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Abstract: Switching linear systems are described by a set of continuous state-space models
together with conditions (switching law) that decide which model (mode) of this set is valid for
the current continuous state. This article deals with the problem of the observability of discrete
mode in which the switching law is assumed to be unknown. The formalization of the problem,
based on a graph-theoretic approach, is to express sufficient conditions for generic observability
of the discrete mode assuming only the knowledge of the system’s structure. These conditions
allow us to obtain criteria of sensor placement in order to recover the discrete mode observability
using properties of the graph associated to the system.

Keywords: discrete mode observability, state and input observability, switching structured
linear systems, graph theory, sensor placement.

1. INTRODUCTION

Over the past decade, study of hybrid systems has received
particular attention in several scientific fields including
automation.
In general, this kind of systems can represent, through
hybrid systems properties, several physical, technological
and biological phenomena. It allows to model complex sys-
tems which combine the dynamics of the continuous parts
(modes) of the system with the dynamics of the logic and
discrete parts. Hybrid models are characterized by con-
tinuous processes (continuous differential equations) in-
teracting with discrete processes (paradigms from discrete
event systems). A hybrid system’s structure is illustrated
in figure 1:

Fig 1:Hybrid Dynamical System’s structure

The transition from one mode to another one is strongly
linked to the global nature of the behavior of the complex
system to model. When the mode transition is abrupt,
we can define a particular but very important framework
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of hybrid dynamical systems : switching continuous-time
linear systems (SCTLS) or SLS (to simplify the notation).
They are composed of a family of subsystems which are
linear time-invariant and these subsystems (modes) are
orchestrated by a switching law that specifies which sub-
system is active. As an extension of the classical linear
or affine state-space representations of dynamical systems,
this modeling formalism has been thoroughly investigated
through several studies.
Knowing that, the focus is on the study of observability
property for SLS with unknown input, this property plays
a major role in command law synthesis, fault detection and
isolation, fault tolerant command law synthesis and also
for perturbations rejection, the solvability for fault detec-
tion and isolation problem is mainly linked to observability
property and then investigating it will be interesting when
system’s structure change as the case for SLS framework.
Many definitions of this property appear in the literature
for SLS. For example, we quote Bemporad et al. (2000);
Collins and Schuppen (2004); Chaib et al. (2005) devoted
to studying observability of hybrid systems where the
discrete mode depends on the state trajectory or is as-
sociated to discrete outputs. We can also quote Bemporad
et al. (2000); Vidal et al. (2002); Babaali and Egerstedt
(2004) for deterministic discrete-time switching linear sys-
tems. Conventional algebraic and geometric tools which
are based on the numerical value of state-space matrices
of system’s model are needed. However, these variables are
subject to parametric uncertainties due to identification
processus and so, they are approximatively known.
We consider here a structured switching linear system in
state-space form, knowing that a switching linear system
is structured when each entry of the matrices of its state-



space form is either a fixed zero or a free parameter. The
location of the fixed zeros in these matrices constitutes the
structure of the system.
The approach is of interest to investigate many classical
properties of structured systems that can be studied in
terms of genericity. In this case, properties that are true for
almost any value of the free parameters are called generic
proprieties.
In order to check generic properties as controllability,
observability and so on (see Dion et al. (2003)), we can
associate in natural way digraphs to structured systems
and so verify structural properties by means of graph
theoretic terms.
This approach also presents a major advantage. Indeed,
through the association of the digraph with the structured
system, we can intuitively represent the structural changes
on the graph and take into account them when analyzing
the property of system. This fact is very interesting know-
ing that a switch can be related to a change in structure,
as for example in the field of electronics Yang and Chu
(2006).
In this paper, our aim is to characterize the discrete
mode observability for structured switching linear systems
(SSLS).
The results presented in this paper were obtained within
the European project PAPYRUS (Plug and Play monitor-
ing and control architecture for optimization of large scale
production processes).
The outline of the paper is as follows. In section 2, we
expose the problem statement. After that we give some
definitions and notations to the graph-theoretic approach
in section 3, then the main result is given in section 4 and
we conclude.

