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CAMASSA-HOLM TYPE EQUATIONS FOR AXISYMMETRIC

POISEUILLE PIPE FLOWS

FRANCESCO FEDELE∗ AND DENYS DUTYKH

Abstract. We present a study on the nonlinear dynamics of a disturbance to the laminar

state in non-rotating axisymmetric Poiseuille pipe flows. The associated Navier-Stokes

equations are reduced to a set of coupled generalized Camassa-Holm type equations. These

support singular inviscid travelling waves with wedge-type singularities, the so called

peakons, which bifurcate from smooth solitary waves as their celerity increase. In physical

space they correspond to localized toroidal vortices or vortexons. The inviscid vortexon

is similar to the nonlinear neutral structures found by Walton (2011) [28] and it may

be a precursor to puffs and slugs observed at transition, since most likely it is unstable to

non-axisymmetric disturbances.
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1. Introduction

Transition to turbulence in non-rotating pipe flows is triggered by finite-amplitude per-
turbations [15] since the laminar Hagen–Poiseuille flow is believed to be linearly stable
to periodic or localized infinitesimal disturbances for all Reynolds numbers Re (see, for
example, [6]). The coherent structures observed at the transitional stage are in the form
of localized patches known as puffs and slug structures [31, 30]. Puffs are spots of vor-
ticity localized near the pipe axis surrounded by laminar flow. Slugs develop along the
streamwise direction, while expanding through the entire cross-section of the pipe, and
they are concentrated near the wall. Recent theoretical studies tried to relate slug flows to
quasi inviscid solutions of the Navier–Stokes (NS) equations for non-rotating pipe flows.
In particular, for non-axisymmetric pipe flows Smith & Bodonyi (1982) [25] revealed
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the existence of nonlinear neutral structures localized near the pipe axis (centre modes)
in the form of inviscid travelling waves of small but finite amplitude, which are unstable
equilibrium states (see [27]). More recently, Walton (2011) [28] found the axisymmetric
analogue of Smith and Bodony’s modes. Such inviscid axisymmetric structures are similar
to the slugs of vorticity that have been observed in both experiments [31] and numerical
simulations [29]. Thus, they may play a role in pipe flow transition as precursors to puffs
and slugs.

Recently Fedele (2012) [8] investigated the dynamics of non-rotating axisymmetric pipe
flows in terms of solitons and travelling waves of nonlinear wave equations. He showed that,
at high Reynolds numbers, the dynamics of small but finite long-wave perturbations of the
laminar flow obey a coupled system of nonlinear Korteweg-de Vries-type (KdV) equations.
These set of equations generalize the one-component KdV model derived by Leibovich

[19, 20, 21] to study propagation of waves along the core of concentrated vortex flows (see
also [2]) and vortex breakdown [22]. Fedele’s coupled KdV equations support inviscid
soliton and periodic wave solutions in the form of toroidal vortex tubes, hereafter referred
to as vortexons, which are similar to the inviscid nonlinear neutral centre modes found
by Walton (2011) [28]. These vortical structures eventually slowly decay due to viscous
dissipation on the time scale t ∼ O(Re6.25) (see [8]). Note that dispersive wave equations
arise in similar studies of the dynamics of Blasius flows, which at high Reynolds numbers
is described by a Benjamin-Davis-Acrivos (BDA) integro-differential equation [24]. This
supports soliton structures that explain the formation of spikes observed in boundary-layer
transition [17].

In this paper, we extend the previous analysis [8] and show that the axisymmetric
NS equations for non-rotating pipe flows can be reduced to a set of generalized coupled
Camassa-Holm equations [3] that support inviscid traveling waves. Finally, the intepreta-
tion of the associated vortical structures is discussed.

2. Camassa-Holm type equations for axisymmetric pipe flows

Consider the axisymmetric motion of an incompressible fluid in a pipe of circular cross
section of radius R driven by an imposed uniform pressure gradient. Define a cylindrical
coordinate system (z, r, θ) with the z-axis along the streamwise direction, and (u, v,w) as
the radial, azimuthal and streamwise velocity components. The time, radial and streamwise
lengths as well as velocities are rescaled with T , R and U0 respectively. Here, T = R/U0

is a convective time scale and U0 is the maximum laminar flow velocity. A cylindrical
divergence-free axisymmetric velocity field is given in terms of a Stokes streamfunction
Ψ(r, z, t) as

u = −1
r

∂Ψ

∂z
, w = 1

r

∂Ψ

∂r
.

