction of a surrogate for the temperature field in 

a rocket engine combustion chamber wall. Compared to traditional response surface methodology 

a reduction by about an order of magnitude in the total system resolution time was achieved using 

the proposed sequential surrogate construction strategy.   

 

Keywords: response surface methodology, surrogate modeling, reduced basis modeling, proper 

orthogonal decomposition, key points  

1 Introduction 

Numerical simulation is currently able to model increasingly complex 

phenomena. However, it often involves significant computational cost, which 

hinders its use in some applications requiring frequent calls to the simulation (e.g. 

optimization, statistical sampling). One way of reducing the computational cost is 
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by using response surface methodology, also known as surrogate modeling, which 

aims at constructing an approximation of the simulation response based on a 

limited number of runs of the expensive simulation [1]-[6]. Multiple surrogate 

types can be used for fitting the samples, such as polynomial response surface 

approximations [7], kriging [8]-[10], neural networks [11]-[13] or support vector 

machines [14]-[16]. 

Some frequently encountered attributes of today’s numerical simulations that 

render response surface construction more difficult are their high computational 

cost, the presence of a large number of input variables and the fact that the output 

of interest may not be a scalar but a high dimensional vector (e.g. the entire 

displacement field on a structure). The large number of variables is problematic 

due to the curse of dimensionality, in that the number of simulations required to 

construct the response surface grows exponentially. This problem is exacerbated 

when the computational cost of each simulation is high. The dimensionality of the 

output is problematic because it renders surrogate modeling of the full output 

difficult in the absence of additional assumptions. 

These aspects thus pose the following challenges in terms of response surface 

construction [17]: 

i. how to construct the surrogate model as efficiently as possible (i.e. using 

as few expensive simulations as possible) 

ii. how to construct a surrogate model when the output quantity is not a scalar 

but a high-dimensional vector (e.g. a pressure field map on an aircraft 

wing) 

To address the first item multiple approaches have been proposed that are based 

on reducing the number of variables in the input space, which has the effect of 

decreasing the number of simulations required for the response surface 

construction. Among such approaches we could mention one-at-a-time (OAT) 

variable screening [18], global sensitivity analysis [19] or non-dimensional 

variable grouping [20]. The main purpose of these approaches is to remove 

variables that have negligible impact and regroup as efficiently as possible those 

that have. For additional details on these and other dimensionality reduction 

approaches for the input variables we refer the reader to the review in [17].  

The second item (ii.), relative to the dimensionality of the output, can also be 

addressed by dimensionality reduction approaches, of course in the output space 
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this time. For vector-based response, surrogate modeling techniques that take into 

account correlation between components are available [21] and can in some cases 

be more accurate than constructing response surfaces for each component 

independently. For a relatively small dimension of the output vector, methods 

such as co-kriging [22] or vector splines [23] are available. However, these are not 

practical for approximating the high dimensional pressure field around the wing 

of an aircraft or approximating heterogeneous displacements fields on a complex 

specimen since these fields are usually described by a vector with thousands to 

hundreds of thousand components. Fitting a surrogate for each component is even 

more time and resource intensive and might not take advantage of the correlation 

between neighboring points. 

Reduced order modeling approaches by projection of the response on a reduced 

basis have proved to be efficient methods for achieving drastic dimensionality 

reduction in the output space. For example principal components analysis (PCA), 

also known as proper orthogonal decomposition (POD) or Karhunen-Loeve 

expansion, allows to determine a reduced-dimensional basis of the output space 

given a set of output simulation samples. Any output can then be projected on this 

basis and expressed by its basis coefficients. The challenge of obtaining a 

surrogate of high dimensional vector-type output quantities can then be solved by 

constructing response surfaces for the basis coefficients in terms of the design 

variables of interest. Such an approach has been successfully applied to the 

multidisciplinary design optimization of aircraft wings [24]-[26], to reliability 

based design optimization of automotive vehicles [27], to random fields 

uncertainty representation and propagation [28],[29] as well as to Bayesian 

identification from full field measurements [30].  

The aim of this article is to present a new methodology that can address both 

points (i. and ii.) more efficiently than existing approaches for problems involving 

partial differential equations (typically problems solved by the finite elements 

method). Our method is based on the coupling of the reduced basis modeling 

approach with the construction phase of a response surface in order to achieve 

more efficient surrogate construction of complex multidimensional output. To do 

so, the idea is to (1) solve the full problem, but on a small number of points of the 

design of experiments, (2) to use these solutions to construct a reduced basis, and 
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(3) to use this reduced basis to build approximate solutions for the other points of 

the design of experiments, while controlling the quality of the approximations.  

The article is organized as follows. We provide in section 2 an overview of 

reduced order modeling by projection, i.e. reduced basis modeling, and of its 

coupling with surrogate modeling as proposed by our method. In section 3 we 

give a first application example of the proposed methodology to the identification 

of orthotropic elastic constants based on full field displacement fields. Section 4 

provides a different application example on a thermal problem. Finally, we 

provide concluding remarks in section 5. 

 

2 The key points response surface approach 

2.1 Reduced basis modeling 

Many numerical simulations in the engineering domain involve solving a partial 

differential equations problem. After space (and time) discretization, the problem 

often involves a (set of) large linear system(s) of equations. 

( ; )K =µu F  (1) 

with n∈u  the unknown state variables and p∈µ  a set of p parameters of 

interest (material parameters, time...) so that : n p nK × →   , n being the 

number of state variables. Let us assume that K is such that given any value of the 

set of parameters μ a unique solution u=u(μ) exists. 

Model order reduction is a family of approaches that aims at significantly 

decreasing the computational burden associated with the inversion of system (1). 

A particular class of model reduction techniques, denoted as reduced basis 

approaches (or reduced order modeling by projection), aims at reducing the 

number of state variables of the model by projection on a certain basis. 

Accordingly, an approximation of the solution is sought in a subspace Ѵ of 

dimension m (with usually m<<n), while enforcing the residual to be orthogonal 

to the same sub-space Ѵ. Typically, Ѵ is defined by a so called reduced-basis 

Φ={Φ1,…,Φm}.  

The initial problem of Eq. 1 is rewritten, as defined by Galerkin conditions, 

projected onto the reduced basis: 
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( , )T TK Φ =α µ FΦ Φ  (2) 

where α are the reduced state variables, that is the coefficients of vector u 

expressed in the reduced basis Φ.  

If K is linear with respect to its first variable u, the problem of Eq. 1 can be 

written as: 

( )K =µ u F  (3) 

For example in structural mechanics ( )K µ  is the stiffness matrix, which usually 

depends on some parameters of interest μ (e.g. material properties), u is the 

displacement vector and F the vector of the forces.  

