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Abstract—In this paper, we study the impact of the cognitive
map’s adaptation in the context of multi-robot system. This map
governs the emergence of non-trivial behaviors and structures
at both individual and social levels. In particular, we show
that adding a simple imitation and deposit behavior allows the
cognitive robots to adapt themselves in unknown environment to
solve different navigation tasks. We show that in our architecture
the individual discoveries in each robot (i.e., goals) can have an
effect at the population level, which induce then a new learning
at the individual level and reciprocally, from the individual to
the population level. We performed a series of experimentations
with robots and simulated agents to validate our system.

I. INTRODUCTION

Emergent behavior is one of the main topics of research
in the field of social robotics. For instance, in an unknown
environment, interaction between robots can be based on
stigmergy [1] which means indirectly communicating through
the environment changes. In this kind of environment, the
memory is the environment itself, however we believe that
the use of a cognitive map in each robot is essential when
the robot cannot leave a physical trace. Therefore, our aim is
to put on light the adaptive capability of a cognitive map to
solve at the same time a navigation task and to solve a deposit
problem. The cognitive map can help to lead the emergence of
non-trivial structures and behaviors in a Cognitive multi-robot
system (CMRS). Many models based on reactive agents/robots
were proposed in this area. For example [2] has proposed a
model relying on biologically plausible assumptions to account
for the phenomenon of dead body deposit in ants. [3] shows
that acting on objects simplifies the reasoning needed by
multi-robot systems and allows deposit of scattered objects.
In [4] the authors studied the deposit system and sorting of
colored frisbees by a multi-robot system. In [5] the author
studied the deposit of small cylinders by a group of agents.
In comparison to these previous works, we propose a solution
which is use of cognitive maps and local rules to allow our
robots to develop different emergent behaviors. The remainder
of this paper is organized as follows: section 2, describes
the bio-inspired architecture of our cognitive map. Section
3 depicts the structure, building and the adaptive capability
of the cognitive map. Section 4 describes the building of the
emergent deposit system. We analyze in seection 5 how the

robots self-organize in emergent structures. The last section
concludes the paper.

II. THE BIO-INSPIRED ARCHITECTURE

Each robot in our cognitive multi-robot system is able
to learn and to create its own cognitive map online, whose
structure depends on their own experience and discovery of
the environment in which they live, based on bio-inspired
architecture. Starting from neurobiological hypotheses on the
role of hippocampus in the spatial navigation, [6] form a model
of the cognitive map in the hippocampus representing the
entire environment and not only the shortest paths to a given
goal. The model proposed by [7] provides a complete neural
architecture of the learning process and use of a cognitive
map and the association with a mechanism of action selection.
[8] also propose a model of cognitive map in the prefrontal
cortex, which is based on cortical columns. in the same ideas
biologically inspired, several works [9], [10] brought to light
special cells in the rats hippocampus that fire when the animal
is at a precise location. These neurons have been called place
cells (PC). We do not directly use them to navigate, plan or
construct a map, we rather use neurons called transition cells
(TC)[11]. This kind of cells are inspired by a neurobiological
model of temporal sequences learning in the hippocampus
[12], [13], [14]. A transition cell codes for a transition between
two PCs successively winning the competition, respectively at
time t and δt. The model [15], which presents the role of
the hippocampus, shows us the architectures grounding using
the transitions between locations. The entorhinal cortex (EC)
receives signals from associative cortical ranges and then it
filters and merges this multimodal information in order to
transfer it, on one hand to pyramidal cells (CA3), and on the
other to the dentate gyrus (DG). The DG operates an eminence
between the signals and puts together a temporal hierarchy
which later on is retransmitted on CA3 cells. This temporal
hierarchy allows CA3 to be aware of past events and put them
in correspondence with present events, therefore behaving like
an associative memory through stocking possible transitions
between these events. The recognition of the ongoing sequence
happens at the level of CA1 using EC and CA3 information.
This information is then sent to the Subiculum to be processed,
independently from the robots orientation, through the heads



executive cells. It also departs to the prefrontal cortex (PRC)
to serve the higher levels of cognitive processes.