To study the nonlinear dynamics of a perturbation superimposed on the laminar base flow
W0(r) = 1 − r2, Ψ is decomposed as

Ψ = Ψ0 +ψ, (2.1)
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where Ψ0 = 1

2
r2(1− 1

2
r2) represents the stream function of the laminar flow W0, and ψ that

of the disturbance. The curl of the NS equations yields the following nonlinear equation
for ψ [16]:

∂tLψ +W0∂zLψ − 1

Re
L
2ψ = N(ψ), (2.2)

where the nonlinear differential operator

N(ψ) = −r−1∂rψ∂zLψ + r−1∂zψ∂rLψ − 2r−2∂zψLψ,
the linear operator

L = L + ∂zz, L = ∂rr − r−1∂r ≡ r∂r (r−1∂r) ,
and Re is the Reynolds number based on U0 and R. The boundary conditions for (2.2)
reflect the boundedness of the flow at the centerline of the pipe and the no-slip condition
at the wall, that is

∂rψ = ∂zψ = 0 at r = 1.
Drawing from [8], the solution of (2.2) can be given in terms of a complete set of or-

thonormal basis {φj(r)} as
ψ(r, z, t) = J∑

j=1

φj(r)Bj(z, t), (2.3)

where Bj is the amplitude of the radial eigenfunctions φj that satisfy the Boundary Value
Problem (BVP) (see [12, 8])

L2φj = −λ2jLφj

with boundary conditions

1

r
φj < ∞, r−1∂rφj < ∞ as r → +0, (2.4)

φj = ∂rφj = 0 at r = 1. (2.5)

The positive eigenvalues λj are the roots of J2(λj) = 0, where J2(r) are the Bessel functions
of the first kind of second order (see [1]). The corresponding eigenfunctions

φn =
√
2

λn
[r2 − rJ1 (λnr)

J1 (λn) ] ,
form a complete and orthonormal set with respect to the inner product

⟨ϕ1, ϕ2⟩ = −
1

∫
0

ϕ1 Lϕ2

dr

r
=

1

∫
0

∂rϕ1∂rϕ2

dr

r
.

For the first two least stable modes λ1 ≈ 5.136 and λ2 ≈ 8.417, respectively. Since φj

satisfies the pipe flow boundary conditions (2.4) and (2.5) a priori, so does ψ of (2.3). A
Galerkin projection of (2.2) onto the Hilbert space S spanned by {φj}Nj=1 yields a set of
coupled generalized Camassa-Holm (CH) equations [3]

∂tBj +cjm∂zBm+βjm∂zzzBm+αjm∂zztBm+Njnm(Bn,Bm)+ λ
2

j

Re
Bj = 0, j = 1, . . . ,N, (2.6)
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where the nonlinear tensor operator

Njnm(Bn,Bm) = FjnmBn∂zBm +Gjnm∂zBn∂zzBm +HjnmBn∂zzzBm.

The tensors cjm, βjm, αjm, Fjnm, Gjnm, Hjnm are given in Appendix A and summation
over repeated indices is implicitly assumed. Note that CH type equations arise also as
a regularized model of the 3-D NS equations (see [4, 5, 13, 14]), the so called Navier-
Stokes-alpha model. Similarly to this, the truncated CH model (2.6) inhibits creation and
excitation of smaller scales associated to higher damped modes j > N , since these are
neglected.

3. Singular Vortexons: CH Peakons

Consider the inviscid version of the special case of the uncoupled CH equations

∂tBj + cjj∂zBj + βjj∂zzzBj +αjj∂zztBj +Nj(Bj) = 0, (3.1)

where

Nj(Bj) = FjjjBj∂zBj +Gjjj∂zBj∂zzBj +HjjjBj∂zzzBj ,

and no implicit summation over repeated indices. These support exponentially shaped
singular solutions,the so called peakons, of the form

Bj(z, t) = aje−sj ∣z−Vjt∣, (3.2)

where

aj = Vjαjj − βjj
Hjjj

, Vj = cjj + βjjs
2

j

1 + αjjs
2

j

, s2j = − Fjjj

Gjjj +Hjjj

. (3.3)

Numerical computations revealed that s2j > 0 and the peakon arises as a special balance
between the linear dispersion terms ∂zzzBj, ∂zztBj and their nonlinear counterpart Bj∂zzzBj

in (3.1). These three terms are interpreted in distributional sense because they give rise to
Dirac delta functions that must vanish by properly chosing the amplitude aj , thus satisfying
the differential equation 3.1 in the sense of distributions. The associated streamfunction

ψ
(p)
j is given by

ψ
(p)
j (r, z, t) = aje−s2j ∣z−Vjt∣φj(r).