2. PROBLEM STATEMENT

Consider the state-space form of switching linear systems
as follows:

Σ :

{
ẋ(t) = A(rt)x(t) +B(rt)u(t)
y(t) = C(rt)x(t) +D(rt)u(t)

(1)

with x ∈ Rn,u ∈ Rm, y ∈ Rp are respectively the
state vector, unknown input vector and output vector
and matrices A(·), B(·), C(·) and D(·) are of appropriate
dimensions. Consider a discrete mode variable (mode
sequence) as an exogenous input which is considered to

be unobserved and defined by rt : [0,∞) → Q
def
=

{1, . . . , N}. Close to Babaali and Pappas (2005), the
switching signal is right-continuous and so impulses in
state and input of SLS are excluded. A minimum dwell
time is considered to avoid zeno behavior which is an
undesired phenomenon for the well-definedness of SLS.
In order to have more general framework, a generic study
of discrete mode observability is assumed not for all initial
conditions and unknown input u but for generic ones.
To address the discrete mode observability problem, some
preliminary definitions are useful:

Definition 1. (Mode distinguishability) Two modes q ∈ Q
and q′ ∈ Q (with q 6= q′) are distinguishable if at least one
of the two following conditions holds:
- there exist an integer s ≥ 0 and an expression
Ψq(y, ẏ, . . . , y

(s)) = 0 which is satisfied for mode q but
is not satisfied for mode q′ for almost all initial conditions

x0 and input u.
- there exist an integer s′ ≥ 0 and an expression
Ψq′(y, ẏ, . . . , y

(s′)) = 0 which is satisfied for mode q′ but
is not satisfied for mode q for almost all initial conditions
x0 and input u.

Here, “ for almost all initial conditions x0 and input u ”
is to be understood as “ for all (xT0 , u

T )T ∈ Rn+m except
for the zero set of some polynomials with real coefficients
in the n + m initial state and input components”Ṫhese
polynomials can be written down explicitly, i.e. we can
precisely describe them when the mode distinguishability
fails to be true. Obviously u(t) ≡ 0 and x0 = 0 are two of
these polynomials. The zero set of some polynomial forms
a proper algebraic variety of Rn+m which has Lebesgue
measure zero.
The interpretation of Definition 1 is that q is distinguish-
able from q′ if, for generic initial state x0 and unknown
input u, we can rule out q or q′ when observing the output
over [0, T ]. Relatively to the definitions of Babaali and
Pappas (2005), our notion of distinguishability of q and
q′ is equivalent to the fact that q is discernible from q′

or vice-versa. The mutual mode discernibility, which is a
dissymmetric property in Babaali and Pappas (2005), is
equivalent to have both conditions of Definition 1 satisfied.

Definition 2. (Location observability) SLS (Σ) is location
observable if its modes are all distinguishable two-by-
two i.e. ∀q ∈ Q, ∀q′ ∈ Q, with q 6= q′, q and q′ are
distinguishable.
Comparatively with the notion of location observability
defined in De Santis et al. (2006, 2008), our definition
concerns as well autonomous as non-autonomous systems.
In De Santis et al. (2006, 2008), location observability is
defined as the ability to reconstruct the mode starting
from the knowledge of the input and the output, for any
nonzero input value and for all initial conditions. Since
we deal with unknown input systems, this definition is
not applicable and it cannot be achieved for autonomous
systems. In definition 2, we relax this by accepting that
the reconstruction of the mode may be possible not for all
but for almost all inputs and initial conditions values. To
establish the observability of SLS, we have to address, in
addition to location observability reduced to the study of
the distinguishability of each pair of modes, the state and
input observability of each mode as defined classically in
Trentelman et al. (2001).
We deal with structured switching linear systems (SSLS)
which consider only the structure of modeled system and
assume independent all the real parameters of matrices
A(q), B(q), C(q), D(q) for each mode q ∈ Q of SLS.
The studied structured state space form is

ΣΛ :

