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Energy and regularity dependent stability estimates for near-field inverse scattering in multidimensions

We prove new global Hölder-logarithmic stability estimates for the near-field inverse scattering problem in dimension d ≥ 3. Our estimates are given in uniform norm for coefficient difference and related stability efficiently increases with increasing energy and/or coefficient regularity. In addition, a global logarithmic stability estimate for this inverse problem in dimension d = 2 is also given.

Introduction

We consider the Schrödinger equation

Lψ = Eψ, L = -∆ + v(x), x ∈ R d , d ≥ 2, ( 1.1) 
where

v is real-valued, v ∈ L ∞ (R d ), v(x) = O(|x| -d-ε ), |x| → ∞, for some ε > 0. (1.2)
We consider the resolvent R(E) of the Schrödinger operator L in L 2 (R d ):

R(E) = (L -E) -1 , E ∈ C \ σ(L), (1.3) 
where σ(L) is the spectrum of L in L 2 (R d ). We assume that R(x, y, E) denotes the Schwartz kernel of R(E) as of an integral operator. We consider also

R + (x, y, E) = R(x, y, E + i0), x, y ∈ R d , E ∈ R + . (1.4) 
We recall that in the framework of equation (1.1) the function R + (x, y, E) describes scattering of the spherical waves

R + 0 (x, y, E) = - i 4 √ E 2π|x -y| d-2 2 H (1) d-2 2 ( √ E|x -y|), (1.5) 
generated by a source at y (where H

µ is the Hankel function of the first kind of order µ). We recall also that R + (x, y, E) is the Green function for L -E, E ∈ R + , with the Sommerfeld radiation condition at infinity.

In addition, the function

S + (x, y, E) = R + (x, y, E) -R + 0 (x, y, E), x, y ∈ ∂B r , E ∈ R + , r ∈ R + , (1.6) 
is considered as near-field scattering data for equation (1.1), where B r is the open ball of radius r centered at 0. We consider, in particular, the following near-field inverse scattering problem for equation (1.1): Problem 1.1. Given S + on ∂B r × ∂B r for some fixed r, E ∈ R + , find v on B r . This problem can be considered under the assumption that v is a priori known on R d \ B r . Actually, in the present paper we consider Problem 1.1 under the assumption that v ≡ 0 on R d \ B r for some fixed r ∈ R + . Below in this paper we always assume that this additional condition is fulfilled.

It is well-known that the near-field scattering data of Problem 1.1 uniquely and efficiently determine the scattering amplitude f for equation (1.1) at fixed energy E, see [START_REF] Yu | The uniqueness theorem in the inverse problem of spectral analysis for the Schrodinger equation[END_REF]. Therefore, approaches of [START_REF] Alexeenko | Solution of the threedimensional acoustical inverse scattering problem. The modified Novikov algorithm[END_REF], [START_REF] Buckhgeim | Recovering a potential from Cauchy data in the twodimensional case[END_REF], [START_REF] Burov | Multifrequency generalization of the Novikov algorithm for the two-dimensional inverse scattering problem[END_REF], [START_REF] Eskin | Inverse scattering problem for the Schrödinger equation with magnetic potential at a fixed energy[END_REF], [START_REF] Henkin | The ∂-equation in the multidimensional inverse scattering problem[END_REF], [START_REF] Isaev | Exponential instability in the inverse scattering problem on the energy interval[END_REF], [START_REF] Novikov | Multidimensional inverse spectral problem for the equation -∆ψ + (v(x) -Eu(x))ψ = 0 Funkt[END_REF], [START_REF] Novikov | The inverse scattering problem at fixed energy for threedimensional Schrödinger equation with an exponentially decreasing potential[END_REF], [START_REF] Novikov | Approximate solution of the inverse problem of quantum scattering theory with fixed energy in dimension 2[END_REF], [START_REF] Novikov | The ∂-approach to approximate inverse scattering at fixed energy in three dimensions[END_REF], [START_REF] Stefanov | Stability of the inverse problem in potential scattering at fixed energy[END_REF] can be applied to Problem 1.1 via this reduction.

In addition, it is also known that the near-field data of Problem 1.1 uniquely determine the Dirichlet-to-Neumann map in the case when E is not a Dirichlet eigenvalue for operator L in B r , see [START_REF] Nachman | Reconstructions from boundary measurements[END_REF], [START_REF] Novikov | Multidimensional inverse spectral problem for the equation -∆ψ + (v(x) -Eu(x))ψ = 0 Funkt[END_REF]. Therefore, approaches of [START_REF] Alessandrini | Stable determination of conductivity by boundary measurements[END_REF], [START_REF] Buckhgeim | Recovering a potential from Cauchy data in the twodimensional case[END_REF], [START_REF] Isaev | Energy and regularity dependent stability estimates for the Gel'fand inverse problem in multidimensions[END_REF], [START_REF] Isakov | Increasing stability for the Schrödinger potential from the Dirichlet-to-Neumann map[END_REF], [START_REF] Mandache | Exponential instability in an inverse problem for the Schrödinger equation[END_REF], [START_REF] Novikov | Multidimensional inverse spectral problem for the equation -∆ψ + (v(x) -Eu(x))ψ = 0 Funkt[END_REF], [START_REF] Novikov | Formulae and equations for finding scattering data from the Dirichlet-to-Neumann map with nonzero background potential[END_REF]- [START_REF] Novikov | Monochromatic reconstruction algorithms for two-dimensional multi-channel inverse problems[END_REF], [START_REF] Sylvester | A global uniqueness theorem for an inverse boundary value problem[END_REF] can be also applied to Problem 1.1 via this reduction.