III. THE COGNITIVE MULTI-ROBOT SYSTEM

Our interpretation of the bio-inspired model is presented in
figure 1: the signals provided by EC are solely spatial and con-
sistent with spatial cells activities. Spatial cells activities are
calculated from visual information then submitted to a Winner-
Take-All competition in order to only select the cell with the
strongest response at a specific location. We will subsequently
be speaking about the current location by indicating the spatial
cell which has the highest activity at a given location. The
temporal function at the level of DG is reduced to the mere
memorization of past location. The acquired association at the
level of CA3 is then the transition from a location to another
aside from all information concerning the time put to carry
out this transition. Once the association from the past location
and the new one is learned, every new entry will reactivate
the corresponding memory in the DG.
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Fig. 1. Model of hippocampo-cortical of the creation of the cognitive map

During exploration of the environment, the cognitive map is
gradually created when the robot moves from one place to
another. The equations governing learning in the cognitive map
are 1:

dWCC
ij (t)

dt
= T (t).((γ−WCC

ij ).XC
i (t).XC

j (t)−WCC
ij (t).(λ1.XC

j (t)−λ2))

(1)

T (t) is a binary signal (0 or 1) active when a transition
is made (moving from one place to another). This signal
controls the learning of recurrent connections WCC . γ is a
parameter less than 1 regulating the distribution of motivation
activity in the map. λ1 and λ2 are parameters of active and
passive oblivion respectively on the recurrent connections.
S(t) is a signal marking the satisfaction of a goal (for exemple
the resources discovery). This signal controls the learning of
synaptic connections between neurons in WMC motivations
activity XM and neurons of the cognitive map of activity
XC , where the equation is dWMC

ij (t)/dt = S(t), for i, j =
arg maxk,l(X

C
l (t).XM

K (t)). After having explored the envi-
ronment, the robots now are in a position to predict in each
situation the locations directly reachable. During a change in
winning locations, a neuromodulation signal is transmitted to
point out that a transition has just taken place. The achieved
transitions activity then resets back towards the PFC. In order

to show the robustness of the cognitive map, we try to study
initialy, the behavior of a cognitive multi-robot system, based
on the same model, capable of learning several goals in un-
known environment. Figure 2 presents the initial environment,
which is composed by 2 sources (R1 and R2), 2 obstacles(O1
and O2) and 2 identical robots with a threshold of vigilance
equal to 0.65 and a duration of the learning equal to 30
minutes.

R2

R1

O1

O2

Fig. 2. The cognitive multi-robot system in unknown environment. The video
is available in http://perso-etis.ensea.fr/neurocyber/Videos/Cognitive Multi-
Robot System/CMRS

To create the PC, the robot takes, at each moment in time,
a visual panorama of the surrounding environment. A mono-
directional camera mounted on a pan system allows to make
several shots. The views are processed to extract visual land-
marks. After learning these landmarks, a visual code is created
by combining all the landmarks of a panorama with their
azimuth. This configuration serves as a code to PCs. Figure
3 shows that our cognitive robots are able to avoid the stable
and dynamic obstacles, to navigate, to learn and to construct
on-line and at the same time, their own cognitive map in a
unknown environment.

a                                       b
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Fig. 3. Simplified view of the cognitive maps of the robots based on transition
cells. (a) presents the cognitive map of the first robot and (b) presents the
cognitive map of the second robot. The construction process is based on:
place recognition using PCs, activation of one PC and delayed activation of
another allows for transition prediction (green transition) and the need for
sources (R1 and R2) triggers maximum motivation for a given goals.

