
HAL Id: hal-00752893
https://hal.science/hal-00752893

Submitted on 16 Nov 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Dataset for StarCraft AI & an Example of Armies
Clustering

Gabriel Synnaeve, Pierre Bessiere

To cite this version:
Gabriel Synnaeve, Pierre Bessiere. A Dataset for StarCraft AI & an Example of Armies Clustering.
Artificial Intelligence in Adversarial Real-Time Games 2012, Oct 2012, Palo Alto, United States. pp
25-30. �hal-00752893�

https://hal.science/hal-00752893
https://hal.archives-ouvertes.fr

A Dataset for StarCraft AI & an Example of Armies Clustering

Gabriel Synnaeve and Pierre Bessière
Collège de France, CNRS, Grenoble University, LIG

gabriel.synnaeve@gmail.com and pierre.bessiere@imag.fr

Abstract

This paper advocates the exploration of the full state of
recorded real-time strategy (RTS) games, by human or
robotic players, to discover how to reason about tactics and
strategy. We present a dataset of StarCraft1 games encom-
passing the most of the games’ state (not only player’s or-
ders). We explain one of the possible usages of this dataset
by clustering armies on their compositions. This reduction of
armies compositions to mixtures of Gaussian allow for strate-
gic reasoning at the level of the components. We evaluated
this clustering method by predicting the outcomes of battles
based on armies compositions’ mixtures components.

Introduction
Real-time strategy (RTS) games AI is not yet at a level high
enough to compete with trained/skilled human players. Par-
ticularly, adaptation to different strategies (of which army
composition) and to tactics (army moves) are strong indi-
cators of human-played games (Hagelbäck and Johansson
2010). So, while micro-management (low level units con-
trol) has known tremendous improvements in recent years,
the broadest high-level strategic reasoning is not yet an ex-
emplary feature neither of commercial games nor of Star-
Craft AI competitions’ entries. At best, StarCraft bots have
an estimation of the available technology of their opponents
and use rules encoding players’ knowledge to adapt their
strategy. We believe that better strategic reasoning is a mat-
ter of abstracting and combining the low level states at an
expressive higher level of reasoning. Our approach will be
to learn unsupervised representations of low-level features.

We worked on StarCraft: Brood War, which is a canon-
ical RTS game, as Chess is to board games. It had been
around since 1998, has sold 10 millions licenses and was
the best competitive RTS for more than a decade. There are
3 factions (Protoss, Terran and Zerg) that are totally differ-
ent in terms of units, build trees / tech trees (directed acyclic
graphs of the buildings and technologies) and thus game-
play styles. StarCraft and most RTS games provide a tool to
record game logs into replays that can be re-simulated by

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1StarCraft and its expansion StarCraft: Brood War are trade-
marks of Blizzard EntertainmentTM

the game engine. That is this trace mechanism that we used
to download and simulate games of professional gamers and
highly skilled international competitors.

This paper is separated in two parts. The first part explains
what is in the dataset of StarCraft games that we put to-
gether. The second part showcases army composition reduc-
tion to a mixture of Gaussian distributions, and give some
evaluation of this clustering.

Related Work
There are several ways to produce strategic abstractions:
from using high-level gamers’ vocabulary, and the game
rules (build/tech trees), to salient low-level (shallow) fea-
tures. Other ways include combining low-level and higher-
level strategic representation and/or interdependencies be-
tween states and sequences.

Case-based reasoning (CBR) approaches often use ex-
tensions of build trees as state lattices (and sets of tactics
for each state) as for (Aha, Molineaux, and Ponsen 2005;
Ponsen and Spronck 2004) in Wargus. Ontañón et al. (2007)
base their real-time case-based planning (CBP) system on
a plan dependency graph which is learned from human
demonstration in Wargus. In (Mishra, Ontañón, and Ram
2008), they use “situation assessment for plan retrieval”
from annotated replays, which recognizes distance to behav-
iors (a goal and a plan), and selected only the low-level fea-
tures with the higher information gain. Hsieh and Sun (2008)
based their work on (Aha, Molineaux, and Ponsen 2005) and
used StarCraft replays to construct states and building se-
quences. Strategies are choices of building construction or-
der in their model.