However, in some case it is much more optimal to deal with Problem 1.1 directly, see, for example, logarithmic stability results of [START_REF] Hähner | New stability estimates for the inverse acoustic inhomogeneous medium problem and applications[END_REF] for Problem 1.1 in dimension d = 3. A principal improvement of estimates of [START_REF] Hähner | New stability estimates for the inverse acoustic inhomogeneous medium problem and applications[END_REF] was given recently in [START_REF] Isaev | New global stability estimates for monochromatic inverse acoustic scattering[END_REF]: stability of [START_REF] Isaev | New global stability estimates for monochromatic inverse acoustic scattering[END_REF] efficiently increases with increasing regularity of v.

Problem 1.1 can be also considered as an example of ill-posed problem: see [START_REF] Lavrentev | Ill-posed problems of mathematical physics and analysis[END_REF], [START_REF] Beilina | Approximate global convergence and adaptivity for coefficient inverse problems[END_REF] for an introduction to this theory.

In the present paper we continue studies of [START_REF] Hähner | New stability estimates for the inverse acoustic inhomogeneous medium problem and applications[END_REF], [START_REF] Isaev | New global stability estimates for monochromatic inverse acoustic scattering[END_REF]. We give new global Hölder-logarithmic stability estimates for Problem 1.1 in dimension d ≥ 3, see Theorem 2.1. Our estimates are given in uniform norm for coefficient difference and related stability efficiently increases with increasing energy and/or coefficient regularity. Results of such a type for the Gel'fand inverse problem were obtained recently in [START_REF] Isaev | Energy and regularity dependent stability estimates for the Gel'fand inverse problem in multidimensions[END_REF] for d ≥ 3 and in [START_REF] Santacesaria | Stability estimates for an inverse problem for the Schrödinger equation at negative energy in two dimensions[END_REF] for d = 2.

In addition, we give also global logarithmic stability estimates for Problem 1.1 in dimension d = 2, see Theorem 2.2.

Stability estimates

We recall that if v satisfies (1.2) and supp v ⊂ B r1 for some r 1 > 0, then

S + (E) is bounded in L 2 (∂B r × ∂B r ) for any r > r 1 , (2.1) 
where S + (E) is the near-field scattering data of v for equation (1.1) with E > 0, for more details see, for example, Section 2 of [START_REF] Hähner | New stability estimates for the inverse acoustic inhomogeneous medium problem and applications[END_REF].

Estimates for d ≥ 3

In this subsection we assume for simplicity that

v ∈ W m,1 (R d ) for some m > d, v is real-valued, supp v ⊂ B r1 for some r 1 > 0, (2.2) 
where

W m,1 (R d ) = {v : ∂ J v ∈ L 1 (R d ), |J| ≤ m}, m ∈ N ∪ 0, (2.3) 
where

J ∈ (N ∪ 0) d , |J| = d i=1 J i , ∂ J v(x) = ∂ |J| v(x) ∂x J1 1 . . . ∂x J d d . (2.4) Let ||v|| m,1 = max |J|≤m ||∂ J v|| L 1 (R d ) . (2.5) Note that (2.2) ⇒ (1.2).
Theorem 2.1. Let E > 0 and r > r 1 be given constants. Let dimension d ≥ 3 and potentials v 1 , v 2 satisfy (2.2). Let ||v j || m,1 ≤ N, j = 1, 2, for some N > 0. Let S + 1 (E) and S + 2 (E) denote the near-field scattering data for v 1 and v 2 , respectively. Then for τ ∈ (0, 1) and any s ∈ [0, s * ] the following estimate holds:

||v 2 -v 1 || L ∞ (Br) ≤ C 1 (1 + E) 5 2 δ τ + C 2 (1 + E) s-s * 2 ln 3 + δ -1 -s , (2.6) 
where s * = m-d d , δ = ||S + 1 (E) -S + 2 (E)|| L 2 (∂Br ×∂Br) , and constants C 1 , C 2 > 0 depend only on N , m, d, r, τ .

Proof of Theorem 2.1 is given in Section 5. This proof is based on results presented in Sections 3, 4.

Estimates for d = 2

In this subsection we assume for simplicity that 

v is real-valued, v ∈ C 2 (B r1 ), supp v ⊂ B r1 for some r 1 > 0. ( 2 
||v 1 -v 2 || L ∞ (Br ) ≤ C 3 ln 3 + δ -1 -3/4 ln 3 ln 3 + δ -1 2 , (2.8) 
where δ = ||S + 1 (E) -S + 2 (E)|| L 2 (∂Br ×∂Br) and constant C 3 > 0 depends only on N , m, r.

Proof of Theorem 2.2 is given in Section 7. This proof is based on results presented in Sections 3, 6.

Concluding remarks

Remark 2.1. The logarithmic stability estimates for Problem 1.1 of [START_REF] Hähner | New stability estimates for the inverse acoustic inhomogeneous medium problem and applications[END_REF] and [START_REF] Isaev | New global stability estimates for monochromatic inverse acoustic scattering[END_REF] follow from estimate (2.6) for d = 3 and s = s * . Apparently, using the methods of [START_REF] Novikov | An effectivization of the global reconstruction in the Gel'fand-Calderon inverse problem in three dimensions[END_REF], [START_REF] Novikov | New global stability estimates for the Gel'fand-Calderon inverse problem[END_REF] it is possible to improve estimate (2.6) for s * = m -d.