{
ẋ(t) = Aλ(rt)x(t) +Bλ(rt)u(t)
y(t) = Cλ(rt)x(t) +Dλ(rt)u(t)

(2)

Real parameters of this state-space form are either fixed
to zero or assumed to be nonzero parameters. In the
latter case, they are substituted by free parameters noted
λi and the set of these parameters forms vector Λ =
(λ1, λ2, ..., λh)T which can take any value in Rh.
To study location observability, it is pertinent and nec-
essary to highlight the similarities and the differences
between the models associated to these modes. Thus, we
decompose each structured matrix Aλ(q), Bλ(q), Cλ(q)
and Dλ(q) for each q ∈ Q into two parts: the first one is
common to the two modes and the second one is specific to



each mode i.e. for q ∈ Q, Aλ(q) = Aλ0 +Aλq , Bλ(q) = Bλ0 +

Bλq , Cλ(q) = Cλ0 + Cλq and Dλ(q) = Dλ
0 + Dλ

q where all
nonzeros entries of structured matrices are assumed as free
parameters λi from vector Λ.
According to location observability definition, discrete
modes observability is reduces to distinguishability of
modes two by two.
For the sake of simplicity, we consider in the later that we
have only two modes q ∈ {1, 2}.

3. GRAPHICAL REPRESENTATION OF
STRUCTURED SWITCHING LINEAR SYSTEMS

In this subsection, our aim is to present a manner of
modeling structure of SSLS (ΣΛ) taking into account
different modes of the system. For a such structure,
we can associate in a natural way a directed graph
noted G(ΣΛ) constituted by a non-empty finite set V
of elements called vertices and a finite set E of ordered
pairs of distinct vertices called edges (directed edges).
Notation G(ΣΛ) = (V, E) means that V and E are
respectively vertex set and edge set of G(ΣΛ). Vertex
set V defined by V = X ∪ U ∪ Y corresponds to the
system’s variables (inputs U = {u1, . . . ,um}, states
X = {x1, . . . ,xn} and outputs Y = {y1, . . . ,yp}) and
edge set E is defined by E0 ∪ Eq. E0 represents the
common part of both modes of SSLS and Eq represents
the specific part for each mode. They can be respectively
defined by E0 = A0-edges ∪ B0-edges ∪ C0-edges ∪
D0-edges, where, A0-edges = {(xj,xi) | A0(i, j) 6= 0},
B0-edges = {(uj,xi) | B0(i, j) 6= 0}, C0-edges =
{(xj,yi) | C0(i, j) 6= 0} and D0-edges =
{(uj,yi) | D0(i, j) 6= 0} and Eq = Aq-edges ∪
Bq-edges ∪ Cq-edges ∪ Dq-edges for each mode
q ∈ {1, 2}, where, Aq-edges = {(xj,xi) | Aq(i, j) 6= 0},
Bq-edges = {(uj,xi) | Bq(i, j) 6= 0}, Cq-edges =
{(xj,yi) | Cq(i, j) 6= 0} and Dq-edges =
{(uj,yi) | Dq(i, j) 6= 0}. The existence of free non
zero parameters (non-zero entries) of common part
(Aλ0 , B

λ
0 , C

λ
0 , D

λ
0 ) of SSLS is represented by edges e0 ∈ E0

indexed by 0 and the existence of free non-zero parameters
of specific part (Aλq , B

λ
q , C

λ
q , D

λ
q ) of SSLS is represented

by edges eq ∈ Eq indexed by q for q ∈ {1, 2}.

Example 1. To the system defined by the following
structured matrices, we associate the digraph in Figure 1.