The shape of the cognitive map in figure 3, proves that its
construction is related to the robot’s own perception, that
is why the different robots also learn the position of the 2
sources in different manner, and the number of the PCs is
not the same (7 for the first robot, and 9 for the second
with the same threshold of vigilance). The change in the
environment (the moving obstacles and the increasing the size
of the environment) allows us to show the adaptive capability
of the cognitive map. Figure 4a shows the new environment.



Using previously parameters, figure 4b and c prove that the
robots were able to adapt their own cognitive maps to learn
the new environment throught adding a new PCs and TCs.
This validates the robustness of the cognitive map because the
change in the environment has not disturb the robots from
learning about the new environment.

Fig. 4. Cognitive map evolution induced by a changing environment where
R1 and R2 are the sources.(a) presents the cognitive map of the first robot
and (b) presents the cognitive map of the second robot.

A. The selection of the shortest path

When discovering a source (food or water), the motivation
associated with it (thirst or hunger) is associated with the
cognitive map at the location where it was found. This moti-
vation then spreads to the graph, indicating the shortest path
to reach the source from whichever location known. We can
therefore merge these motivation activities with the transition
prediction activities coming from the hippocampus. The level
of prediction of different transitions from the hippocampus is
substantially the same. The activity derived from the cognitive
map comes then to predetermine the transition choice among
those that have been predicted, through selecting thereby the
transition leading the fastest towards the target. A field of
neurons gathers the information on the robots direction during
its entire passage of a location. It provides therefore, at the
exit of a location, the direction and the length of the trajectory
performed at the location. This direction is considered to be
the one which is required to perform the transition. During
the selection of a particular transition in order to reach the
target, we can replicate, in terms of direction, the motion
associated which has already been learned during the discovery
of the environment. Thus, the robots are able to reset from
transition to another by taking the shortest path in order to
reach its target. In practice, when the need for a given source
arises, the drive triggers the activation of the appropriate goals
and throught the cognitive map the appropriate TCs whose
destination is the goal location. Figure 5 shows the difusion
of the motivation activity of the two robots along the cognitive

map combining transition prediction and motivation gives the
recognized transition, and the action corresponding to this
transition is selected until the TC whose origin codes the
robots’ actual location.

Fig. 5. Diffusion of the motivation along the cognitive map. The robots were
able to select the shorest path in order to reach their targets. A and b show
how the first robot satisfy its motivations related respectively to the sources
R1 and R2. C and d also show how the second robot satisfy its motivations
related respectively to the same sources R1 and R2.

The figure also shows the nearest path (dark blue) selected
by the robots. Thus, we prove that the cognitive map aims
to teach new positions of sources to the robots and evolve in
a unknown environment. It allows robots to avoid planning
problems before complete exploration of the environment.
Moreover, it gives the same results as an ant algorithm[16]
without the need to leave physical trace in the environment.

B. Imitation and cognitive map

We believe that several benefits can be expected from
imitation capability, among which the possibility to share
partial knowledge of the environment, source locations and
so on. In particular, [17] showed that adding an imitation
capability can dramatically enhance the survival rate of a
multi-agent system. To study the influence of the imitation,
we add in our cognitive multi-robot system, a reactive robot
which uses an imitation strategy based on the azimuth: if a
single robot is visible, it becomes the chosen imitation target; if
several robots are visible, then the chosen target is the one that
is closest to the direction of the robot who trying to imitate. It
is important to mention that the imitated robot is never aware
of being imitated. Figure 6a shows the reactive robot (RR) tries
to follow one of the cognitive robots (CR1,CR2) which are in
navigation task. In the same figure, we see that the reactive
robot is able to see the two robots and decides to follow the
robot which is the nearest to its own direction. Figure 6b show
that the reactive robot succeeded to found the first source with
following CR2 and after CR1 (the trajectory of robots given



by Figure 6 allows to explain more the individual and the
population behavior of robots). Finally, figures 6c, d,e and
f also prove that the imitation strategy allows the reactive
robot to find the second source with the help of only CR2.
In emergent collective systems, the behavior of an agent is
important for the emergence of other behaviors that will help
the whole system to solve a specific task. With the use of
an imitation strategy we show that it is the system, which
is based on the building of a cognitive map, that can help an
agent to satisfy its motivations. Thus, adding a simple imitation
strategy, to our cognitive architecture, allows the system of
multi-robot to help the individual robot.