Remark 2.2. In the same way as in [START_REF] Hähner | New stability estimates for the inverse acoustic inhomogeneous medium problem and applications[END_REF] and [START_REF] Isaev | New global stability estimates for monochromatic inverse acoustic scattering[END_REF] for dimesnsion d = 3, using estimates (2.6) and (2.8), one can obtain logarithmic stability estimates for the reconstruction of a potential v from the inverse scattering amplitude f for any d ≥ 2.

Remark 2.3. Actually, in the proof of Theorem 2.1 we obtain the following estimate (see formula (5.20)):

v 1 -v 2 L ∞ (Br) ≤ C 4 (1 + E) 2 E + ρ 2 e 2ρ(r+1) δ + C 5 (E + ρ 2 ) -m-d 2d , (2.9)
where constants C 4 , C 5 > 0 depend only on N , m, d, r and the parameter ρ > 0 is such that E + ρ 2 is sufficiently large: E + ρ 2 ≥ C 6 (N, r, m). Estimate of Theorem 2.1 follows from estimate (2.9).

Alessandrini-type identity for near-field scattering

In this section we always assume that assumptions of Theorems 2.1 and 2.2 are fulfilled (in the cases of dimension d ≥ 3 and d = 2, respectively). Consider the operators Rj , j = 1, 2, defined as follows

( Rj φ)(x) = ∂Br R + j (x, y, E)φ(y)dy, x ∈ ∂B r , j = 1, 2. (3.1) Note that R1 -R2 L 2 (∂Br) ≤ S + 1 (E) -S + 2 (E) L 2 (∂Br)×L 2 (∂Br ) . (3.2) 
We recall that (see [START_REF] Hähner | New stability estimates for the inverse acoustic inhomogeneous medium problem and applications[END_REF]) for any functions φ 1 , φ 2 ∈ C(R d ), sufficiently regular in R d \ ∂B r and satisfying

-∆φ + v(x)φ = Eφ, in R d \ ∂B r , lim |x|→+∞ |x| d-1 2 ∂ ∂|x| φ -i √ Eφ = 0, (3.3 
)

with v = v 1 and v = v 2
, respectively, the following identity holds:

Br (v 2 -v 1 )φ 1 φ 2 dx = = ∂Br ∂φ 1 ∂ν + - ∂φ 1 ∂ν - R1 -R2 ∂φ 2 ∂ν + - ∂φ 2 ∂ν - dx, (3.4) 
where where ν + and ν -are the outward and inward normals to ∂B r , respectively.

Remark 3.1. The identity (3.4) is similar to the Alessandrini identity (see Lemma 1 of [START_REF] Alessandrini | Stable determination of conductivity by boundary measurements[END_REF]), where the Dirichlet-to-Neumann maps are considered instead of operators Rj .

To apply identity (3.4) to our considerations, we use also the following lemma: Lemma 3.1. Let E, r > 0 and d ≥ 2. Then, there is a positive constant C 7 (depending only on r and d) such that for any

φ ∈ C(R d \ B r ) satisfying -∆φ = Eφ, in R d \ B r , lim |x|→+∞ |x| d-1 2 ∂ ∂|x| φ -i √ Eφ = 0, φ| ∂Br ∈ H 1 (∂B r ), (3.5) 
the following inequality holds:

∂φ ∂ν + ∂Br L 2 (∂Br ) ≤ C 7 (1 + E) φ| ∂Br H 1 (∂Br ) , (3.6) 
where H 1 (∂B r ) denotes the standart Sobolev space on ∂B r .

The proof of Lemma 3.1 is given in Section 8.

Faddeev functions

In dimension d ≥ 3, we consider the Faddeev functions h, ψ, G (see [START_REF] Faddeev | Growing solutions of the Schrödinger equation[END_REF], [START_REF] Faddeev | The inverse problem in the quantum theory of scattering[END_REF], [START_REF] Henkin | The ∂-equation in the multidimensional inverse scattering problem[END_REF], [START_REF] Novikov | Multidimensional inverse spectral problem for the equation -∆ψ + (v(x) -Eu(x))ψ = 0 Funkt[END_REF]):

h(k, l) = (2π) -d R d e -ilx v(x)ψ(x, k)dx, (4.1) 
where

k, l ∈ C d , k 2 = l 2 , Im k = Im l = 0, ψ(x, k) = e ikx + R d G(x -y, k)v(y)ψ(y, k)dy, (4.2) 
G(x, k) = e ikx g(x, k), g(x, k) = -(2π) -d R d e iξx dξ ξ 2 + 2kξ , (4.3) 
where 

x ∈ R d , k ∈ C d , Im k = 0, d ≥ 3,
v ∈ L ∞ (B r ), v ≡ 0 on R \ B r . (4.5)
We recall that (see [START_REF] Faddeev | Growing solutions of the Schrödinger equation[END_REF], [START_REF] Faddeev | The inverse problem in the quantum theory of scattering[END_REF], [START_REF] Henkin | The ∂-equation in the multidimensional inverse scattering problem[END_REF], [START_REF] Novikov | Multidimensional inverse spectral problem for the equation -∆ψ + (v(x) -Eu(x))ψ = 0 Funkt[END_REF]):

(∆ + k 2 )G(x, k) = δ(x), x ∈ R d , k ∈ C d \ R d ; (4.6)
formula (4.2) at fixed k is considered as an equation for

ψ = e ikx µ(x, k), (4.7) 
where µ is sought in L ∞ (R d ); as a corollary of (4.2), (4.3), (4.6), ψ satisfies (1.1) for E = k 2 ; h of (4.1) is a generalized "'scattering"' amplitude.