Aλ0 =


0 0 λ1 0 0 0 0 0 0 0
0 0 λ2 0 0 0 0 0 0 0
0 0 0 λ3 0 0 0 0 0 0
0 0 0 λ4 0 0 0 0 0 0
0 λ5 0 0 0 λ6 0 0 0 0
0 0 0 0 0 0 λ7 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 λ8 0 0 0 λ9 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

,

Bλ0 =


0 0
0 0
0 0
0 0
0 0
0 0
λ13 0
0 0
0 λ14

0 λ15

,

Cλ0 =

 λ16 0 0 0 0 0 0 0 0 0
0 λ17 0 0 0 0 0 0 0 0
0 0 0 0 λ18 0 0 0 0 0
0 0 0 0 0 0 0 λ19 0 0
0 0 0 0 0 0 0 0 0 λ20

,

All the entries of Aλ1 , Bλ1 , Bλ2 are zero except Aλ1 (1, 3) =
λ10, Bλ1 (10, 2) = λ11, Bλ2 (9, 2) = λ12. The elements of
matrices Aλ2 , Cλ1 , Cλ2 , Dλ

0 , Dλ
1 and Dλ

2 are equal to zero.

Fig. 1. Digraph associated to system of Example 1

3.1 Notations and definitions

The digraph representing the SSLS is built from the
superposition of the digraphs related to each mode. In
order to study the properties of the system associated
to a specific mode q, we have to restrict the edge set to
E0∪Eq. In this context, many of the functions and specific
vertex subsets, defined below, present an index q related
to the considered mode.
• A path P is denoted P = vs0 → vs1 → . . . → vsi ,
where (vsj ,vsj+1

) ∈ E for j = 0, 1, . . . , i − 1. We say in
this case that P covers vs0 , vs1 , . . . , vsi .
• A path is simple when every vertex occurs only once in
this path.
• A cycle is a path of the form vs0 → vs1 → . . .→ vsi →
vs0 , where vs0 , vs1 , . . . , vsi are distinct.
• For q ∈ {1, 2}, we say that path P is included in E0 ∪Eq
if all its edges are included in E0 ∪ Eq.
• Some paths (resp. cycles) are disjoint if they have no
common vertex.
• A set of disjoint cycles is called a cycle family.
• P is a Y-topped path if its end vertex belongs to Y. A
Y-topped path family consists of disjoint simple Y-topped
paths.
• V1 and V2 represent two subsets of V. We denote by
card(·) the cardinality function and V1 \ V2 is the set of
elements in V1 which are not in V2.
• A path P = vs0 → vs1 → . . . → vsi is said a V1–V2

path if vs0 ∈ V1 and vsi ∈ V2. Moreover, if the only vertex
of P which belongs to V1 is vs0 and the only vertex of
P which belongs to V2 is vsi , P is called a direct V1–V2

path.
• For q = {1, 2}, ρq

[
V1,V2

]
is the maximal number of

disjoint V1-V2 paths included in E0 ∪ Eq. Moreover, a set
of ρq

[
V1,V2

]
disjoint V1-V2 paths included in E0 ∪ Eq is a

maximum V1-V2 linkings in E0 ∪ Eq.
• For q ∈ {1, 2}, µq

[
V1,V2

]
denotes the minimal number

of vertices of U ∪X ∪Y belonging to a maximum V1–V2

linking included in E0 ∪ Eq.
• For q ∈ {1, 2}, Vess,q

[
V1,V2

]
is the vertex subset

including the vertices present in all the maximum V1–V2

linkings included in E0 ∪ Eq.
• For q ∈ {1, 2}, there exists a unique vertex subset noted
Soq
[
V1,V2

]
and called minimum output separator which

is the set of begin vertices of all direct Vess,q
[
V1,V2

]
–V2

paths included in E0 ∪ Eq.



4. RESULTS
4.1 Preliminaries

First of all, we begin by introducing some existing results
based on several works in (Dion et al. (2003); Commault
and Dion (2003); Boukhobza et al. (2007)), in graphi-
cal terms, for continuous state and input observability
of SSLS. It characterizes the generic dimension of the
observability subspace related to the degeneration of pencil
matrix for each mode q ∈ {1, 2} (due often to invariant
properties van der Woude et al. (2003) such as invariant ze-
ros). In this paper, our aim, through a subdivision close to
Boukhobza et al. (2007); Boukhobza and Hamelin (2011),
is to express propositions to assess the observability of the
discrete mode for SSLS by using some subsets emerged
from subdivision of SSLS into two distinct parts. Towards
this end, the following definitions are useful.