Similarly then, the projected problem of Eq. 2 can be written as: 

( )T TKΦ Φ Φµ α = F  (4) 

At this point it is important to realize that Eq. 4 is equivalent to a reduced order 

model of the initial problem of Eq. 3. Indeed, solving the problem of Eq. 4 

typically involves the inversion of a large system of equations of size n, the size of 

the stiffness matrix ( )K µ , which for large scale problems can easily reach 

hundreds of thousands. On the other hand solving the reduced order model of Eq. 

4 involves the inversion of a much smaller system of equations of size m, the size 

of the projected stiffness matrix ( )T KΦ Φµ , which is equal to the dimensionality 

of the reduced basis m (typically m<<n, since m does usually not exceed a few 

dozen). Solving this reduced order model leads directly to α, the coefficients of 

the solution in the reduced basis. 

The problem projected onto the reduced basis thus yields an approximate solution 

whose accuracy can be quantified by measuring the following residual: 

2
2

2

( )
rb

K
e

Φ
=

µ α − F
F

 (5) 

Up to now, the subspace Ѵ on which the problem is projected, or more precisely 

one of its basis Φ, was not specified and many different choices are possible for 

this projection.  

For example, eigenmodes of the operators have been used to reduce numerically 

the size of the problems for applications in dynamics. These approaches are 

known as modal analysis, Craig-Bampton [40]. In [32],[41] the reuse of Krylov 
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subspaces generated during a Krylov iterative solvers was used as a reduced basis. 

The generalized modes of variables separation techniques (like Proper 

Generalized decomposition) can also be used in such a context [39].  

The proper orthogonal decomposition (POD) can also be a way to build a relevant 

reduced basis in the context of reduced order modeling by projection [32]-[34]. 

Indeed, POD [35] (also known as Karhunen Loeve decomposition [36],[37] or 

principal component analysis [38]) is an approach which consists in constructing a 

reduced basis from a set of solution, called snapshots. Mathematically, the 

extraction of the reduced basis from the snapshots is done by singular value 

decomposition. Generally, the snapshots are the results of full simulations on a set 

of points. 

Note that classical POD-type approaches do not generally go all the way to 

solving or even formulating the reduced order model of Eq. 4. Indeed POD is 

often used only as a dimensionality reduction approach. Solutions u that were 

already calculated by solving the full size problem (Eq. 3) are projected on the 

POD-reduced basis and expressed in terms of their basis coefficients α thus 

allowing to express initial solutions u with a drastically reduced dimensionality. 

Note however that these basis coefficients α can also be obtained by solving the 

reduced order model of Eq. 4, that is by solving the initial problem projected on 

the reduced basis. This option is not typically used in POD because solving the 

reduced order model for solutions that are already in the reduced basis (thus for 

which the full solution is already available) has no interest. However the reduced 

order model has an interest for obtaining the basis coefficients α at a new point 

which is not part of the reduced basis. In this case, the reduced order solution is 

only an approximation and the approximation error can be assessed by the metric 

provided in Eq. 5. The reduced basis modeling approach thus has two major 

assets: dimensionality reduction by the use of the basis coefficients and 

computational time reduction for approximating new solutions by the use of the 

reduced basis model. This paper presents a framework which uses both these 

aspects in order to more efficiently construct surrogate models. 
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2.2 Combining response surface methodology with reduced order 
modeling 

The reduced basis modeling approach allows to significantly reduce the 

dimensionality of a response by expressing it in terms of its basis coefficients α in 

the reduced basis Φ. To create an approximation of the high dimensional response 

we will thus construct surrogate models of the basis coefficients α. Such an 

approach, though not novel, addresses challenge ii. presented in the introduction, 

namely constructing surrogate models of high dimensional responses. 

However the issue of the construction cost, mentioned in challenge i. of the 

introduction, remains a hurdle. We thus propose to further use the reduced basis 

modeling to also decrease the surrogate construction cost. This is achieved by 

appropriately choosing some key points of the design of experiments at which the 

full problem is solved. At all the other points only the reduced order problem (full 

problem projected on the reduced order basis) needs to be solved. Figure 1 

provides the flow-chart of the proposed procedure, that we call the key points 

response surface approach. 

 

Figure 1. Flow-chart of the key points response surface construction steps. 

 

In the first step the set of points D representing the design of experiments is 

defined. This set of points will serve both for the reduced dimensional basis 

extraction using the key points procedure as well as for the construction of the 

1. Design of experiments set D 

2.1 Simulations using the full 

numerical model at the points of set K 

3. Construction of response surface approximations 

for the basis coefficients α (projections of the 

simulations on the reduced order basis)  

4. Overall surrogate model validation 

2.2 Simulations using the reduced 

order model at the points of set D-K 
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response surface approximations. Since both the key points procedure and the 

surrogate modeling benefit from a space-filling design, latin hypercube sampling 

will be used to construct the set D but other sampling methods are possible. 

In the second step, full or reduced order simulations are run at the points of the 

design of experiments. The set of key points, defining the reduced dimensional 

basis Φ are denoted by K. The full numerical model is evaluated at the points of 

set K. On the other hand, at the remaining points (set D-K) an approximation of 

the response is calculated using the reduced order model (problem solved 

projected on the reduced dimensional basis Φ). Typically the cardinality of K is 

one to several orders of magnitude smaller than that of D as will be illustrated in 

the two application examples in sections 3 and 4. This is precisely where the 

interest of the proposed method lies: if the full resolutions need to be carried out 

only at the points K and that the inexpensive reduced basis model can be used at 

all the remaining points, this will lead to substantial computational savings for the 

construction of the surrogate model. Note also that the reduced order 

approximation satisfies the error criteria erb (cf. Eq. 5) imposed for the reduced 

basis modeling, which allows to control the quality of the approximation. 

Accordingly the value of K is not chosen beforehand but it is determined 

automatically by the proposed construction procedure such as to verify the error 

criterion.  

At step 3 the full simulation results of the set K are projected onto the basis B to 

obtain their basis coefficients α. For the reduced order simulations of the set D-K 

we already have the coefficients α. Response surface approximations of the basis 

coefficients α are then constructed.  

Finally the accuracy of the approximations is verified in step 4. Two error 

measures are already available. The first is the criterion erb on the residuals that 

was imposed during the reduced order modeling (cf. Eq. 5). The second consists 

in classical RSA error measures, such as root mean square errors or cross 

validation errors. An additional cross validation error measure can be considered 

on the whole procedure itself. The leave-one-out cross validation would consist in 

applying the key points procedure (steps 1-3 of Figure 1) not on the entire design 

of experiment set D but on a subset by leaving one point out. The procedure’s 

prediction would then be compared to the simulation response at the point that 

was left out. Note that in the approach we propose we only have the exact finite 



9 

element solution at the key points (at all the remaining points we only have the 

reduced basis solution). However since the key points were determined to be the 

most relevant solutions for constructing the reduced basis it seems appropriate to 

do the cross validation over these key points only. By doing all possible 

permutations of leaving a key point out and taking the root mean square of the 

errors in the prediction we obtain an error measure for the proposed surrogate 

modeling procedure.  