In addition, h, ψ, G in their zero energy restriction, that is for E = 0, were considered for the first time in [START_REF] Beals | Multidimensional inverse scattering and nonlinear partial differential equations[END_REF]. The Faddeev functions h, ψ, G were, actually, rediscovered in [START_REF] Beals | Multidimensional inverse scattering and nonlinear partial differential equations[END_REF].

Let

Σ E = k ∈ C d : k 2 = k 2 1 + . . . + k 2 d = E , Θ E = {k ∈ Σ E , l ∈ Σ E : Im k = Im l} , |k| = (|Re k| 2 + |Im k| 2 ) 1/2 . (4.8) Let v satisfy (2.2), v m,1 ≤ N, (4.9) v(p) = (2π) -d R d e ipx v(x)dx, p ∈ R d , (4.10) 
then we have that:

µ(x, k) → 1 as |k| → ∞ (4.11)
and, for any σ > 1,

|µ(x, k)| + |∇µ(x, k)| ≤ σ for |k| ≥ λ 1 (N, m, d, r, σ), (4.12) 
where

x ∈ R d , k ∈ Σ E ; v(p) = lim (k, l) ∈ ΘE , k -l = p |Im k| = |Im l| → ∞ h(k, l) for any p ∈ R d , (4.13) 
|v(p) -h(k, l)| ≤ c 1 (m, d, r)N 2 (E + ρ 2 ) 1/2 for (k, l) ∈ Θ E , p = k -l, |Im k| = |Im l| = ρ, E + ρ 2 ≥ λ 2 (N, m, d, r), p 2 ≤ 4(E + ρ 2 ). (4.14)
Results of the type (4.11), (4.12) go back to [START_REF] Beals | Multidimensional inverse scattering and nonlinear partial differential equations[END_REF]. For more information concerning (4.12) see estimate (4.11) of [START_REF] Isaev | Stability estimates for determination of potential from the impedance boundary map[END_REF]. Results of the type (4.13), (4.14) (with less precise right-hand side in (4.14)) go back to [START_REF] Henkin | The ∂-equation in the multidimensional inverse scattering problem[END_REF]. Estimate (4.14) follows, for example, from formulas (4.2), (4.1) and the estimate

Λ -s g(k)Λ -s L 2 (R d )→L 2 (R d ) = O(|k| -1 ) as |k| → ∞, k ∈ C d \ R d , (4.15) 
for s > 1/2, where g(k) denotes the integral operator with the Schwartz kernel g(x-y, k) and Λ denotes the multiplication operator by the function (1+|x| 2 ) 1/2 . Estimate (4.15) was formulated, first, in [START_REF] Lavine | On the inverse scattering transform of the n-dimensional Schrödinger operator Topics in Soliton Theory and Exactly Solvable Nonlinear Equations[END_REF] for d ≥ 3. Concerning proof of (4.15), see [START_REF] Weder | Generalized limiting absorption method and multidimensional inverse scattering theory[END_REF].

In addition, we have that:

h 2 (k, l) -h 1 (k, l) = (2π) -d R d ψ 1 (x, -l)(v 2 (x) -v 1 (x))ψ 2 (x, k)dx for (k, l) ∈ Θ E , |Im k| = |Im l| = 0, and v 1 , v 2 satisfying (4.4), (4.16) 
and, under assumtions of Theorem 2.1,

|v 1 (p) -v2 (p) -h 1 (k, l) + h 2 (k, l)| ≤ c 2 (m, d, r)N v 1 -v 2 L ∞ (Br ) (E + ρ 2 ) 1/2 for (k, l) ∈ Θ E , p = k -l, |Im k| = |Im l| = ρ, E + ρ 2 ≥ λ 3 (N, m, d, r), p 2 ≤ 4(E + ρ 2 ), (4.17)
where h j , ψ j denote h and ψ of (4.1) and (4.2) for v = v j , j = 1, 2.

Formula (4.16) was given in [START_REF] Novikov | ∂-method with nonzero background potential. Application to inverse scattering for the two-dimensional acoustic equation[END_REF]. Estimate (4.17) was given e.g. in [START_REF] Isaev | Energy and regularity dependent stability estimates for the Gel'fand inverse problem in multidimensions[END_REF].

5 Proof of Theorem 2.1 Let L ∞ µ (R d ) = {u ∈ L ∞ (R d ) : u µ < +∞}, u µ = ess sup p∈R d (1 + |p|) µ |u(p)|, µ > 0. (5.1) Note that w ∈ W m,1 (R d ) =⇒ ŵ ∈ L ∞ µ (R d ) ∩ C(R d ), ŵ µ ≤ c 3 (m, d) w m,1 for µ = m, (5.2) 
where W m,1 , L ∞ µ are the spaces of (2.3), (5.1),

ŵ(p) = (2π) -d R d e ipx w(x)dx, p ∈ R d . (5.3) 
Using the inverse Fourier transform formula

w(x) = R d e -ipx ŵ(p)dp, x ∈ R d , (5.4) 
we have that

v 1 -v 2 L ∞ (Br) ≤ sup x∈Br | R d e -ipx (v 2 (p) -v1 (p)) dp| ≤ ≤ I 1 (κ) + I 2 (κ) for any κ > 0, (5.5) 
where

I 1 (κ) = |p|≤κ |v 2 (p) -v1 (p)|dp, I 2 (κ) = |p|≥κ |v 2 (p) -v1 (p)|dp.
(5.6) Using (5.2), we obtain that

|v 2 (p) -v1 (p)| ≤ 2c 3 (m, d)N (1 + |p|) -m , p ∈ R d . (5.7) Let c 4 = p∈R d ,|p|=1
dp.