Schadd, Bakkes, and Spronck (2007) describe opponent
modeling through hierarchically structured models of the
opponent behavior and they applied their work to the Spring
RTS game (Total Annihilation open source clone). Balla
and Fern (2009) applied upper confidence bounds on trees
(UCT: a Monte-Carlo planning algorithm) to tactical assault
planning in Wargus, their tactical abstraction combines units
hit points and locations. In (Synnaeve and Bessière 2011b),
they predict the build trees of the opponent a few build-
ings before they are built. Another approach is to use the
gamers’ vocabulary of strategies (and openings) to abstract
even more what strategies represent (a set of states, of se-
quences and of intentions) as in (Weber and Mateas 2009;

Synnaeve and Bessière 2011a). Dereszynski et al. (2011)
used an hidden Markov model (HMM) whose states are ex-
tracted from (unsupervised) maximum likelihood on a Star-
Craft dataset. The HMM parameters are learned from unit
counts (both buildings and military units) every 30 sec-
onds and “strategies” are the most frequent sequences of the
HMM states according to observations.

Few models have incorporated army compositions in their
strategy abstractions, except sparsely as an aggregate or
boolean existence of unit types. Most strategy abstractions
are based on build trees (or tech trees), although a given
set of buildings can produce different armies. What we will
present here is complementary to these strategic abstractions
and should help the military situation assessment.

Dataset
We downloaded more than 8000 replays to keep 7649 un-
corrupted, 1 vs. 1 replays from professional gamers leagues
and international tournaments of StarCraft, from special-
ized websites234. We then ran them using Brood War API5

and dumped: units’ positions, regions’ positions, pathfind-
ing distance between regions, resources (every 25 frames),
all players’ orders, vision events (when units are seen) and
attacks (types, positions, outcomes). Basically, we recorded
every BWAPI event, plus interesting states and attacks. The
dataset is freely available6 , the source code and a documen-
tation are also provided7

Regions
Forbus, Mahoney, and Dill (2002) have shown the impor-
tance of qualitative spatial reasoning, and it would be too
space-consuming to dump the ground distance of every po-
sition to any other position. For these reasons, we discretized
StarCraft maps in two types of regions:

• Brood War Terrain Analyzer8 produced regions from a
pruned Voronoi diagram on walkable terrain (Perkins
2010). Chokes are the boundaries of such regions.

• As battles often happens at chokes, we also produced
choke-dependent regions (CDR), which are created by do-
ing an additional (distance limited) Voronoi tessellation
spawned at chokes. This regions set is

CDR = (regions \ chokes) ∪ chokes

Attacks
We trigger an attack tracking heuristic when one unit dies
and there are at least two military units around. We then up-
date this attack until it ends, recording every unit which took
part in the fight. We log the position, participating units and

2http://www.teamliquid.net
3http://www.gosugamers.net
4http://www.iccup.com
5BWAPI http://code.google.com/p/bwapi/
6http://emotion.inrialpes.fr/people/

synnaeve/TLGGICCUP_gosu_data.7z
7http://snippyhollow.github.com/bwrepdump/
8BWTA http://code.google.com/p/bwta/

fallen units for each player, the attack type and of course the
attacker and the defender. Algorithm 1 shows how we detect
attacks.

We annotated attacks by four types (but researchers can
also produce their own annotations given the state available):

• ground attacks, which may use all types of units (and so
form the large majority of attacks).

• air raids, air attacks, which can use only flying units.

• invisible (ground) attacks, which can use only a few spe-
cific units in each race (Protoss Dark Templars, Terran
Ghosts, Zerg Lurkers).

• drop attacks, which need a transport unit (Protoss Shuttle,
Terran Dropship, Zerg Overlord with upgrade).