 

2.3 Construction of the approximation subspace: choosing the key 
points 

At this point we need to choose how to construct the reduced basis. In our 

approach, similarly to proper orthogonal decomposition (POD), the construction 

of the reduced basis requires full simulations, but only for a small set of samples, 

called key points. The choice of these key points is of importance because it has a 

strong effect on the accuracy of the response surface. Indeed, if the number of key 

points is too small or poorly chosen, the solutions computed by the reduced model 

will be inaccurate. Conversely, if the number of key points is too large, the basis 

would be large which reduces the numerical efficiency. In this paper, we 

investigate two ways to automatically choose a set of key points, as small as 

possible, but preserving an imposed accuracy of the reduced order model 

approximation. 

The first approach consists in sequentially browsing the points μi of the DoE. For 

the first point μ1 of the DoE, the full simulation always needs to be carried out and 

its result u1 becomes the first vector of the reduced basis. Then at the point μi it is 

assumed that one has already a reduced basis of size mi. The problem for 

parameter μi is then solved by projection on this reduced basis. This corresponds 

to the inversion of a small system of size mi whose computational cost is low 

(often negligible) compared to that of the full simulation. The accuracy of the 

approximate solution thus constructed is evaluated with a measure of the residual 

error erb. If this indicator is below a certain threshold εrb, then we move on to the 

next parameter μi+1. Otherwise, the complete problem is solved for this point and 

the associated solution is orthogonalized as shown in Eq. 6, normalized and added 

to the basis. 
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1

1
,

k

k k k i i
i

u u
−

=

Φ = − Φ Φ∑  (6) 

Where ,• •  denotes the L2 scalar product. 

The algorithm for this approach is presented below (Algorithm 1). 

 
This approach, called sequential approach in the sequel, has the advantage of 

considering points only once, so it has a certain advantage in terms of 

computation time. However, the choice of reference points (i.e. the key points) is 

highly dependent on the way the DoE is being browsed. The size of the subspace 

basis will therefore certainly not be minimal. 

 

A second approach of selecting the key points, inspired from [44], consist in 

building these reference points iteratively at the points where the error is 

maximum. At iteration k, the basis Ѵk={Φ1,…,Φk-1}  constructed from the full 

simulation of the problems with the reference sets of parameters { }1 1,...,ref ref
k−µ µ  are 

supposed to be known. Then an approximation of the solution of all the points of 

the DoE is computed with the reduced model in projection onto the orthonormal 

basis Ѵk. The point where the error erb is the highest is chosen to be the next key 

point as shown in Eq. 7. 

arg max( ( ))ref
k RB

DoE
e

µ∈
=µ µ  (7) 

A simulation of the problem with the set of parameter ref
kµ  is then performed 

using the full model. The corresponding solution ref
ku  is orthonormalized and 

added to the reduced basis. Then one proceeds to the next iteration. The algorithm 

presented below (Algorithm 2) stops when the error is less than the threshold εrb 

everywhere. Unlike the previous approach, the entire DoE is covered at each 
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iteration, but this method, that we call maximum residual approach in the sequel, 

is supposed to reduce the cardinal of the reduced basis.  

 
 

3 First application example: material properties 

identification 

3.1 Description of the identification problem 

In the present section we apply our proposed surrogate modeling approach to a 

problem requiring displacement fields, namely the identification problem of the 

four orthotropic elastic constants of a composite laminate based on full field 

displacements.  

We will use here a simulated experiment of a tensile test on a plate with a hole. 

The laminated plate has a stacking sequence of [45,-45,0]s  and the dimensions are 

given in Figure 2, with a total plate thickness of 0.96 mm. The applied tensile 

force is 1200 N. The full field measurement is assumed to take place on the entire 

20 x 20 mm2 area of the specimen. No exact analytical solutions exist for 

expressing the displacement field, so this problem is solved with an in-house 

finite element solver based on the gmsh open source mesh generator. 
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Figure 2. Simulated experiment specimen geometry and the material orientation 

axes. 

 

The identification problem consists in determining the four orthotropic elastic 

constants E1, E2, ν21 and G12 of the composite laminate, given that we measure the 

displacement fields in the X and Y directions (see Figure 2) over the entire 

specimen area. Note that the material orientation 1 corresponds to the X direction 

while the material orientation 2 corresponds to the Y direction. 

Since we wanted to test the accuracy of the surrogate modeling approach that we 

propose within this identification context we chose to use a simulated experiment 

such as to have reliable reference values for the material properties.  

The simulated experiment was obtained by adding a white noise to finite element 

results that were run with the material properties provided in Table 1. These 

properties are typical of a graphite/epoxy composite. 

 

Table 1. Material properties for the simulated experiment. 

Parameter E1(GPa) E2 (GPa) ν21 G12 (GPa) 

Value 65.2 26.2 0.314 29 

 

The noise on the displacement at each of the mesh nodes was assumed to be 

Gaussian with zero mean and a standard deviation of 2.5% of the maximum 

displacement amplitude.  

The displacement fields of the simulated experiment are illustrated in Figure 3. 

 

  

R = 2 mm 

F = 1200 N F = 1200 N 

20 mm 

X 

Y 
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Figure 3: Displacement fields of the simulated experiment. 

 

 

The present identification problem is solved in this work using a model updating 

approach, which involves finding the material properties that minimize the error 

expressed in least squares terms between the model prediction and the 

measurement. Since this identification formulation involves solving a non linear 

optimization problem it is quite sensitive to computational time of the numerical 

solution. Note that with current computational resources coupling directly a finite 

element solver and the optimization routine is possible and would lead on this 

identification problem to a total computational time of several hours [31]. While 

such a computational cost might still be found reasonable in some applications we 

consider here that a significant reduction in the computational time of the 

identification is required, such as for example for real-time applications. The 

presented application example is thus to be seen as a representative example of 

real-time applications or of larger size finite element problems that would be 

prohibitive to couple directly with an optimization routine.  