(5.8)

Combining (5.6), (5.7), we find that, for any κ > 0,

I 2 (κ) ≤ 2c 3 (m, d)N c 4 +∞ κ dt t m-d+1 ≤ 2c 3 (m, d)N c 4 m -d 1 κ m-d .
(5.9)

Due to (4.17), we have that

|v 2 (p) -v1 (p)| ≤ |h 2 (k, l) -h 1 (k, l)| + c 2 (m, d, r)N v 1 -v 2 L ∞ (Br ) (E + ρ 2 ) 1/2 , for (k, l) ∈ Θ E , p = k -l, |Im k| = |Im l| = ρ, E + ρ 2 ≥ λ 3 (N, m, d, r), p 2 ≤ 4(E + ρ 2 ).
(5.10)

Let δ = ||S + 1 (E) -S + 2 (E)|| L 2 (∂Br ×∂Br) . (5.11) 
Combining (3.2), (3.4) and (4.16), we get that

|h 2 (k, l) -h 1 (k, l)| ≤ δ ∂φ 1 ∂ν + - ∂φ 1 ∂ν -L 2 (Br) ∂φ 2 ∂ν + - ∂φ 2 ∂ν -L 2 (Br) , (k, l) ∈ Θ E , |Im k| = |Im l| = 0, (5.12) 
where φ j , j = 1, 2, denotes the solution of (3.3) with v = v j , satisfying φ j (x) = ψ j (x, k) for x ∈ B r .

(5.13) Using (3.6), (4.12) and the fact that C 1 (∂B r ) ⊂ H 1 (∂B r ), we find that

∂φ j ∂ν + - ∂φ j ∂ν -L 2 (Br ) ≤ σc 5 (r, d)(1 + E) exp |Im k|(r + 1) , k ∈ Σ E , |k| ≥ λ 1 (N, m, d, r, σ), j = 1, 2.
(5.14)

Here and bellow in this section the constant σ is the same that in (4.12). Combining (5.12) and (5.14), we obtain that

|h 2 (k, l) -h 1 (k, l)| ≤ c 2 5 σ 2 (1 + E) 2 e 2ρ(r+1) δ, for (k, l) ∈ Θ E , ρ = |Im k| = |Im l|, E + ρ 2 ≥ λ 2 1 (N, m, d, r, σ).
(5.15) Using (5.10), (5.15), we get that

|v 2 (p) -v1 (p)| ≤ c 2 5 σ 2 (1 + E) 2 e 2ρ(r+1) δ+ + c 2 (m, d, r)N v 1 -v 2 L ∞ (B1) (E + ρ 2 ) 1/2 , p ∈ R d , p 2 ≤ 4(E + ρ 2 ), E + ρ 2 ≥ max{λ 2 1 , λ 3 }. (5.16) Let ε = 1 2c 2 (m, d, r)N c 6 1/d , c 6 = p∈R d ,|p|≤1
dp,

(5.17 and λ 4 (N, m, d, r, σ) > 0 be such that

E + ρ 2 ≥ λ 4 (N, m, d, r, σ) =⇒        E + ρ 2 ≥ λ 2 1 (N, m, d, r, σ), E + ρ 2 ≥ λ 3 (N, m, d, r), ε(E + ρ 2 ) 1 2d 2 ≤ 4(E + ρ 2 ).
(5.18) Using (5.6), (5.16), we get that

I 1 (κ) ≤ c 6 κ d c 2 5 σ 2 (1 + E) 2 e 2ρ(r+1) δ + c 2 (m, d, r)N v 1 -v 2 L ∞ (B1) (E + ρ 2 ) 1/2 , κ > 0, κ 2 ≤ 4(E + ρ 2 ), E + ρ 2 ≥ λ 4 (N, m, d, r, σ).
(5.19)

Combining (5.5), (5.9), (5.19) for κ = ε(E + ρ 2 ) 1 2d and (5.18), we get that

v 1 -v 2 L ∞ (Br) ≤ c 7 (N, m, d, r, σ)(1 + E) 2 E + ρ 2 e 2ρ(r+1) δ+ +c 8 (N, m, d)(E + ρ 2 ) -m-d 2d + 1 2 v 1 -v 2 L ∞ (Br ) , E + ρ 2 ≥ λ 4 (N, m, d, r, σ).
(5.20)

Let τ ′ ∈ (0, 1),

β = 1 -τ ′ 2(r + 1)
, ρ = β ln 3 + δ -1 , (5.21)

and

δ 1 = δ 1 (N, m, d, σ, r, τ ′ ) > 0 be such that δ ∈ (0, δ 1 ) =⇒ E + β ln 3 + δ -1 2 ≥ λ 4 (N, m, d, r, σ), E + β ln 3 + δ -1 2 ≤ (1 + E) β ln 3 + δ -1 2 , (5.22) 
Then for the case when δ ∈ (0, δ 1 ), due to (5.20), we have that

1 2 v 1 -v 2 L ∞ (Br ) ≤ ≤ c 7 (1 + E) 2 E + β ln 3 + δ -1 2 1 2 3 + δ -1 2β(r+1) δ+ + c 8 E + β ln 3 + δ -1 2 -m-d 2d = = c 7 (1 + E) 2 E + β ln 3 + δ -1 2 1 2 (1 + 3δ) 1-τ ′ δ τ ′ + + c 8 E + β ln 3 + δ -1 2 -m-d 2d .
(5.23)