Algorithm 1 Simplified attack tracking heuristic for extrac-
tion from games. The heuristics to determine the attack type
and the attack radius and position are not described here.
They look at the proportions of units types, which units are
firing and the last actions of the players.

list tracked attacks
function UNIT DEATH EVENT(unit)

tmp← tracked attacks.which contains(unit)
if tmp 6= ∅ then

tmp.update(unit) .⇔ update(tmp, unit)
else

tracked attacks.push(attack(unit))
end if

end function
function ATTACK(unit) . new attack constructor

. self ⇔ this
self.convex hull← default hull(unit)
self.type← attack type(update(self, unit))
return self

end function
function UPDATE(attack, unit)

attack.update hull(unit) . takes units ranges into
account

c← get context(attack.convex hull)
self.units involved.update(c)
self.tick ← default timeout()
return c

end function
function TICK UPDATE

self.tick ← self.tick − 1
if self.tick < 0 then

self.destruct()
end if

end function

Information in the dataset
Table 1 shows some metrics about the dataset. Note that
the numbers of attacks for a given race have to be divided
by (approximatively) two in a given non-mirror match-up.
So, there are 7072 Protoss attacks in PvP and there are not
70,089 attacks by Protoss in PvT but about half that.

match-up PvP PvT PvZ TvT TvZ ZvZ
number of games 445 2408 2027 461 2107 199
number of attacks 7072 70089 40121 16446 42175 2162
mean attacks/game 15.89 29.11 19.79 35.67 20.02 10.86
mean time (frames) / game 32342 37772 39137 37717 35740 23898
mean time (minutes) / game 22.46 26.23 27.18 26.19 24.82 16.60
actions issued (game engine) / game 24584 33209 31344 26998 29869 21868
mean regions / game 19.59 19.88 19.69 19.83 20.21 19.31
mean CDR / game 41.58 41.61 41.57 41.44 42.10 40.70
mean ground distance9 region↔ region 2569 2608 2607 2629 2604 2596
mean ground distance10 CDR↔ CDR 2397 2405 2411 2443 2396 2401

Table 1: Detailed numbers about our dataset. XvY means race X vs race Y matches and is an abbreviation of the match-up: PvP
stands for Protoss versus Protoss.

By running the recorded games (replay) through Star-
Craft, we were able to recreate the full state of the game.
Time is always expressed in game frames (24 frames per
second). We recorded three types of files:

• general data (*.rgd files): records the players’ names,
the map’s name, and all information about events like
creation (along with morph), destruction, discovery (for
one player), change of ownership (special spell/ability),
for each units. It also shows attack events (detected by a
heuristic, see below) and dumps the current economical
situation every 25 frames: mineral, gas, supply (count and
total: maxsupply).

• order data (*.rod files): records all the orders which are
given to the units (individually) like move, harvest, attack
unit, the orders positions and their issue time.

• location data (*.rld files): records positions of mobile
units every 100 frames, and their position in regions and
choke-dependent regions if they changed since last mea-
surement. It also stores ground distances (pathfinding-
wise) matrices between regions and choke-dependent re-
gions in the header.

From this data, one can recreate most of the state of the
game: the map key characteristics (or load the map sepa-
rately), the economy of all players, their tech (all researches
and upgrades), all the buildings and units, along with their
orders and their positions.

Armies composition
We will consider units engaged in these attacks as armies
and will seek a compact description of armies compositions.

Armies clustering
The idea behind armies clustering is to give one “composi-
tion” label for each army depending on its composing ratio
of the different unit types. Giving a “hard” (unique) label for
each army does not work well because armies contain differ-
ent components of unit types combinations. For instance, a
Protoss army can have only a “Zealots+Dragoons” compo-
nent, but it will often just be one of the components (some-
times the backbone) of the army composition, augmented
for instance with “High Templars+Archons”.