Definition 3. Consider SSLS (ΣΛ) associated to digraph
G(ΣΛ). The following vertex subsets emerge from SSLS
subdivision :
• X1,q

def
=
{
xi | ρq

[
U ∪ {xi},Y

]
> ρq

[
U,Y

]}
;

• Y0,q
def
= Y ∩ Vess,q

[
U,Y

]
;

• Y1,q
def
= Y \Y0,q;

In order to rule on discrete mode observability of SSLS,
we should be able to express an algebraic equation linking
only output components of Y1,q and their derivatives.
This equation has to be satisfied by only one of the two
modes q ∈ {1, 2}.
The particularities of each subset proposed above are
detailed in Boukhobza and Hamelin (2011).

Definition 4. Consider SSLS (ΣΛ) associated to digraph
G(ΣΛ) for q ∈ {1, 2}. We associate integer βq(Y) defined
by µq

[
U, (Soq

[
U,Y

]
∩ X) ∪ Y0,q

]
− ρq

[
U, (Soq

[
U,Y

]
∩

X)∪Y0,q

]
plus the maximal number of vertices of X1,q ∪

Soq
[
U,Y

]
covered by a disjoint union of :

- a Soq
[
U,Y

]
–Y1,q(Y) linking of maximal size;

- a Y1,q-topped path family ;
- a cycle family covering only elements of X1,q.

As expressed in Lemma 3 of Boukhobza and Hamelin
(2011), βq(Y) is equal to the generic dimension of the
observable subspace in the extended state and input space
(xT , uT ) for each q ∈ {1, 2}.
Definition 5. Consider SSLS (ΣΛ) associated to digraph
G(ΣΛ) for q ∈ {1, 2}.
-A q-eligible path is a path ended by yi such as its
length is greater than dq(yi) = βq

(
Y
)
− βq(Y \ {yi}) for

q ∈ {1, 2}.
-A q-eligible edge is the one which belong to eligible path.
-The sub-digraph Gel(ΣΛ) denotes eligible digraph that
contains only q-eligible edges.

Definition 6. Consider SSLS (ΣΛ) associated
to digraph G(ΣΛ) for q ∈ {1, 2}. V(q)el =
{vi is a beginning vertex of eligible path}

4.2 Discrete mode observability of SSLS

Hypothesis 1. SSLS is assumed to be continuous state and
input observable for each mode q ∈ {1, 2} as expressed in
Boukhobza et al. (2007).

In this part, we will treat the observability of the discrete
mode for SSLS with unknown input and so based only on
the measurements given by the output set Y.

Proposition 1. A sufficient condition for location observ-
ability of SSLS represented by digraph G(ΣΛ) is:
• There exists eκ = (vi,vj) a specific edge of one mode
q ∈ {1, 2} and yi ∈ Y1,q such that there exists yi− topped
path of length strictly greater than dq(yi) = βq

(
Y
)
−

βq(Y \ {yi}) which covers eκ ended by vertex vj.
• vi belongs to a direct Soq [V(q)el,Y1,q]-yi path included
in E0 ∪ Eq on Gel(ΣΛ).

Proof:
Sufficiency:
The fact that, for some q, yi belongs to Y1,q
implies that there exists a vertex subset Yu ⊆
Y1,q \ {yi} such that ρq

[
Soq [U ∪V(q)el),Yu]

]
=

card(U ∪ So
q[U ∪V(q)el),Yu]). This implies, from

Lemma 2 of Boukhobza and Hamelin (2011), that there
exist a matrix G, a function ϕ and an integer ν ≤ n1 such
that the dynamics equation of subsystem (Σ1,q) can be
put on form:

Ẋ1,q =
(
A1,1 + (A1,s, B1,1)G

)
X1,q

+ ϕx(Yu, Ẏu, . . . , Y
(ν)
u )

def
= ÃX1,q + ϕx(Yu, Ẏu, . . . , Y

(ν)
u )

Y1,q =
(
C1,1 + (C1,s, D1,1)G

)
X1,q

+ ϕy(Yu, Ẏu, . . . , Y
(ν)
u )

def
= C̃X1,q + ϕy(Yu, Ẏu, . . . , Y

(ν)
u ) (3)