Combining (5.22) and (5.23), we obtain that for s ∈ [0, s * ], τ ∈ (0, τ ′ ) and δ ∈ (0, δ 1 ) the following estimate holds:

||v 2 -v 1 || L ∞ (Br) ≤ c 9 (1 + E) 5 2 δ τ + c 10 (1 + E) s-s * 2 ln 3 + δ -1 -s , (5.24)
where s * = m-d d and c 9 , c 10 > 0 depend only on N , m, d, r, σ, τ ′ and τ . Estimate (5.24) in the general case (with modified c 9 and c 10 ) follows from (5.24) for δ ≤ δ 1 (N, m, d, σ, r, τ ′ ) and and the property that

v j L ∞ (Br) ≤ c 11 (m, d)N.
(5.25)

This completes the proof of (2.6)

Buckhgeim-type analogs of the Faddeev functions

Let us identify R 2 with C and use coordinates z

= x 1 + ix 2 , z = x 1 -ix 2 , where (x 1 , x 2 ) ∈ R 2 .
Following [START_REF] Novikov | A global stability estimate for the Gelfand-Calderon inverse problem in two dimensions[END_REF]- [START_REF] Santacesaria | Global stability for the multi-channel Gel'fandCalderon inverse problem in two dimensions[END_REF], we consider the functions G z0 , ψ z0 , ψz0 , δh z0 going back to Buckhgeim's paper [START_REF] Buckhgeim | Recovering a potential from Cauchy data in the twodimensional case[END_REF] and being analogs of the Faddeev functions:

ψ z0 (z, λ) = e λ(z-z0) 2 + Br G z0 (z, ζ, λ)v(ζ)ψ z0 (ζ, λ) dReζ dImζ, ψ z0 (z, λ) = e λ(z-z0) 2 + Br G z0 (z, ζ, λ)v(ζ) ψ z0 (ζ, λ) dReζ dImζ, (6.1) 
G z0 (z, ζ, λ) = 1 4π 2 Br e -λ(η-z0) 2 + λ(η-z0) 2 dReη dImη (z -η)(η -ζ) e λ(z-z0) 2 -λ( ζ-z0) 2 , z = x 1 + ix 2 , z 0 ∈ B r , λ ∈ C, (6.2) 
where v satisfies (2.7);

δh z0 (λ) = Br ψ z0,1 (z, -λ) (v 2 (z) -v 1 (z)) ψ z0,2 (z, λ) dRez dImz, λ ∈ C, (6.3) 
where v 1 , v 2 satisfy (2.7) and ψ z0,1 , ψ z0,2 denote ψ z0 , ψ z0 of (6.1) for v = v 1 and v = v 2 , respectively. We recall that (see [START_REF] Novikov | A global stability estimate for the Gelfand-Calderon inverse problem in two dimensions[END_REF], [START_REF] Novikov | Global uniqueness and reconstruction for the multi-channel Gel'fand-Calderon inverse problem in two dimensions[END_REF]):

• The function G z0 satisfies the equations

4 ∂ 2 ∂z∂ z G z0 (z, ζ, λ) = δ(z -ζ), 4 ∂ 2 ∂ζ∂ ζ G z0 (z, ζ, λ) = δ(z -ζ), (6.4) 
where z, z 0 , ζ ∈ B r , λ ∈ C and δ is the Dirac delta function;

• Formulas (6.1) at fixed z 0 and λ are considered as equations for ψ z0 , ψ z0 in L ∞ (B r );

• As a corollary of (6.1), (6.2), (6.4), the functions ψ z0 , ψ z0 satisfy (1.1) in B r for E = 0 and d = 2;

• The function δh z0 is similar to the right side of (4.16).

Let potentials

v, v 1 , v 2 ∈ C 2 (B r ) and v C 2 (Br ) ≤ N, v j C 2 (Br) ≤ N, j = 1, 2, (v 1 -v 2 )| ∂Br = 0, ∂ ∂ν (v 1 -v 2 )| ∂Br = 0, (6.5) 
then we have that:

ψ z0 (z, λ) = e λ(z-z0) 2 µ z0 (z, λ), ψ z0 (z, λ) = e λ(z-z0) 2 µ z0 (z, λ), (6.6) 
µ z0 (z, λ) → 1, µ z0 (z, λ) → 1 as |λ| → ∞ (6.7) 
and, for any σ > 1,

|µ z0 (z, λ)| + |∇µ z0 (z, λ)| ≤ σ, (6.8a) 
| µ z0 (z, λ)| + |∇ µ z0 (z, λ)| ≤ σ, (6.8b) 
where