In order to reduce the computational time a surrogate modeling approach is 

chosen, using the key points response surface approach presented in the previous 

section. We chose this approach since the numerical model of the plate with a 

hole involves several of the challenge items mentioned in the introduction:  

• the numerical model has a relatively high computational cost since no 

exact analytical solution exists for the displacement fields, thus a finite 

element model needs to be used 

• the output of the simulation and the measurements is not scalar but a high 

dimensional vector  
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Since the key points response surface approach allows both to use as few full-size 

finite element solutions as possible as well as to cope with the high dimensionality 

of the output, the plate with a hole problem was deemed to be an appropriate 

application example for this approach. 

Within the proposed approach any displacement vector U within the construction 

bounds is expressed by its approximation U  which is a linear combination of the 

basis vectors Фk determined during the key points procedure: 



1 1
,

K K

k k k k
k k

U Uα
= =

= Φ = Φ Φ∑ ∑  (7) 

The synthetic experimental fields are also projected on the basis of the Фk vectors 

leading to the exp
kα  coefficients, that characterize the experiment. 

In the identification problem the agreement between the model predictions and the 

measurements is thus expressed in terms of the agreement of the αk  and the exp
kα  

coefficients. For reasons that will be explained in the next section it is found that 

it is advisable to separate the X and Y displacement fields and therefore separate 

the corresponding X-basis and Y-basis. We denote by αi,k (where i stands for 

either X or Y) the projection coefficient on the corresponding basis. Accordingly, 

the identification formulation is written as: 

( )

( )

1 2 21 12

2exp
1 2 21 12 , 1 2 21 12 ,{ , , , } 1

2exp
, 1 2 21 12 ,

1

1Min  ( , , , ) ( , , , ) ...
2

                                                            ( , , , )

K

X k X kE E G k

K

Y k Y k
k

J E E G E E G

E E G

ν
ν α ν α

α ν α

=

=

= − +


− 


∑

∑
 (8) 

Efficient surrogate models are constructed using the key points response surface 

approach for the αi,k coefficients as a function of the four orthotropic material 

properties of interest for the identification: E1, E2, ν21 and G12. Note that 

constructing surrogate models for the αi,k coefficients is not the only option. 

Another possibility would have been to seek a surrogate model of the objective 

function J and furthermore use it with optimization frameworks based sequential 

metamodel enrichment [46]. However this would have been specific to the 

identification problem while a surrogate model of the displacement field can have 

wider applicability and also illustrates the ability of the proposed approach to 

construct surrogates of entire fields and not just scalar values. 
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Since the surrogate models for the αi,k coefficients have simple expressions (e.g. 

polynomial), solving the non-linear least squares problem is computationally very 

fast. Here the problem was solved using Matlab’s lsqnonlin function, which uses 

the Levenberg Marquardt algorithm. Note that this algorithm computes the 

gradients of the objective function by finite differences. Here this gradient 

calculation did not pose any numerical issues, since the objective function 

involves smooth polynomial response surface approximations of the basis 

coefficients. In the absence of such a polynomial fit, it is important to note that the 

basis coefficients already filter out a large part of the noise in the displacement 

fields thus facilitating accurate gradient calculations by finite difference. Finally, 

even when coupling the finite element solution directly with the gradient 

calculation, the Levenberg Marquardt algorithm was found good enough for 

accurate identification [31]. 

 

3.2 Key points response surface implementation 

The objective of the present subsection is to construct surrogate models of the 

basis coefficients under the form  , 1 2 21 12( , , , )i k E E Gα ν using the key points 

response surface approach. For this purpose we follow the procedure prescribed in 

section 4 (summary in Figure 1).  

In the first step the design of experiments is defined. We use here a Latin 

hypercube design with 140 points within the bounds provided in Table 2. 

 

Table 2. Bounds for the design of experiments. 

Parameter E1(GPa) E2 (GPa) ν21 G12 (GPa) 

Lower bound 50 20 0.3 24 

Upper bound 80 32 0.35 32 

 

In the second step the key points approach is applied with an error criterion 

erb=2*10-3. Either the sequential approach or the maximum residuals approach can 

be applied.  

 

3.2.1 The sequential approach 
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The sequential approximation approach led here to using 13 basis vectors. On 

Figure 4 the approximation error based on the residual erb (cf. Eq. 5) is plotted as 

a function of the experiment number. Recall that in the sequential approach the 

experiments are covered sequentially. At the beginning the algorithm solves 

exactly the finite element problem with the parameters of the first point of the 

DoE and adds the solution vector to the basis used for the reduced order 

modeling.  It then solves the second experiment on projection on this basis and 

checks if the residual error is higher than the considered threshold (2*10-3 here). 

Obviously only one vector for the reduced basis is insufficient to capture the 

variations of the displacement field for this problem. This can be seen on Figure 4 

by the fact that the residual error for experiment 2 is still significantly above the 

threshold (red dotted line). In this case the full problem is solved for experiment 2 

and the resulting displacement vector is added to the reduced basis. The approach 

continues sequentially with the following points until the end of the DoE. Each 

experiment point is first solved projected on the reduced basis. If the 

corresponding approximation error (residual) is lower than the considered 

threshold the algorithm moves to the next DoE point. Otherwise the current point 

is added to the key points (red circle in Fig 4), meaning that the full problem is 

solved and the reduced basis enriched by this key point as explained before. 

On Fig. 4 we can see that the algorithm successively adds to the basis the vectors 

corresponding to the DoE points number 1 2 3 4 5 6 7 8 9 10 13 25 and 41. One 

can notice that the first 10 points are considered key points since the reduced-

basis is too small to be representative. Then, when the reduced-basis is rich 

enough, the projected problems are solved accurately without solving the full 

systems. 
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Figure 4: Plot of the approximation error (log scale) for the sequential approach as 

a function of the DoE experiment number. 

 

3.2.2 The maximum residual error approach 

The results of the maximum residual error approach are illustrated in Figure 5. 

The color scale represents the approximation error (on a log scale) for each of the 

140 points of the DoE (on the abscises axis). On the ordinate axis we have the 

iteration number until meeting the error criterion. As for the sequential approach, 

at the beginning of the first iteration the algorithm solves exactly the finite 

element problem for the first DoE point and adds the solution vector to the basis 

used for the reduced order modeling. At this initial step we thus have one vector 

in the basis and at all the remaining points of the DoE the finite element problem 

are solved approximately on projection on this one vector. One vector is again 

insufficient to capture the variations of the displacement field for this problem and 

this can be seen in Figure 5 by looking at the relative error norm which is higher 

than 0.1 (-1 on the log scale) for most of the 140 points. For recall we chose a 

criterion on the error norm of 2*10-3. Having calculated the relative error norms 

for all the 140 DoE points we chose the point having the highest error (DoE point 

number 53 here), solve the finite element problem exactly at this new point and 

add the solution to the basis, which has now two vectors. We iterate, solving the 

problem on this expanded basis, calculating the relative error norms and adding 

the vector with the highest error to the basis until all the DoE points meet the 

relative error criterion. If at iteration k, the norm of the residual associated with a 

point P of the DoE is lower than the prescribed criterion, this point is considered 
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to be solved accurately enough with the present basis. Any incremented basis will 

provide at least the same accuracy. So the point P will not be considered during 

the following iterations, that is the corresponding residual error will no longer be 

calculated. This trick contributes to further computational savings.  