The peakon (3.2) bifurcates from a regular solitary wave as the celerity increases above
the dimensionless peakon speed Vj in (3.3) (normalized with respect to maximum laminar
velocity U0). For example, for the least stable eigenmode B1 (λ1 ≈ 5.136), V1 ≈ 0.63 . Figure
1 shows a regular soliton at speed V = 0.60 computed using the Petviashili method (see
[23, 18, 9, 10, 11]). A peakon bifurcates as the speed increases above V1 and it is shown
in Figure 2. The vortical structure (streamlines) of the perturbation associated to the
regular and singular solitons are shown in the top panel of Figures 3 and 4, respectively.
These correspond to localized toroidal vortices that wrap around the pipe axis (centre
vortexons). In particular, the vortexon associated to a peakon has discontinuous radial
velocity u across z − ct = 0 (see top panel of Figure 3), but continuous streamwise velocity
w since the mass flux through the pipe is conserved. As a result, a sheet of azimuthal
vorticity is advected at speed V1. At the centre (z − ct = 0) the profile of the streamwise
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Figure 1. Regular solitary wave obtained numerically by the Petviashili
method (dimensionless velocity V = 0.60).

velocity W0 +w of the perturbed flow (laminar base flow plus a vortexon) is shown in the
bottom panels of Figures 3 and 4 for the singular and regular vortexons respectively. Their
effect is to slowdown the faster laminar flow near the core of the pipe by advecting the
slower flow at the wall toward the pipe axis. Similar vortexons are also found numerically
for the three-component CH equations (2.6) using the Petviashili method, but these results
will be discussed elsewhere.

Finally we note that, as for the original CH equation [3], viscous dissipation rules out
the existence of peakons and only smooth vortexons appear in the dynamics. The vortexon
eventually decays due to viscous effects on the time scale t ∼ O(Re6.25) (see [8]).

4. Conclusions

We presented a study of the nonlinear dynamics of a disturbance to the laminar state
in non-rotating axisymmetric Poiseuille pipe flows. The associated Navier-Stokes equa-
tions are projected onto the function space spanned by a finite set of the first few least
stable Stokes eigenmodes. The eigenmode amplitudes depend upon both the streamwise
direction and time and satisfy a truncated set of coupled generalized CH equations. For
the uncoupled equations we found analytically special inviscid travelling waves with wedge-
type singularities, viz. peakons, which bifurcate from regular solitary waves as their celerity
increase above a well defined threshold. In physical space peakons correspond to localized
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Figure 2. Analytical CH peakon (solid line) and numerical solution (dashed
line) obtained by the Petviashili method (dimensionless velocity V1 ≈ 0.63).

toroidal vortical structures with discontinuous radial velocities that wrap around the pipe
axis (singular centre vortexons). Clearly, the inviscid singular vortexon could be an artifact
of the Galerkin truncation of the axisymmetric Euler equations. However, it may be an
approximation of singular solutions of the axisymmetric Euler equations (see, for example,
[7]) and suscitable to Kelvin-Helmholtz type instability mechanisms. The inviscid centre
vortexon is similar to the neutral mode identified by Walton (2011) [28] and to the in-
viscid axisymmetric slug structure proposed by Smith et al. (1990) [26]. They may play
a role in pipe flow transition as precursors to puffs and slugs, since most likely they are
unstable to non-axisymmetric disturbances (see [27]).
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Figure 3. Regular vortexon: (top) streamlines of the perturbation and
(bottom) velocity profiles of the perturbed (solid) and laminar (dash) flows.

Appendix A.

cjm = −
1

∫
0

W0φjLφm r−1 dr, αjm = −
1

∫
0

φjφm r−1 dr, βjm = −
1

∫
0

W0φjφmr
−1 dr,
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Figure 4. Singular vortexon: (top) streamlines of the perturbation and
(bottom) velocity profiles of the perturbed (solid) and laminar (dash) flows.

Fjnm = −
1

∫
0

φj [∂rφnLφm − ∂r (Lφn)φm + 2r−1Lφnφm] r−2 dr,

Hjnm = −
1

∫
0

φjφm∂rφnr
−2 dr, Gjnm = −

1

∫
0

φj [−φm∂rφn + 2r−1φnφm] r−2 dr.
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