Because a hard clustering is not an optimal solution,
we used a Gaussian mixture model (GMM), which as-
sumes that an army is a mixture (i.e. weighted sum) of
several (Gaussian) components. We present the model in
the Bayesian programming framework (Diard, Bessière, and
Mazer 2003): we first describe the variables, the decompo-
sition (independence assumptions) and the forms of the dis-
tribution. Then, we explain how we identified (learned) the
parameters and lay out the question that we will ask this
model in the following parts.

Variables
• C ∈ Jc1 . . . cKK, our army clusters/components (C).

There are K units clusters and K depends on the race
(the mixture components are not the same for Pro-
toss/Terran/Zerg).

• U ∈ ([0, 1] . . . [0, 1]) (length N), our N dimensional unit
types (U) proportions, i.e.U ∈ [0, 1]N .N is dependent on
the race and is the total number of unit types. For instance,
an army with equal numbers of Zealots and Dragoons
(and nothing else) is represented as {UZealot =
0.5, UDragoon = 0.5,∀ut 6= Zealot|Dragoon Uut =
0.0}, i.e. U = (0.5, 0.5, 0, . . . , 0) if Zealots and
Dragoons are the first two components of the U vector.
So
∑
i Ui = 1 whatever the composition of the army.

Decomposition: For the M battles, the armies composi-
tions are independent across battles, and the unit types pro-
portions vector (army composition) is generated by a mix-
ture of Gaussian components and thus Ui depends on Ci.

P(U1...M , C1...M) =

M∏
i=1

P(Ui|Ci)P(Ci)

Forms
• P(Ui|Ci) mixture of Gaussian distributions:

P(Ui|Ci = c) = N (µc, σ
2
c)

• P(Ci) = Categorical(K, pC):{
P(Ci = ck) = pk∑K
k=1 pk = 1

Identification (learning): We learned the Gaussian mix-
ture models (GMM) parameters with the expectation-
maximization (EM) algorithm on 5 to 15 mixtures with
spherical, tied, diagonal and full co-variance matrices, using
scikit-learn (Pedregosa et al. 2011). We kept the best scor-
ing models (by varying the number of mixtures) according
to the Bayesian information criterion (BIC) (Schwarz 1978).

Let θ = (µ1:K , σ
2
1:K), being respectively the K different

N -dimensional means (µ1:K) and the variances (σ2
1:K) of

the normal distributions. Initialize θ randomly, and let

L(θ;U) = P(U |θ) =

M∏
i=1

K∑
k=1

P(Ui|θ, Ci = ck)P(Ci = ck)

Iterate until convergence (of θ):

1. E-step: Q(θ|θ(t)) = E[logL(θ;u,C)]

= E
[

log

M∏
i=1

K∑
k=1

P(ui|Ci = ck, θ)P(Ci = ck)
]

2. M-step: θ(t+1) = argmaxθQ(θ|θ(t))
Question: For the ith battle (one army with units u):

P(Ci|Ui = u) = P(Ci)P(Ui = u|Ci)

Counter compositions
In a battle, there are two armies (one for each players), we
can thus apply this clustering to both the armies. If we have
K clusters and N unit types, the opponent has K ′ clusters
and N ′ unit types. We introduce EU and EC, respectively
with the same semantics as U and C but for the enemy. In
a given battle, we observe u and eu, respectively our army
composition and the enemy’s army composition. We can ask
P(C|U = u) and P(EC|EU = eu).

As StarCraft unit types have strengths and weaknesses
against other types, we can learn which clusters should beat
other clusters (at equivalent investment) as a probability ta-
ble. We use Laplace’s law of succession (“add-one smooth-
ing”) by counting and weighting according to battles results
(c > ec means “c beats ec”, i.e. we won against the enemy):

P(C = c|EC = ec) =
1 + P(c)P(ec)countbattles(c > ec)

K + P(ec)countbattles with(ec)

Results
We used the dataset presented in this paper to learn all the
parameters and perform the benchmarks (by setting 100 test
matches aside and learning on the remaining of the dataset).
First, we analyze the posteriors of clustering only one army
and then we evaluated the clustering as a mean to predict
outcomes of battles.