Moreover, by definition of dq(yi), we have that, there

exists a minimal subset Ỹ ⊆ Y1,q(Y) \ (Yu ∪ {yi}), such
that ∀k ≥ dq(yi),

y
(k)
i =

∑
s<k̃i

αi,sy
(s)
i +

∑
l |yl∈Ỹ

n1∑
s=0

αl,sy
(s)
l

+ υ(Yu, . . . , Y
(n1)
u ) (4)

where n1 = card(X1,q). Since subset Ỹ is minimal i.e.

∀yj ∈ Ỹ, βq
(
(Ỹ ∪ {yi} ∪ Yu) \ {yj}

)
− βq(Yu ∪ Ỹ \

{yj}) > k̃i, then in relation (4), all the components of

Ỹ are present. Let us denote by xj ∈ U ∪V(q)el the
begin vertex of the so-called path P satisfying condition
of Proposition 1 (i.e. P is a yi-topped path of length k+ 1
strictly greater than dq(yi) and covering es) and ej the jth

Euclidean vector. Relation (4) can be written as:

C̃iÃ
kej =

 ∑
s<dq(yi)

αi,sC̃iÃ
s+

∑
yl∈Ỹ

n1∑
s=0

αl,sC̃lÃ
s + υ(Yu, . . . , Y

(n1)
u )

 ej (5)

where each non-zero component of C̃lÃ
s is associated to

the paths arriving to yl ∈ Ỹ of length s+ 1. Since all the
{xj}-Ỹ ∪ {yi} paths starting from xj cover, by definition,

Soq
[
{xj}, Ỹ∪{yi}

] def
= {xr}, then there exist kr and k′ such

that kr + k′ = k and C̃iÃ
kej = C̃iA

kr∆rÃ
k′ej where ∆r

is a diagonal matrix which has only one non-zero element
∆r(r, r) = 1. We can do the same reasoning for each term

C̃lÃ
sej and so there exist sr and s′ such that sr + s′ = s



and C̃lÃ
sej = C̃lÃ

sr∆rÃ
s′ej . The fact that end vertex of

eκ i.e. x` belongs to a direct Soq [{xj},Y1,q]-yi path implies

that specific edge eκ ∈ Eq belongs to a Soq
[
xj, Ỹ ∪ {yi}

]
–

Ỹ ∪ {yi} path. This means that edge eκ appears in only

some Soq
[
U ∪V(q)el, Ỹ ∪ {yi}

]
–Ỹ ∪ {yi} paths. Thus,

some terms C̃iA
kr and C̃lÃ

sr , but not all, contain the non-
zero parameter corresponding to edge eκ, which is specific
to mode q. Denoting by Cr = eTr , where er is the rth

Euclidean vector, we have that C̃iÃ
kej = C̃iA

kr∆rÃk
′
ej =

α′CrÃk
′
ej and C̃lÃ

sej = C̃lÃ
sr∆rÃ

s′ej = α′l,sCrÃ
s′ej .

Thus, after substitution of the previous terms in relation
(5),

α′CrÃk
′
ej =

( ∑
sr≤s<dq(yi)

α′i,sαi,sCrÃ
s−sr+

∑
l |yl∈Ỹ

n1∑
s=sr

α′l,sαl,sCrÃ
s−sr + υ(Yu, Ẏu, . . . , Y

(n)
u )

)
ej

(6)

where some coefficients α′ and α′l,s but not all depend
on the weight of eκ. This weight cannot be factorized
and simplified because all the coefficients do not depend
on it (some Soq

[
U ∪V(q)el, Ỹ ∪ {yi}

]
–Ỹ ∪ {yi} paths do

not contain edge eκ). Therefore, equality (6) is valid only
if some of the coefficients α, αi,s and αl,s depend also
on the weight λκ of eκ. Thus, by means of equation (4)
in which appear coefficients αi,s and αl,s, we obtain an
algebraic relation depending on λκ and satisfied only when
the discrete mode variable is equal to q. 2
In Example 1 above, note that the corresponding
Gel(ΣΛ) is the same as G(ΣΛ) since all the edges
in G(ΣΛ) are elligible for q ∈ {1, 2} according to
definition 5. In this case, we have that for q ∈
{1, 2}, X1,q = {x1,x2,x3,x4,x8,x9,x10}, Y0,q = 0,
Y1,q = Y and U ∪V(q)el = {u1,u2,x3,x4} thus
Soq
[
U ∪V(q)el,Y1,q

]
= {u2,x3,x5}.