Fig. 6. The influence of the imitation behavior in multi-robot system. The
experiment is done with three robots in the same environment as in figure
2. RR: reactif robot, CR1 and CR2 the cognitive robots, R1 and R2 are
the two resources. The figure is presented with chronological order. The
trajectory of the robot shows that RR is able to find the two resources
by imitating the trajectory of CR1 and CR2 (the dashed arrows in the
trajectory of CR1 and CR2 present the imitated trajectory). The video
is available in http://perso-etis.ensea.fr/neurocyber/Videos/Cognitive Multi-
Robot System/Imitation CRs-RR

IV. THE BULDING OF EMERGENT DEPOSIT SYSTEM

To show the adaptive capability of our cognitive map, we
add a simple behavior of deposit to our agents. In this part we
will use a simulated cognitive multi-agent system (CMAS).
The CMAS use the same architecture, rules of learning and the
same cognitive properties as the cognitive multi-robot system.
The CMAS are motivated by the simulation of three types of
needs (hunger, thirst and stress). Each need can be satisfied by
a corresponding source, namely food, water and nest, that can
be found in the environment. The level of each type of need
is internally represented by an essential variable, ei(t) whose
value is in [0; 1] and varies with time as dei/dt = −αnei(t)
where, αn represents the decreasing rate of the essential
variable. When a satisfaction level ei(t) falls bellow a given
ST, the corresponding motivation is trigged so that the agent

has to reach a sources allowing to satisfy his needs using their
cognitive map. Thus, changing its value has an impact on the
frequency of the visits to the sources: the higher αn , the more
frequent the visits. If no sources of the corresponding type
have been found by the agent, the level decreases to 0 and the
agent dies. To maintain the satisfaction level of our CMAS,
instead of navigation between the threeoriginal sources it is
interesting if the accumulation of individual decisions gives
birth of the creation of relevant resources. The localisation
of resources is important because when agents achieve them
easily, they can increase their average satisfaction level and
optimize the planning time looking for satisfaction of their
motivations. In situated cognition context we believe that
stigmergy based on local rules can lead to create emergent
structures allowing creation of relevant resources. For this
reason, we describe generic local rules where there is a
relationship between the number of taken and deposits of
resources according to the number of agents perceived. The
agent can indeed, tend to favour the location that contain
other agents rather than empty regions to create new resources.
Thus, the perception of local agents will control the rules of
taken and deposits. The condition of taking is computed by
Pr(Taken) = exp−λNA : the agent wants different types of
resources in the environment. Indeed, the probability that an
agent wants to take some resources goods increase when he
perceives that the source is less used by other agents. So, the
more agents are near a source, the more the probability of
taking decreases and vice versa. Where NA is the number
of agents in the neighborhood, λ is a constant. Equation
of deposits Pr(Deposits) = (1 − exp−αNA) ∗ (1 − exp−βt)
describes the condition for deposits as follows: the agent wants
more to deposit more when the place is frequented by other
agents and when he is far from the original source conducted
the transaction of taking, this favors the relevance of the
location of resources deposited. The deposit operation is built
on the concept of refueling : the agent puts in the resources
that already exist. Where α, β are environmental factors, NA