Posterior analysis: Figure 1 shows a parallel plot of army
compositions. We removed the less frequent unit types to
keep only the 8 most important unit types of the PvP match-
up, and we display a 8 dimensional representation of the
army composition, each vertical axis represents one dimen-
sion. Each line (trajectory in this 8 dimensional space) rep-
resents an army composition (engaged in a battle) and gives

the percentage of each of the unit types. These lines (armies)
are colored with their most probable mixture component,
which are shown in the rightmost axis. We have 8 clusters
(Gaussian mixtures components): this is not related to the
8 unit types used as the number of mixtures was chosen by
BIC score. Expert StarCraft players will directly recognize
the clusters of typical armies, here are some of them:

• Light blue corresponds to the “Reaver Drop” tactical
squads, which aims are to transport (with the flying Shut-
tle) the slow Reaver (zone damage artillery) inside the op-
ponent’s base to cause massive economical damages.

• Red corresponds to the “Nony” typical army that is played
in PvP (lots of Dragoons, supported by Reaver and Shut-
tle).

• Green corresponds to a High Templar and Archon-heavy
army: the gas invested in such high tech units makes it
that there are less Dragoons, completed by more Zealots
(which cost no gas).

• Purple corresponds to Dark Templar (“sneaky”, as Dark
Templars are invisible) special tactics (and opening).

Figure 2 showcases the dynamics of clusters components:
P(ECt|ECt+1, for Zerg (vs Protoss) for ∆t of 2 minutes.
The diagonal components correspond to those which do not
change between t and t + 1 (⇔ t + 2minutes), and so it is
normal that they are very high. The other components show
the shift between clusters. For instance, the first line sev-
enth column (in (0,6)) square shows a brutal transition from
the first component (0) to the seventh (6). This may be the
production of Mutalisks11 from a previously very low-tech
army (Zerglings).

Figure 2: Dynamics of clusters: P(ECt|ECt+1) for Zerg,
with ∆t = 2 minutes

A soft rock-paper-scissors: We then used the learned
P(C|EC) table to estimate the outcome of the battle. For

11Mutalisks are flying units which require to unlock several tech-
nologies and thus for which player save up for the production while
opening their tech tree.

Figure 1: Parallel plot of a small dataset of Protoss (vs Protoss, i.e. in the PvP match-up) army clusters on most important unit
types (for the match-up). Each normalized vertical axis represents the percentage of the units of the given unit type in the army
composition (we didn’t remove outliers, so most top vertices (tip) represent 100%), except for the rightmost (framed) which
links to the most probable GMM component. Note that several traces can (and do) go through the same edge.

that, we used battles with limited disparities (the maximum
strength ratio of one army over the other) of 1.1 to 1.5. Note
that the army which has the superior forces numbers has
more than a linear advantage over their opponent (because
of focus firing12), so a disparity of 1.5 is very high. For in-
formation, there is an average of 5 battles per game at a 1.3
disparity threshold, and the numbers of battles (used) per
game increase with the disparity threshold.

We also made up a baseline heuristic, which uses the sum
of the values of the units to decide which side should win. If
we note v(unit) the value of a unit, the heuristic computes∑
unit v(unit) for each army and predicts that the winner

is the one with the biggest score. For the value of a unit we
used:

v(unit) = minerals value+
4

3
gas value+ 50supply

Of course, we recall that a random predictor would predict
the result of the battle correctly 50% of the time.

A summary of the main metrics is shown in Table 2, the
first line can be read as: for a forces disparity of 1.1, for
Protoss vs Protoss (first column),
• considering only military units

– the heuristic predicts the outcome of the battle correctly
63% of the time.

– the probability of a clusters mixture to win against an-
other (P(C|EC)), without taking the forces sizes into
account, predicts the outcome correctly 54% of the
time.