As example, (x3,x1) is a specific edge to mode 1. Since,
for both modes, Soq

[
U,Y

]
∩X = {x5}, we can then calcu-

late µq
[
U, (Soq

[
U,Y

]
∩ X) ∪ Y0,q

]
− ρq

[
U, (Soq

[
U,Y

]
∩

X) ∪ Y0,q

]
= 4 − 1 = 3. In this case, we have that

d1(y1) = β1

(
Y
)
− β1(Y \ {y1}) = 12 − 11 = 1, this

implies that output y1 allows us to observe d1(y1) = 1
new directions.
Let us search a y1− topped path P which length is strictly
greater than d1(y1) and including specific edge (x3,x1),
we can choose P = x3 → x1 → y1, whose length is equal
to 2.
We also have that the ending vertex x1 of the specific edge
(x3,x1) for mode 1 belongs to a Soq [U ∪V(q)el,Y1,q]-y1

path. So, Conditions of Proposition 1 are satisfied.
In the same manner, if we take (u2,x9) as a specific edge
of mode 2, we have d1(y4) = β1

(
Y
)
−β1(Y\{y4}) = 12−

10 = 2. Let us find a path P of length strictly greater than
d1(y4) and including specific edge (u2,x9), we can choose
P = u2 → x9 → x8 → y4 which length is equal to 3. We
have also that the ending vertex x9 of the specific edge
(u2,x9) belongs to a Soq [U ∪V(q)el,Y1,q]-y4 path. (So,
conditions of proposition 1 are satisfied).
When the proposition 1 is not satisfied, an additional
sensor is required to recover discrete mode observability of
SSLS. To do so, we define a new output vector Z represent-
ing the additional sensors collecting new measurements
z(t) = Hλ

x (rt)x(t) + Hλ
u (rt)u(t). The completed system

is denoted by ΣcΛ and a structured state-space form is as
following:

ΣcΛ :

{
ẋ(t) = Aλ(rt)x(t) +Bλ(rt)u(t)
y(t) = Cλ(rt)x(t) +Dλ(rt)u(t)
z(t) = Hλ

x (rt)x(t) +Hλ
u (rt)u(t)

(7)

The additional sensor components can be represented by
vertex set Z and edge subsets Hx−edges and Hu−edges.
Proposition 2. Consider SSLS (ΣΛ) associated to digraph
G(ΣΛ), under assumption that SSLS is continuous state
and input observable for each mode q ∈ {1, 2} and when
conditions of Proposition 1 are not satisfied.
Let vi ∈ Vi be the ending vertex of a specific and eligible
edge associated to one mode q ∈ {1, 2} and vl ∈ V (q)el the
beginning vertex of eligible path, vi belongs to any direct
{vl}− Soq [U ∪V(q)el,Y1,q] path. In order to ensure that
vi belongs to direct Soq [U ∪V(q)el,Y1,q]−Y1,q path, an
additional sensor zi ∈ Z has to be placed on vertex vl ∈ Vl
such that Vi and Vl a strongly connected components and
Vi ≤ Vl.
After sensor placement, the length condition has to be
checked in order to satisfy Proposition 1.