On Figure 5 we can see that we successively add to the basis the vectors 

corresponding to the DoE points number 1,   117,   135,  etc. We can note that 

once a vector is added to the basis or when the norm of the residual is lower than 

the prescribed criterion, its error norm for the following iterations remain 

constant. Indeed, it is no longer considered by the iterative method as it is 

considered to be solved accurately enough. Also with the iterations that increase 

the basis dimension we can also note that the relative error norm decreases for all 

DoE points (darker colors on the plot), until all the points satisfy the 2*10-3  

residual error criterion that we considered. 

 
Figure 5: Color plot of the approximation error (log scale) as a function of the 

points of the DoE and the iteration number. 

 

The outputs of step two of the proposed approach are on one hand the exact finite 

element solutions at the 10 vectors forming the basis and on the other hand the 

approximate solutions (all satisfying the error criterion) at the 130 remaining 

points of the DoE. These two outputs are illustrated in boxes number 2 of Figure 

1.  

 

3.2.3 The key points response surface results 

The following step (number 3 in Figure 1) first consists in obtaining the basis 

coefficients of all the solutions (exact and approximate). These can be obtained 

either by projecting the exact solutions on the basis or obtained directly but 

approximately when solving the approximate problem projected on the basis 

(reduced order model solution). Then response surface approximations are fitted 
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to each of the ten basis coefficient αi,k as a function of the parameters of interest 

(E1, E2, ν21 and G12 here). Appendix 1 provides details on the physical 

interpretation of the modal basis for the displacements as well as additional 

explanations on the key points construction process. 

Before presenting the results of the RSA fits we need to make here an important 

remark specific to the problem considered here, but which would appear to be 

quite common in mechanical problems, among other. The solution of the finite 

element problem is a vector containing the displacement fields in both the X and 

the Y direction. When constructing the key points basis, each basis vectors will 

also be a juxtaposition of modes in the X and Y direction. Accordingly a basis 

coefficient will characterize both the displacements in the X and in the Y 

direction. If seeking a response surface approximation of this basis coefficient 

directly it would mean that the same response surface equation would govern the 

variations in both the X displacement field and the Y displacement field. In many 

complex problems such an assumption would lead to poor results since the 

variations of the X displacement field are only partly coupled to variations of the 

Y displacement field. Accordingly we propose in such situations to separate the 

modes of the X and Y displacement fields and construct the response surface 

approximations separately for the basis coefficients of the X-displacement modes 

(X-direction basis vectors) and for the basis coefficients of the Y-displacement 

modes (Y-direction basis vectors). 

The separation of the X and Y displacement modes can be done either 

concurrently to the key points algorithm or posterior to the algorithm. The 

posterior approach consists simply in taking the basis vectors obtained with the 

key points algorithm and split the X and Y displacement components. This leads 

to separate basis vectors for the X and Y displacement direction.  

The concurrent approach is more complex and more code-intrusive but can reduce 

the size of the basis since it decouples the modes during the numerical problem 

solving of the reduced basis model. Appendix 2 provides a brief description of the 

concurrent approach. In the rest of this paper we implement the posterior 

approach.  

The next step consists in fitting a response surface to the basis coefficients αi,k. 

We choose to construct third degree polynomial response surface (PRS) 

approximations for each coefficient, but any other type of response surface could 
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be used. For this we used Surrogate Toolbox [47], a free dedicated toolbox for 

Matlab. Only the significant terms of the polynomial were kept by imposing a 

minimum threshold of 2 on the t-values (Student’s t-statistic) for each polynomial 

coefficient. The final PRS were verified using root mean square error, correlation 

coefficient and PRESS cross-validation errors (see Appendix 2 for the error 

metrics obtained).  

A final step in the validation of the overall surrogate model consists as described 

in the last step of Figure 1, in assessing the cross validation error of the entire 

procedure consisting in the combination of key points reduced basis construction 

and subsequent basis coefficient RSA construction. The root mean square of the 

cross validation error over the 13 key points of the sequential approach is 

provided in Table 3. The individual errors at each of the cross validation points is 

quantified by the norm of the error in the displacement field divided by the norm 

of the displacement field, which thus leads to relative errors. 

 

Table 3. Overall relative cross validation error for the X and Y displacement fields 

Displacement field UX UY 

Overall cross validation RMS error (%)  0.20 0.22 

 

The errors found are quite acceptable even though slightly higher than the 0.2% 

maximum error objective we imposed on the previous steps. It is clear that since 

we combine the reduced order modeling and the surrogate modeling the overall 

error can be higher than that of each of the two modeling approaches. The final 

error found would have to be analyzed independently of the reduced order 

modeling and surrogate errors and a decision taken whether it is acceptable for the 

pursued purpose. Otherwise the procedure would have to be repeated with more 

stringent error criteria on the reduced order modeling and the surrogate procedure. 

In our case the errors were found acceptable. 

Finally we provide an overview of the computational savings achievable with the 

proposed method. We provide in Table 4 the relative computational times needed 

for the resolution of the set of systems for the various methods discussed earlier. 

Note that the computational time was normalized such that the cost of brute force 

approach is equal to 1.  
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Table 4. Relative computational cost associated to the resolution of the DoE with 

the different techniques discussed in the paper. 

 Computational 

time 

Nb full 

systems 

Nb projected 

systems 

Size of the 

reduced-basis 

Brute force 1 140 0  

Max Res 0.214 10 932 10 

Sequential 0.109 13 139 13 

Sequential XY 0.152 
11 (for X) 139 11 

10 (for Y) 140 10 

 

For the brute force method (used as a reference), which consists in computing a 

full resolution for each experiment of the DoE, the resolution time is equal to one, 

while the maximum residual method leads to a speed-up of 4.7 and the sequential 

approach to a speed-up of 9.2. The time taken to solve the linear systems for all 

the DoE is thus nearly divided by 10 with the sequential method, which is a 

significant efficiency improvement. Note that in general the higher the number of 

degrees of freedom in the full problem the more efficient the method is expected 

to be. Also note that the overall efficiency improvement depends not only on the 

system inversion but also on the stiffness matrix assembly. Thus depending on the 

size of the problem and the efficiency of the assembly the overall efficiency 

improvement may vary. 