is the number of agents in the neighborhood and t is the time
since the take

V. ANALYSIS OF EMERGENT STRUCTURES

We use the environment as shown in figure 7a at t= 0 where
the original sources are scattered. The agents start to move
randomly in the environment, with a limited range visual of
perception that can restrict the ability of agents to perceive the
environment (see figure7b). When passing on sources (Water,
Nest and Food) an agent increases his level of satisfaction and
executes the local rule of taking and transport a quantity from
the associated product. The probability of taking increases
when the agent does not detect other agents next to the sources.
If the decision to transport some products is taken, the agent
continues his travel. The probability of deposits increases
when the agent detects other agents and he moves away from
the original sources. This means that the locations chosen for
deposit are often common to several agents. Once deposited,
goods constitute a new resources (Depot water, Depot nest



and Depot food) allowing others to increase their satisfaction
level. Agents also have the possibility of refueling resources
by adding products to them. This allows stability resources
in relevant locations close to several agents to fight against
loss, since during the refuelling the available products in the
resources will increase.

(a) t=0 time steps     (b) robots in the environment  

  (e) t=7720 time steps     (f) stable configuration

(c) t=5980 time steps            (d) t=6530 time steps  

W

WaterWater

WaterWater

W

W

WW

WW

W

W

Water

Food

F

N

Food

FoodFood

Nest

Nest

Nest

Nest

F

F

F

F

F F

FF

N

N

N

N

N N

N

W F
N

Fig. 7. The figure shows 3 sources Water,Nest and Food providing resources
of 3 different kinds (W=Depot water, N=Depot nest and F=Depot food).
The position of the original sources is fixed and they can’t disappear from
the environment. Through the individual deposit process of agents, resources
emerge and become stable after a while. the video is available in http://perso-
etis.ensea.fr/neurocyber/Videos/Cognitive Multi-Robot System/CMAS

However, resources which are abandoned or poorly visited will
eventually disappear since the amount of goods available will
decrease rapidly. Figures 7c,d and e show the disappearance
of isolated resources. When a planning agent tries to reach
a previously known ressource and realizes that this ressource
has disappeared, two things happen (see figure 8):

a b c Agent

position

Warehouse

PC

TCs

Fig. 8. The evolution of the cognitive map. The PC that encodes the
warehouse through time is presented by a red circle and all the paths
(TCs) frequented by the agent that lead to the warehouse are reinforced in
the cognitive map. (a) The current PC and the TCs that encode and lead
respectively to warehouse, (b) The disappearance of the warehouse leads to
the dissociation of the PC and the motivation from the old warehouse place.
After discovering a new warehouse, the agent acquires (learns) the new place
(creation of a new PC) and the TCs that lead to this new place become
reinforced. (c) The forgotten of the old place : After a while, the TCs, that
lead to the old warehouse, disappear and the new ones become completely
reniforced.

(i) the agent dissociates the current PC from the formerly-
corresponding resource, and (ii) it resets the motivation to 0.
Since the PC does not fire any more when the agent feels
the need for this resource, there are chances that the use of
transitions leading to this place be progressively forgotten.
Similarly, when a new, matching resource is discovered, the
paths leading to the resource are rapidly reinforced, making
the cognitive map evolve synchronously with the environment.

Figure 7e shows that the CMAS converges to a stable
solution with a fixed number of resources in fixed places
for more than 20000 time steps (see figure 7f). Here we
note the emergence of stable large resources which in some
cases emerge to create resources ”villages” (narrow regions
containing all 3 resources). Figure 9 shows that until 4500
steps of time, the number of resources is not stable.

Fig. 9. The average of persistent resources and convergence time in our
CMAS. We can see that the average number of resources and the average
convergence time stabilized with 40 agents.