Proof.
Let vi ∈ Vi be the ending vertex of a specific edge for one
mode q ∈ {1, 2} and vl ∈ Vl such that vi belongs to any
direct {vl} − Soq [U ∪V(q)el,Y1,q] path and Vi ≤ Vl.
A sensor placement zi ∈ Z on vl ∈ Vl such
that Soq [U ∪V(q)el,Y1,q] ≤ Vi makes elements from
Soq [U ∪V(q)el,Y1,q] non essential. Due to the addi-
tion of a new direct {vl} − {zi} path, we have then
Soq [U ∪V(q)el,Y1,q] ≤ Soq [U ∪V(q)el,Y1,q∪{zi}], so, vi

belongs to a direct Soq [U ∪V(q)el,Y1,q ∪ {zi}]-Y1,q path.
The same reasoning can be done when an additional sensor
zl ∈ Z is placed to measure vl ∈ Vl such that Vi ≤ Vl.
Comments and interpretation
An additional sensor does not add a path from input U
to output Y and so the cardinality of minimal output
separator does not increase. The aim of Proposition 2 is
to formalize sensor placement problem in order to have
the ending vertex of specific edge belonging to a direct
Soq [U ∪V(q)el,Y1,q]-yi path included in E0 ∪ Eq under
constraint that the length condition have to be checked
after this placement. 2

Consider Example 2 which keeps the same common part
(Aλ0 , B

λ
0 , C

λ
0 , D

λ
0 ) of SSLS of example 1 and consider new

entries Aλ1 (3, 4) = λ21 for mode 1 and Aλ2 (6, 7) = λ22 for
mode 2. The figure below shows the digraph’s structure of
example 2.
Ending vertex x3 of specific and eligible edge (x4,x3) of

Fig. 2. Digraph associated to system of Example 2



mode 1 and ending vertex x6 of a specific and eligible
edge (x7,x6) of mode 2 do not belong respectively to
Soq [U ∪V(q)el,Y1,q]-y1 path and Soq [U ∪V(q)el,Y1,q]-
y4 path for both modes q ∈ {1, 2}. So the condition of
Proposition 1 is not satisfied.
In order to satisfy these conditions to recover the discrete
mode observability of SSLS of example 2, spreading pro-
cedure of Proposition 2 is needed.
• For mode 1, if an additional sensor z1 is placed
to measure state vertex x4 then x3 belongs to a
Soq [U ∪V(q)el,Y1,q]-y1 path. After that , the length con-

dition should be verified. We have that d1(y1) = β1

(
Y ∪

{z1}
)
− β1(Y \ {y1}) = 12 − 11 = 1. We choose then an

eligible simple y1− topped path P = x4 → x3 → x1 → y1

which covers specific and eligible edge (x4,x3) of mode 1
and its length is greater than 2. Condition of Proposition
1 is then satisfied.
• For mode 2, if an additional sensor z2 is placed to
measure state vertex x7 or u1 then x6 belongs to a
Soq [U ∪V(q)el,Y1,q]-y4 path. After that , the length con-

dition should be verified. We have that d2(y4) = β2

(
Y ∪

{z2}
)
− β2(Y \ {y4}) = 12 − 10 = 2. We choose then an

eligible simple y4 − topped path P = x7 → x6 → x5 →
x8 → y4 which covers specific and eligible edge (x7,x6)
of mode 2 and its length is greater than 3. The condition
of Proposition 1 is then satisfied. Figure 3 illustrates
sensors placement of example 2 to recover the discrete
mode discernability.

Fig. 3. Sensor placement recovering discrete mode observ-
ability of SSLS

Note that after sensor placement, the output separator
(illustrated by dashed line circles) is Soq

[
U ∪V(q)el,Y1 ∪

{z1, z2}
]

= {u2,x4,x7}.

5. CONCLUSION

This paper proposes, through an intuitive graphical ap-
proach, a sufficient condition to investigate discrete mode
observability of switching structured linear systems with
unknown input. Under assumption that continuous state
and input of SSLS are observable as it is widely treated in
Boukhobza et al. (2007), we propose a graphical criterion
of sensor placement to recover the discrete mode observ-
ability of SSLS when this property is not satisfied.
Rule on this property, only through the knowledge of
the structure of the system, makes our approach, using
graph-theoretical techniques, interesting for the analysis
of solvability conditions for FDI problem which is linked
to observability property.
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