Considering this speed-up by a factor of almost 10 it can be interesting to compare 

the computational cost of the key points surrogate based identification with that of 

a classical surrogate based identification and with an identification coupling 

directly optimizer and finite element model. This last option was extensively 

studied for this same open hole test by Silva [31]. Using the Levenberg-Marquardt 

algorithm for solving this identification problem by direct coupling of the 

optimizer and the finite element model, Silva found that about 1200 function 

evaluations (130 optimization iterations) were required for convergence. 

Replacing the finite element model by a surrogate would lead to negligible 

surrogate evaluation cost so that the entire computational cost lies in the surrogate 

construction. In our case this involves 140 function evaluations of the DoE, thus 

representing about an order of magnitude reduction in the computational cost 
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compared to coupling directly the optimizer with the finite element model. Using 

the key points approach allows to achieve an additional order of magnitude 

reduction in the number of function evaluations required. 

In the last column of Table 4 the size of the reduced-basis for the different 

methods are also presented. As one can expect, the maximum residual method 

lead to a smaller basis (10) than the sequential method (13). Therefore the choice 

of the method is a compromise between numerical efficiency and reduction and 

will depend on the application. In the paper an alternative to these two methods 

was proposed, which consists in performing a sequential approach with two 

different basis for X and Y components of the displacement, based on partial 

projections (which we called concurrent XY separation earlier in this Section). 

One can notice in Table 4 that the resolution time is smaller than the maximum 

residual method, with a speed-up close to 6.6. This last method leads to two 

reduced-bases whose sizes are different but smaller than that of the sequential 

method. The fact that two different reduced-basis are used implies that the size of 

the projected systems are twice bigger than that of the previous sequential method 

which explains a smaller speed-up compared to the sequential approach. The 

sequential XY method may thus represent an interesting alternative, even if it is a 

bit more code intrusive. 

 

3.3 Identification results 

The identification framework presented at the beginning of this section is now 

applied on two test cases based on the simulated experiments illustrated in Figure 

3. The first one is a noise-free simulation obtained with the material properties 

given in Table 1, denoted reference values. The second one is a noisy experiment 

obtained with the same material properties but to which a white noise was added 

to the displacement fields as described at the beginning of this section. Since the 

white noise component is of aleatory nature we repeat 50 times the identification 

procedure for the second test case and provide the mean values of the identified 

properties. Note that once the key points response surfaces constructed, the 

resolution of the optimization problem was almost instantaneous. 

The identification results are provided in Table 5. The reference values are those 

applied for the simulated experiment. 
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Table 5. Identified material properties for the two test cases. 

Parameter E1(GPa) E2 (GPa) ν21 G12 (GPa) 

Reference values 65.2 26.2 0.314 29 

Test case 1 (noise free) 65.19 26.20 0.3141 29.00 

Test case 2 (noisy) 65.18 26.17 0.3138 29.16 

 

The identified properties agree very well with the reference values in both test 

cases. It is worth noting that even in the case of noisy experiments the 

identification approach still finds on average almost the exact values. This is 

partly due to the regularization effect of projecting the noisy “experimental” fields 

on the key points basis. 

Note at this point that this regularization greatly reduces the effect of the noise on 

the displacement fields, rendering the results based on noisy and non-noisy 

experiments very close to each other. This would not be the case if actual 

experimental data would be used, but the identification problem is to be seen here 

just as an illustration of possible applications for a surrogate of the displacement 

fields. 

Also note that other frameworks (e.g. Bayesian) could be used for carrying out the 

identification but for the same reasons we chose to not detail them in greater 

depth. The interested reader is referred to [30] for details on a Bayesian 

identification on actual experimental data.  

 

4 Second application example: surrogate of a thermal 

field 

In order to illustrate the applicability and efficiency of the proposed methodology 

on a large variety of problems and surrogate types an application to the 

construction of a thermal field surrogate is considered in this section using 

kriging. Note that only the surrogate construction is sought in this section 

independently of any identification or other application problem that might 

involve the thermal field. Indeed the proposed surrogate methodology is 

independent of the surrogate use that might follow. 
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The application considered here is the heat transfer through the combustion 

chamber wall of a rocket engine [49],[50]. A schematic of a typical regeneratively 

cooled liquid hydrogen (LH2) liquid oxygen (LOX) rocket engine is illustrated in 

Figure 6. The regenerative cooling takes place when the liquid hydrogen (LH2) at 

a temperature of 40K flows through cooling channels in the combustion chamber 

wall before entering the injectors as shown in Figure 6. Determining the 

temperature field in the combustion chamber wall is important in order to account 

for the high thermally induced stresses that arise and which can lead to broken 

cooling channel walls (cf. Figure 6).  

 

 
Figure 6: Schematic of a regeneratively cooled rocket engine combustion 

chamber. The drawings are not to scale. 

 

Due to manufacturing constraints the combustion chamber wall is made of two 

different sections: an internal side usually made of a copper alloy in which the 

cooling channels are machined and an external jacket usually made of a Ni alloy 

(cf. Figure 6). Convective heat exchange can take place between the combustion 

chamber gases and the inner side of the combustion chamber wall, between the 

liquid hydrogen and the cooling channel side of the wall and between the outer 

environmental temperature and the external side of the combustion chamber wall. 

The corresponding heat transfer problem is thus parameterized by the following 

parameters: the conductivity of the inner side of the wall (kCu), the conductivity of 

the jacket (kNi), the temperature of the gases on the inner side of the combustion 
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chamber (Thot), the temperature on the outer side of the combustion chamber 

(Tout), the temperature of the cooling fluid (Tcool), the film convection coefficient 

on the inner side of the combustion chamber (hhot), the film convection coefficient 

on the outer side of the combustion chamber (hout) and the film convection 

coefficient on the cooling channel side (hcool). 

We seek in this application example a surrogate of the temperature field in the 

combustion chamber wall as a function of the previous eight parameters during 

the stationary regime of the rocket engine.  

For the design of experiments a finite element model of the combustion chamber 

wall is used. By symmetry considerations only the discretized segment illustrated 

in Figure 6 (right side) is modeled. This time again an in-house finite element 

solver coded in Matlab is used, but the use of any commercial software is possible 

given that the “stiffness matrix” can be accessed. The problem’s boundary 

conditions and finite element mesh is illustrated in Figure 7. 

 
 

Figure 7: Schematic of a regeneratively cooled rocket engine combustion 

chamber. The drawings are not to scale. 

 

The bounds of the design of experiments are provided in Table 6 and a total of 

660 points were sampled by latin hypercube.  

 

Table 6. Bounds for the design of experiments of the thermal problem. 