Obviously the average of the convergence time increases with
the increase of the number of agents. The number of persistent
resources varies between 0 and 8. However, from 40 agents,
the average number of resources stabilized at 8 and the average
of convergence time stabilized at 7500 time steps. For 10
agents, the emergent number of persistent resources is 0, this
shows that the cooperation between agents is not successful in
order to determine the relevant locations in the environment.
The analysis of the agent’s behavior was able to prove that
a fixed number of resources can emerge in fixed positions
while minimizing the number’s resources and the convergence
time. The adaptive cognitive map, allows the CMAS to create
emerging resources in relevant places frequented by agents.
Note that the agents were able to adapt their environment
and created villages of resources, which consist of three
types of resources (water Depot, nest Depot and food Depot).
The average number of visits to resources (115) is more
important than to the original sources (27), which shows that
their location is more convaincing. The same behavior also
allows to keep a fixed number of resources (here 6) and
remove others located in irrelevant places without having to
use thresholds to limit the number of resources nor to specify
their locations. The adaptive capability of the cognitive map,
allows cognitive agents to create an emergent structure which
is the stable state for the whole multi-agent system allowing
the optimization of planing. Based on the selection of the



shortest path, table I shows that agents can optimize their
planning time with the use of relevant resources. This leads to
a higher average satisfaction level. We calculate the average
satisfaction level (ASL) according to equation 2. These values
show the performance of our CMAS to keep the agents in
their comfort zone.

ASL =
( 1
3i ) ∗

∑i=n
i=1 (SLwateri + SLfoodi + SLnesti)

N
(2)

Where SL is the satisfaction level of sources, n is the number
of iterations, N is the number of expiriments.

TABLE I
OPTIMIZATION OF PLANNING TIME UNTIL 20000 TIME STEPS

Only 3 sources sources+deposits

Average Planning Time 1599.8 time steps 450 time steps

Average Satisfaction Level 59.89 88.07

It is important to note that the selection of the resources
locations by agents is just an adaptive behavior that begins
with an individual decision of an agent during the deposit
operation and ends with the maintenance or deletion of this
deposit by the entire population. In conclusion, we talk about
an individual decisions leading to emerging collective struc-
tures. Based on adaptive cognitive map, this experiment allows
our CMAS (i) to optimize the planning time of agents and the
number of deposits thanks to the learning of the new places of
resources, (ii) to improve the adaptive behavior and the level of
satisfaction of agents and finally (iii) to leads a fixed number
of deposits in fixed places by creation of relevant emergent
structures.

VI. CONCLUSION

In this paper, we brought to light the adaptive capability of
the cognitive map, based on bio-inspired model, that enables
a multi-robot system to adapt in a unknown environment
to solve the navigation task and the deposit problem. We
suggested a set of experiments in real robots that show how
each robot system is able to learn, adapt and create on-line
a cognitive map and how this architecture allows the robots
to learn various goals in unknown environments. We also
show from experiments on real robots and on simulation that
combining learning capabilities with simple rules of taking
and deposits and a simple strategy of imitation has a positve
feedback atindividual and population levels. As prospects, we
are trying to develop the ”awareness”of robots/agents in order
to allow them to learn the emergent behaviors. In this case,
the emergent behavior becomes a ”voluntary” behavior. This
means that agents could be aware of their own state in the
environment. To achieve our goal, we are trying to use an
internal observer (IO) [18] based on enactive approach [19].
The IO should allow agents to detect, categorize and create
new emergent rules.
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Tunisie, the INTERACT french project referenced ANR 09 CORD 014, the
NEUROBOT french project referenced ANR-BLAN-SIMI2-L2-100617-13-01
and DIGITEO project AUTO EVAL.

REFERENCES

[1] O. Holland and C. Melhuish, “Stigmergy, self-organization, and sorting
in collective robotics,” Artif. Life, vol. 5, no. 2, pp. 173–202, 1999.

[2] J. L. Deneubourg, S. Goss, N. Franks, A. S. Franks, C. Detrain, and
L. Chrétien, “The dynamics of collective sorting robot-like ants and
ant-like robots,” in Proceedings of the first international conference
on simulation of adaptive behavior on From animals to animats.
Cambridge, MA, USA: MIT Press, 1990, pp. 356–363.

[3] P. Gaussier and S. Zrehen, “Avoiding the world model trap: An acting
robot does not need to be so smart!” Robotics and Computer-Integrated
Manufacturing, vol. 11, no. 4, pp. 279 – 286, 1994.