– the probability of a clusters mixture to win against
another, taking also the forces sizes into account
(P(C|EC) ×

∑
unit v(unit)), predicts the outcome

correctly 61% of the time.
12Efficiently micro-managed, an army 1.5 times superior to their

opponents can keep much more than one third of the units alive.

• considering only all units involved in the battle (military
units, plus static defenses and workers): same as above.

Results are given for all match-up (columns) and different
forces disparities (lines). The last column sums up the means
on all match-ups, with the whole army (military units plus
static defenses and workers involved), for the three metrics.

Also, without explicitly labeling clusters, one can ap-
ply thresholding to special units (Observers, Arbiters, De-
filers...) to generate more specific clusters: we did not put
these results here (they include too much expertize/tuning)
but they sometimes drastically increase prediction scores, as
one Observer can change the course of a battle.

We can see that predicting battle outcomes (even with a
high disparity) with “just probabilities” of P(C|EC) (with-
out taking the forces into account) gives relevant results as
they are always above random predictions. Note that this is a
very high level (abstract) view of a battle, we do not consider
tactical positions, nor players’ attention, actions, etc. Also, it
is better (in average) to consider the heuristic with the com-
position of the army (“prob×heuristic”) than to consider the
heuristic alone, even for high forces disparity. Our heuristic
augmented with the clustering seem to be the best indica-
tor for battle situation assessment. These prediction results
with “just prob.”, or the fact that heuristic with P(C|EC)
tops the heuristic alone, are a proof that the assimilation of
armies compositions as Gaussian mixtures of cluster works.

Secondly, and perhaps more importantly, we can view the
difference between “just prob.” results and random guessing
(50%) as the military efficiency improvement that we can
(at least) expect from having the right army composition.
Indeed, for small forces disparities (up to 1.1 for instance),
the prediction based only on army composition (“just prob.”:
63.2%) is better than the prediction with the baseline heuris-
tic (61.7%). It means that we can expect to win 63.2% of the
time (instead of 50%) with an (almost) equal investment if
we have the right composition. Also, when we predict 58.5%

forces scores PvP PvT PvZ TvT TvZ ZvZ mean
disparity in % m ws m ws m ws m ws m ws m ws ws

heuristic 63 63 58 58 58 58 65 65 70 70 56 56 61.7
1.1 just prob. 54 58 68 72 60 61 55 56 69 69 62 63 63.2

prob×heuristic 61 63 69 72 59 61 62 64 70 73 66 69 67.0
heuristic 73 73 66 66 69 69 75 72 72 72 70 70 70.3

1.3 just prob. 56 57 65 66 54 55 56 57 62 61 63 61 59.5
prob×heuristic 72 73 70 70 66 66 71 72 72 70 75 75 71.0

heuristic 75 75 73 73 75 75 78 80 76 76 75 75 75.7
1.5 just prob. 52 55 61 61 54 54 55 56 61 63 56 60 58.2

prob×heuristic 75 76 74 75 72 72 78 78 73 76 77 80 76.2

Table 2: Winner prediction scores (in %) for the three main metrics. For the left columns (“m”), we considered only military
units. For the right columns (“ws”) we also considered static defense and workers. The “heuristic” metric is a baseline heuristic
for battle winner prediction for comparison using army values, while “just prob.” only considers P(C|EC) to predict the winner,
and “prob×heuristic” balances the heuristic’s predictions with

∑
C,EC P(C|EC)P(EC).

of the time the accurate result of a battle with disparity up
to 1.5 from “just prob.”, this success in prediction is inde-
pendent of the sizes of the armies. What we predicted is that
the player with the better army composition won (and not
necessarily the one with more or more expensive units).