Parameter 

 

kCu 

(W/(mK)) 

kNi 

(W/(mK)) 
Thot 

(K) 

Tout 

(K) 

Tcool 

(K) 

hhot 

(kW/(m2K)) 
hout 

(kW/(m2K)) 
hcool 

(kW/(m2K)) 

Lower 

bound 

50 200 700 260 30 20 6 100 

Upper 

bound 

130 400 950 310 70 40 20 350 
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The key points approach is applied with an error criterion erb=10-3. The sequential 

approach leads to a total of 15 basis vectors. The convergence of the residuals 

error with the experiment number is illustrated in Figure 8. 

 
Figure 8: Plot of the temperature surrogate approximation error (log scale) for the 

sequential approach as a function of the DoE experiment number. 

 

As in the previous open hole plate example, using the proposed method, the vast 

majority of the 660 points of the DoE are evaluated using the computationally 

inexpensive reduced basis model, only 15 full system resolution being required. 

An overview and graphical representation of the first three temperature modes 

(basis vectors) is presented in Appendix 3.  

The maximum residuals error approach also requires 14 iterations (and thus 15 

basis vectors) to reach the 10-3 error criterion as shown in Figure 9. The figure 

plots the approximation error indicator based on the residual norm erb  as a 

function of the iteration number. For iteration i,  the approximation errors of the 

whole set of experiments are plotted as + symbols. The new key point (red circle) 

at each iteration is the one which corresponds to this maximum residual error. At 

the end of the procedure all residuals are below the threshold considered. 

Given that the same number of basis vectors were obtained by the sequential and 

the maximum residuals error approach we chose to consider in the rest of this 

section only the sequential approach basis vectors due to the lower computational 

effort for obtaining them. 
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Figure 9: Plot of the temperature surrogate approximation error (log scale) as a 

function of the iteration number in the maximum residuals approach. 

 

The reduced basis being constructed the next step consists in fitting a surrogate 

model to the basis coefficients. A kriging model was adjusted for each 

temperature basis coefficient using Surrogates Toolbox [47] (which itself utilizes 

a modified version of the DACE toolbox). 

To validate the entire key points surrogate model cross validation is used again as 

described in section 2.2. The root mean square of the cross validation error over 

the 15 key points was found to be 0.105%. The individual errors at each of the 

cross validation points was quantified by the norm of the error in the temperature 

field divided by the norm of the temperature field, which thus led to relative 

errors. 

Finally we provide an overview of the computational savings achievable with the 

proposed method for this thermal application problem. Table 7 gives the relative 

computational times needed for the resolution of the set of systems for the various 

methods discussed earlier. Note that the computational time was normalized such 

that the cost of brute force approach is equal to 1.  

 

Table 7. Relative computational cost associated to the resolution of the thermal 

DoE with the different techniques discussed in the paper. 

 Computational Nb full Nb projected Size of the 
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time systems systems reduced-basis 

Brute force 1 660 0 - 

Max Res 0.27 15 7533 15 

Sequential 0.1 15 659 15 

 

For the brute force method (used as a reference), which consists in computing a 

full resolution for each experiment of the DoE, the resolution time is equal to one, 

while the maximum residual method leads to a speed-up of 3.7 and the sequential 

approach to a speed-up of 10, which is again a significant efficiency 

improvement. Note that for this problem there is no advantage in using the 

maximum residual error method since it finds the same reduced basis size as the 

sequential method.  

 

5 Conclusions 

 

The present article addressed the problem of constructing efficient surrogate 

models of high dimensional output. We proposed an approach based on the 

combination of reduced basis modeling and response surface methodology. The 

reduced basis modeling aims at solving the numerical problem projected on a 

reduced-dimensional basis, constructed sequentially based on a design of 

experiments. While such a reduced order modeling approach can be used as a 

metamodel by itself, even quicker response evaluations can be achieved by 

coupling the approach with response surface methodology. The proposed 

approach seeks to construct surrogate models of the basis coefficients that require 

a reduced number of expensive function evaluations made possible by the key 

points approach: the full scale (expensive) problem is only solved at a small 

number of key DoE points, while the reduced order model is used at all the others. 

Note that this approach is more code-intrusive than classical response surface 

construction, since the “stiffness” matrix needs to be available. It has however the 

potential of significant computational cost savings. 

We first illustrated our approach on an identification problem of orthotropic 

elastic constants based on full field displacements. Surrogate models of the 
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displacement fields were constructed using the proposed approach. This surrogate 

model allowed to have very good accuracy compared to solving the full scale 

problems each time (relative errors of the order of 0.2%). Compared to the 

reduced order model the combined approach has roughly the same accuracy but 

the resolution time of the systems in the DoE was reduced by almost one order of 

magnitude.  

It is also to be noted that we applied here our approach to a problem where the 

entire high dimensional response was required (the full field displacements or 

temperature), but note that the presented procedure may also be efficient for scalar 

responses that are extracted out of a higher dimensional output (e.g. maximum 

stress extracted out of the full stress map in the structure, or maximum 

tempearture). In such a case our approach would allow to track the maximum 

even if it changes location on the structure. Compared to classical response 

surface approximation construction that require full scale problem solving at each 

design of experiment point our approach still has the potential to greatly reduce 

the number of required full scale problems solved. 

A second application example was presented where a surrogate of a thermal field 

was sought. This second example in a completely different domain showed that 

the method is still applicable and similar computational savings were obtained. 

The proposed method is thus likely to benefit to a wide variety of problems where 

surrogate models are being sought. Finally it is important to note that the larger 

the problem (in terms of number of nodes) the higher the potential of the proposed 

method in terms of surrogate construction speed-up. 
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Appendix 1: Concurrent X-Y separation approach 

The concurrent approach for separating the X and Y displacement fields consists 

in dividing the sets of degrees of freedom (DOF) into two groups: the X and the Y 

components of the displacement. Each group of DOF can be either projected of its 

associated reduced-basis Φx and Φy or fully solved independently.  Two different 

errors indicators erb (as defined in Eq. 5) are defined which quantify the accuracy 

of the approximation of the X and Y component separately. The two 

corresponding reduced bases may have different sizes. For solving the problem 

with a new set of parameters, the system is first solved in projection for both X 

and Y. Then 3 cases are possible: 

− both error indicators are small enough: one switches to the next set of 

parameters. 

− both error indicators are larger than the error criterion: the problem is fully 

solved. The just computed displacement vector is decomposed on X and 

Y, and each component is used to enrich the associated reduced-basis. 

− one error indicator is small enough but not the other: the problem is 

partially projected onto the second reduced basis, such that the component 

which was not accurately approximated is being fully solved. Only the 

second reduced-basis is enriched by the fully computed component of the 

solution. 