∇ = (∂/∂x 1 , ∂/∂x 2 ), z = x 1 + ix 2 , z 0 ∈ B r , λ ∈ C, |λ| ≥ ρ 1 (N, r, σ); v 2 (z 0 ) -v 1 (z 0 ) = lim λ→∞ 2 π |λ|δh z0 (λ)
for any z 0 ∈ B r , (6.9)

v 2 (z 0 ) -v 1 (z 0 ) - 2 π |λ|δh z0 (λ) ≤ c 12 (N, r) (ln(3|λ|)) 2 |λ| 3/4 for z 0 ∈ B r , |λ| ≥ ρ 2 (N, r).
(6.10) Formulas (6.6) can be considered as definitions of µ z0 , µ z0 . Formulas (6.7), (6.9) were given in [START_REF] Novikov | A global stability estimate for the Gelfand-Calderon inverse problem in two dimensions[END_REF], [START_REF] Novikov | Global uniqueness and reconstruction for the multi-channel Gel'fand-Calderon inverse problem in two dimensions[END_REF] and go back to [START_REF] Buckhgeim | Recovering a potential from Cauchy data in the twodimensional case[END_REF]. Estimates (6.8) were proved in [START_REF] Isaev | Stability estimates for determination of potential from the impedance boundary map[END_REF]. Estimate (6.10) was obtained in [START_REF] Novikov | A global stability estimate for the Gelfand-Calderon inverse problem in two dimensions[END_REF], [START_REF] Santacesaria | Global stability for the multi-channel Gel'fandCalderon inverse problem in two dimensions[END_REF].

Proof of Theorem 2.2

We suppose that ψ z0,1 (•, -λ), ψ z0,2 (•, λ), δh z0 (λ) are defined as in Section 6 but with v j -E in place of v j , j = 1, 2. Note that functions ψ z0,1 (•, -λ), ψ z0,2 (•, λ) satisfy (1.1) in B r with v = v j , j = 1, 2, respectively. We also use the notation N E = N + E. Then, using (6.10), we have that

v 2 (z 0 ) -v 1 (z 0 ) - 2 π |λ|δh z0 (λ) ≤ c 12 (N E , r) (ln(3|λ|)) 2 |λ| 3/4 for z 0 ∈ B r , |λ| ≥ ρ 2 (N E , r). (7.1) Let δ = ||S + 1 (E) -S + 2 (E)|| L 2 (∂Br ×∂Br) . (7.2) 
Combining (3.2), (3.4) and ( 6.3), we get that

|δh z0 (λ)| ≤ δ ∂φ 1 ∂ν + - ∂φ 1 ∂ν -L 2 (Br ) ∂φ 2 ∂ν + - ∂φ 2 ∂ν -L 2 (Br) , (k, l) ∈ Θ E , |Im k| = |Im l| = 0, (7.3) 
where φ j , j = 1, 2, denotes the solution of (3.3) with v = v j , satisfying

φ 1 (x) = ψ z0,1 (x, -λ), φ 2 (x) = ψ z0,2 (x, λ), for x ∈ B r . (7.4) 
Using (3.6), (6.8) and the fact that C 1 (∂B r ) ⊂ H 1 (∂B r ), we find that:

∂φ j ∂ν + - ∂φ j ∂ν -L 2 (Br ) ≤ σc 13 (r)(1 + E) exp |λ|(4r 2 + 4r) , λ ∈ C, |λ| ≥ ρ 1 (N E , r, σ), j = 1, 2. (7.5) 
Here and bellow in this section the constant σ is the same that in (6.8). Combining (7.3), (7.5), we obtain that

|δh z0 (λ)| ≤ c 14 (E, r, σ) exp |λ|(8r 2 + 8r) δ, λ ∈ C, |λ| ≥ ρ 1 (N E , r, σ). (7.6) 
Using (7.1) and (7.6), we get that

|v 2 (z 0 ) -v 1 (z 0 )| ≤ c 14 (E, r, σ) exp |λ|(8r 2 + 8r) δ+ + c 12 (N E , r) (ln(3|λ|)) 2 |λ| 3/4 , z 0 ∈ B r , λ ∈ C, |λ| ≥ ρ 3 (N E , r, σ) = max{ρ 1 , ρ 2 }. (7.7) 
We fix some τ ∈ (0, 1) and let

β = 1 -τ 8r 2 + 8r , λ = β ln 3 + δ -1 , (7.8) 
where δ is so small that |λ| ≥ ρ 3 (N E , r, σ). Then due to (7.7), we have that

v 1 -v 2 L ∞ (Br ) ≤ c 14 (E, r, σ) 3 + δ -1 β(8r 2 +8r) δ+ + c 12 (N E , r) ln 3β ln 3 + δ -1 2
(β ln (3 + δ -1 ))

3 4 = = c 14 (E, r, σ) (1 + 3δ) 1-τ δ τ + + c 12 (N E , r)β -3 4 ln 3β ln 3 + δ -1 2 (ln (3 + δ -1 )) 3 4 , (7.9) 
where τ, β and δ are the same as in (7.8). Using (7.9), we obtain that

v 1 -v 2 L ∞ (Br) ≤ c 15 (N, E, r, σ) ln 3 + δ -1 -3 4 ln 3 ln 3 + δ -1 2 (7.10) for δ = ||S + 1 (E) -S + 2 (E)|| L 2 (∂Br×∂Br ) ≤ δ 2 (N E , r, σ)
, where δ 2 is a sufficiently small positive constant. Estimate (7.10) in the general case (with modified c 15 ) follows from (7.10) for δ ≤ δ 2 (N E , r, σ) and the property that v j L ∞ (Br ) ≤ N .

This completes the proof of (2.8).

8 Proof of Lemma 3.1

In this section we assume for simplicity that r = 1 and therefore ∂B r = S d-1 .