Conclusion
We delivered a rich StarCraft dataset which enables the
study of tactical and strategic elements of RTS gameplay.
Our (successful) previous works on this dataset include
learning a tactical model of where and how to attack (both
for prediction and decision-making), and the analysis of
units movements. We provided the source code of the ex-
tracting program (using BWAPI), which can be run on other
replays. We proposed and validated an encoding of armies
composition which enables efficient situation assessment
and strategy adaptation. We believe it can benefit all the
current StarCraft AI approaches. Moreover, the probabilis-
tic nature of the model make it deal natively with incomplete
information about the opponent’s army.

References
Aha, D. W.; Molineaux, M.; and Ponsen, M. J. V. 2005.
Learning to win: Case-based plan selection in a real-time
strategy game. In Muñoz-Avila, H., and Ricci, F., eds., IC-
CBR, volume 3620 of Lecture Notes in Computer Science,
5–20. Springer.
Balla, R.-K., and Fern, A. 2009. Uct for tactical assault plan-
ning in real-time strategy games. In International Joint Con-
ference of Artificial Intelligence, IJCAI, 40–45. San Fran-
cisco, CA, USA: Morgan Kaufmann Publishers Inc.
Dereszynski, E.; Hostetler, J.; Fern, A.; Hoang, T. D. T.-T.;
and Udarbe, M. 2011. Learning probabilistic behavior mod-
els in real-time strategy games. In AAAI., ed., Artificial In-
telligence and Interactive Digital Entertainment (AIIDE).
Diard, J.; Bessière, P.; and Mazer, E. 2003. A survey of prob-
abilistic models using the bayesian programming methodol-
ogy as a unifying framework. In Conference on Computa-
tional Intelligence, Robotics and Autonomous Systems.
Forbus, K. D.; Mahoney, J. V.; and Dill, K. 2002. How

Qualitative Spatial Reasoning Can Improve Strategy Game
AIs. IEEE Intelligent Systems 17:25–30.
Hagelbäck, J., and Johansson, S. J. 2010. A study on hu-
man like characteristics in real time strategy games. In CIG
(IEEE).
Hsieh, J.-L., and Sun, C.-T. 2008. Building a player strategy
model by analyzing replays of real-time strategy games. In
IJCNN, 3106–3111. IEEE.
Mishra, K.; Ontañón, S.; and Ram, A. 2008. Situation as-
sessment for plan retrieval in real-time strategy games. In
ECCBR, 355–369.
Ontañón, S.; Mishra, K.; Sugandh, N.; and Ram, A. 2007.
Case-based planning and execution for real-time strategy
games. In Proceedings of ICCBR: CBR R&D, 164–178.
Springer-Verlag.
Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.;
Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss,
R.; Dubourg, V.; Vanderplas, J.; Passos, A.; Cournapeau, D.;
Brucher, M.; Perrot, M.; and Duchesnay, E. 2011. Scikit-
learn: Machine Learning in Python . Journal of Machine
Learning Research 12:2825–2830.
Perkins, L. 2010. Terrain analysis in real-time strategy
games: An integrated approach to choke point detection and
region decomposition. In Youngblood, G. M., and Bulitko,
V., eds., AIIDE. The AAAI Press.
Ponsen, M., and Spronck, I. P. H. M. 2004. Improving Adap-
tive Game AI with Evolutionary Learning. Ph.D. Disserta-
tion, University of Wolverhampton.
Schadd, F.; Bakkes, S.; and Spronck, P. 2007. Opponent
modeling in real-time strategy games. 61–68.
Schwarz, G. 1978. Estimating the Dimension of a Model.
The Annals of Statistics 6(2):461–464.
Synnaeve, G., and Bessière, P. 2011a. A Bayesian Model
for Opening Prediction in RTS Games with Application to
StarCraft. In Proceedings of IEEE CIG.
Synnaeve, G., and Bessière, P. 2011b. A Bayesian Model
for Plan Recognition in RTS Games applied to StarCraft. In
AAAI., ed., Proceedings of AIIDE, 79–84. 7 pages.
Weber, B. G., and Mateas, M. 2009. A Data Mining Ap-
proach to Strategy Prediction. In Proceedings of IEEE CIG.