This technique leads to a hybrid problem for which only a part of the DOFs are 

reduced. For additional details on the practical implementation of the DOF 

separation the reader is referred to [45] which implemented a similar separation.  

Appendix 2: Displacements modal basis 

In the mechanical problem the basis vectors in the X and Y direction have a 

physical interpretation: they can be seen as displacement modes characterizing the 

effect of the variations in the mechanical parameters considered (E1, E2, ν21 and 

G12 here). We illustrate the first three modes in the X and in the Y direction in 

Figure 10. 
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Mode 1 

 
X-displacements 

 

 

Mode 2 

 
Y-displacements 

 
X-displacements 

 

Mode 3 

 
Y-displacements 

 
X-displacements 

 

 
Y-displacements 

Figure 10: First three displacement modes obtained using the key points basis 

construction procedure. 
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The first mode is the dominant mode and has high resemblance with the typical 

displacement fields (such as the ones illustrated in Figure 3). That is, if we would 

only require displacement fields accurate to roughly 90% (as shown in Figure 5 

after the first iteration) the first displacement mode would be enough. It means 

that for all displacement fields with parameters within our design space we could 

express the field as a multiplicative factor times the first mode and have fields that 

are accurate to about 90%. The multiplicative factor would of course vary 

depending on the point within our design space (i.e. depending on the four 

material properties E1, E2, ν21 and G12). A 10% error on the displacement fields is 

however rather on the high side and does not allow capturing finer variations in 

the displacement fields needed to accurately identify all four material properties. 

So in order to reduce this error we need to increase the number of basis vectors 

(modes) utilized and express each field as a linear combination of the 

displacement modes, each additional mode providing higher accuracy for 

increasingly finer details of the field. The coefficients of the linear combination 

vary depending on the design point, thus we seek in the next paragraph to 

construct response surface approximations of these coefficients as a function of 

the material properties E1, E2, ν21 and G12. Since we found in the previous 

paragraphs that we need 10 modes to reach our relative error criterion of 0.2% we 

will have to construct 20 response surface approximations in total (ten for the X-

displacements and ten for the Y-displacements). 

To assess the quality of the polynomial response surface approximation fitted for 

each basis coefficient we used the error measures provided in Tables 8 and 9. The 

second row of the Tables gives the mean value of the POD coefficient across the 

design of experiments (DoE). The third row provides the range of variation of the 

coefficients across the DoE. Row four provides R2, the correlation coefficient 

obtained for the fit, while row five gives the root mean square error among the 

DoE simulations. The final row gives the PRESS leave one out cross validation 

error [48]. Note that approaches other than PRESS exist for assessing the 

predictive capability of a model, for example the construction of a separate set of 

validation points. However in this paper we did not seek to guarantee a predictive 

capability in absolute terms but only relative to the surrogate model whose 

construction does not use the reduced basis model. 
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Note also that when assessing the quality of the RSA in Tables 3 and 4 , the error 

measures should be compared not only to the mean value of the coefficients but 

also to their range. By doing so we notice that all RSAs have a very good quality, 

both the RMS and the PRESS error satisfying the 0.2% relative error criterion. 

Considering such low errors it was not deemed necessary to seek more advanced 

surrogate models (e.g. kriging, support vector machines, neural networks, etc.) for 

the basis coefficients. 

 

Table 8. Error measures for the polynomial response surface approximations for 

the basis coefficients of the X-displacements. 

RSA for α1X α2X α3X α4X α5X 

Mean value of αi 2.20*10-4 1.80*10-4 -7.90*10-6 1.69*10-5 6.95*10-6 

Range of αi 1.05*10-4 8.81*10-5 7.26*10-6 9.80*10-6 2.55*10-6 

R2 0.99999 0.99999 0.99998 0.99999 0.99999 

RMS error 5.46*10-8 4.57*10-8 6.63*10-9 7.06*10-9 2.08*10-9 

PRESS error 6.71*10-8 5.96*10-8 8.70*10-9 8.53*10-9 2.80*10-9 
 

RSA for α6X α7X α8X α9X α10X 

Mean value of αi 1.74*10-5 6.48*10-6 -4.77*10-6 2.90*10-6 -1.10*10-6 

Range of αi 7.32*10-6 2.61*10-6 1.78*10-6 1.71*10-6 6.28*10-7 

R2 0.99999 0.99999 0.99999 0.99999 0.99999 

RMS error 2.45*10-9 8.49*10-10 5.29*10-10 7.16*10-10 3.67*10-10 

PRESS error 3.17*10-9 1.05*10-9 6.83*10-10 9.47*10-10 5.33*10-10 

 

Table 9. Error measures for the polynomial response surface approximations for 

the basis coefficients of the Y-displacements. 

RSA for α1Y α2Y α3Y α4Y α5Y 

Mean value of αi 1.39*10-4 -1.65*10-4 1.08*10-5 -1.67*10-5 -6.89*10-6 

Range of αi 8.40*10-5 1.02*10-4 1.17*10-5 1.33*10-5 3.01*10-6 

R2 0.99999 0.99999 0.99999 0.99999 0.99999 

RMS error 3.53*10-8 4.28*10-8 4.73*10-9 5.84*10-9 9.46*10-10 

PRESS error 4.24*10-8 5.20*10-8 5.66*10-9 6.91*10-9 1.27*10-9 
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RSA for α6Y α7Y α8Y α9Y α10Y 

Mean value of αi -1.74*10-5 -6.50*10-6 4.80*10-6 -2.89*10-6 1.10*10-6 

Range of αi 7.28*10-6 2.63*10-6 1.79*10-6 1.68*10-6 6.36*10-7 

R2 0.99999 0.99999 0.99999 0.99999 0.99999 

RMS error 2.59*10-9 8.86*10-10 5.66*10-10 5.21*10-10 2.44*10-10 

PRESS error 3.90*10-9 1.24*10-9 7.08*10-10 6.93*10-10 2.99*10-10 

Appendix 3: Temperature modal basis 

As in the mechanical problem the basis vectors of the thermal reduced basis can 

be represented graphically and have following physical interpretation: the basis 

vectors can be seen as temperature modes characterizing the effect of the 

variations in the eight problem parameters considered (conductivities, film 

convection coefficients and wall temperatures). We illustrate the first three modes 

in Figure 11.  

Again by construction the first mode is the dominant mode, meaning that alone it 

will explain most of the variations of the temperature fields when the eight 

parameters of the problem are varied. Of course the subsequent modes are 

required to catch finer details in the variations of the temperature field and thus 

meat the 10-3 error criterion. 
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Mode 1 

 
Mode 2 

 
Mode 3 

Figure 11: First three temperature modes obtained using the key points basis 

construction procedure. 
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