We fix an orthonormal basis in L 2 (∂B r ):

{f jp : j ≥ 0; 1 ≤ p ≤ p j }, f jp is a spherical harmonic of degree j, (8.1) 
where p j is the dimension of the space of spherical harmonics of order j,

p j = j + d -1 d -1 - j + d -3 d -1 , (8.2) 
where

n k = n(n -1) • • • (n -k + 1) k! for n ≥ 0 (8.3) and n k = 0 for n < 0. (8.4)
The precise choice of f jp is irrelevant for our purposes. Besides orthonormality, we only need f jp to be the restriction of a homogeneous harmonic polynomial of degree j to the sphere ∂B r and so |x| j f jp (x/|x|) is harmonic pn R d . In the Sobolev spaces H s (∂B r ) the norm is defined by

j,p c jp f jp 2 H s (∂Br ) = j,p (1 + j) 2s |c jp | 2 . ( 8.5) 
The solution φ of the exterior Dirichlet problem

-∆φ = Eφ, in R d \ B r , lim |x|→+∞ |x| d-1 2 ∂ ∂|x| φ -i √ Eφ = 0, φ| ∂Br = u ∈ H 1 (∂B r ), (8.6) 
can be expressed in the following form (see, for example, [START_REF] Yu | The uniqueness theorem in the inverse problem of spectral analysis for the Schrodinger equation[END_REF], [START_REF] Kress | Inverse Acoustic and Electromagnetic Scattering Theory[END_REF]):

φ = j,p c jp φ jp , (8.7) 
where c jp are expansion coefficients of u in the basis {f jp : j ≥ 0; 1 ≤ p ≤ p j }, and φ jp denotes the solution of (8.6) with u = f jp ,

φ jp (x) = h jp (|x|)f jp (x/|x|), h jp (|x|) = |x| -d-2 2 H (1) j+ d-2 2 ( √ E|x|) H (1) j+ d-2 2 ( √ E) , (8.8) 
where H

µ is the Hankel function of the first kind. Let We recall that functions H

φ 0 jp (x) = |x| -j-d+2 f jp (x/|x|). (8.9) Note that φ 0 jp is harmonic in R d \ {0} and lim |x|→+∞ |x| d-1 2 ∂ ∂|x| φ 0 jp -i √ Eφ 0 jp = 0 for j + d -3 2 > 0. ( 8 
(1) 0 and H

(1) 1

have the following asymptotic forms (see, for example [START_REF] Watson | A Treatise on the Theory of Bessel Functions[END_REF]): 

H (1

  )

  .10) Using the Green formula and the radiation condition for φ jp , φ 0 jp , we get that Using also the following property of the Hankel function of the first kind (see, for example,[START_REF] Watson | A Treatise on the Theory of Bessel Functions[END_REF]):|H (1) µ (x)| is a decreasing function of x for x ∈ R + , µ ∈ R,(8.13)Let consider the cases when j + d-3 2 ≤ 0. Case 1. j = 0, d = 2. Using the property dH

					Eφ jp φ 0 jp dx =	∆φ 0 jp φ jp -∆φ jp φ 0 jp dx =
			R d \Br = ∂Br	∂φ 0 jp ∂ν +	φ jp -	R d \Br ∂φ jp ∂ν + φ 0 jp dx for j +	2 d -3	> 0.	(8.11)
	Due to (8.8) and (8.9), we have that
			∂Br	∂φ 0 jp ∂ν +	∂Br φ jp dx = (j + d -2)	f 2 jp dx = j + d -2.	(8.12)
	we get that						
							φ jp φ 0 jp dx =
	=	+∞ 1 t -j-d 2	R d \Br (1) j+ d-2 2 H H (1) j+ d-2 ( √ 2 ( √ Et) E)	dt ≤	+∞ 1 t -j-d 2 dt =	j + d 2 -1 1	≤ 2	(8.14)
									for j +	d -3 2	> 0.
	Combining (8.8), (8.9), (8.11), (8.12) and (8.14), we obtain that
	∂Br	∂φ 0 jp ∂ν +	φ jp dx =	h ′ jp (r) h jp (r)	≤ j + d -2 + 2E for j +	d -3 2	> 0.	(8.15)
							h ′ jp (r) h jp (r)	=	√ E	H H	(1) 0 (t)/dt = -H (1) 1 ( √ E) (1) 0 ( √ E) .	(1) 1 (t), we get that (8.16)

+∞ 1 t -j-d+2 h jp (t)t d-1 dt =

  Combining (8.5)-(8.8),(8.15),(8.19) and (8.21), we get that for some constant c ′ = c ′ (d) > 0

	Using (8.13) and (8.17), we get that for some c > 0
							H 1 (t) (1) H (1) 0 (t)	≤ c (1 + 1/t) .	(8.18)
	Combining (8.16) and (8.18), we obtain that for j = 0, d = 2
								h ′ jp (r) h jp (r)		≤ c(1 +	√ E).	(8.19)
	Case 2. j = 0, d = 3. We have that	
						H	(1) j+ d-2 2	(t) =	2 πt	e i(t-π/2) .	(8.20)
	Using (8.8) and (8.20), we get that for j = 0, d = 3
								h ′ jp (r) h jp (r)		= -1 + i	√ E.	(8.21)
	∂φ ∂ν +	2 L 2 (∂Br)	=	j,p	c 2 jp	h ′ jp (r) h jp (r)	2	≤ c ′ (1 + E) 2	j,p	(1 + j) 2 c 2 jp .	(8.22)
	Using (8.5) and (8.22), we obtain (3.6)
						) 0 (t) ∼	2i π	ln(t/2) as t → +0,
			H	(1) 0 (t) ∼ H (1) 1 (t) ∼ -2 πt e i(t-π/4) as t → +∞, π (2/t) as t → +0, i	(8.17)
		H	(1) 1 (t) ∼	2 πt	e i(t-3π/4) as t → +∞.
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