[4] R. Beckers, O. E. Holland, and J.-L. Deneubourg, “From local actions
to global tasks: Stigmergy and collective robotics,” in In Articial Life IV.
Proc. Fourth International Workshop on the Synthesis and Simulation of
Living Systems, Cambridge, Massachusetts, USA, 1994, pp. 181–189.

[5] A. Martinoli and F. Mondada, “Collective and cooperative group be-
haviours: Biologically inspired experiments in robotics,” in Experimental
Robotics IV, ser. Lecture Notes in Control and Information Sciences,
O. Khatib and J. Salisbury, Eds. Springer Berlin / Heidelberg, 1997,
vol. 223, pp. 1–10.

[6] R. U. Muller, M. Stead, and J. Pach, “The hippocampus as a cognitive
graph,” 1996.

[7] M. E. Hasselmo and H. Eichenbaum, “Hippocampal mechanisms for the
context-dependent retrieval of episodes.” Neural Netw, vol. 18, no. 9,
pp. 1172–1190, Nov. 2005.

[8] L.-E. Martinet, D. Sheynikhovich, K. Benchenane, and A. Arleo, “Spa-
tial Learning and Action Planning in a Prefrontal Cortical Network
Model,” PLoS Comput Biol, vol. 7, no. 5, May 2011.

[9] J. O’Keefe and L. Nadel, The hippocampus as a cognitive map / John
O’Keefe and Lynn Nadel. Clarendon Press ; Oxford University Press,
Oxford, 1978.

[10] M. Milford and G. Wyeth, “Mapping a suburb with a single camera using
a biologically inspired slam system,” IEEE Transactions on Robotics,
vol. 24, no. 5, pp. 1038–1053, October 2008.

[11] P. Gaussier, A. Revel, J. P. Banquet, and V. Babeau, “From view cells
and place cells to cognitive map learning: processing stages of the
hippocampal system.” Biological Cybernetics, vol. 86, no. 1, pp. 15–
28, 2002.

[12] A. Alvernhe, T. Van Cauter, E. Save, and B. Poucet, “Different CA1 and
CA3 representations of novel routes in a shortcut situation.” The Journal
of neuroscience : the official journal of the Society for Neuroscience,
vol. 28, no. 29, pp. 7324–7333, Jul. 2008.

[13] E. V. Lubenov and A. G. Siapas, “Hippocampal theta oscillations are
travelling waves,” Nature, vol. 459, no. 7246, pp. 534–539, May 2009.

[14] D. M. Smith and S. J. Y. Mizumori, “Hippocampal place cells, context,
and episodic memory,” Hippocampus, pp. 716–729, 2006.

[15] J. P. Banquet, P. Gaussier, J. C. Dreher, C. Joulain, A. Revel, and
W. Gunther, “Spacetime, order and hierarchy in fronto-hippocamal
system : A neural basis of personality. in cognitive science perspectives
on personality and emotion.” Elsevier Science BV, p. 123189, 1997.

[16] M. Dorigo, E. Bonabeau, and G. Theraulaz, “Ant algorithms and
stigmergy,” Future Gener. Comput. Syst., vol. 16, no. 9, pp. 851–871,
June 2000.

[17] P. Laroque, N. Gaussier, N. Cuperlier, M. Quoy, and P. Gaussier,
“Cognitive map plasticity and imitation strategies to improve individual
and social behaviors of autonomous agents,” Journal of Behavioral
Robotics, 2010.

[18] J. Tani, “An interpretation of the ”self ” from the dynamical systems per-
spective: A constructivist approach,” Journal of Consciousness Studies,
vol. 5, pp. 516–542, 1998.

[19] F. Varela, E. Thompson, E. Rosch, and A. Rangarajan, “Book review:
The embodied mind: Cognitive science and human experience by f.
varela, e. thompson and e. rosch,” 1991.


