
HAL Id: hal-00752841
https://hal.science/hal-00752841v1

Submitted on 16 Nov 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Special Tactics: a Bayesian Approach to Tactical
Decision-making

Gabriel Synnaeve, Pierre Bessière

To cite this version:
Gabriel Synnaeve, Pierre Bessière. Special Tactics: a Bayesian Approach to Tactical Decision-making.
Proceedings of the IEEE Conference on Computational Intelligence and Games, Sep 2012, Granada,
Spain. pp.978-1-4673-1194-6/12/ 409-416. �hal-00752841�

https://hal.science/hal-00752841v1
https://hal.archives-ouvertes.fr

Special Tactics: a Bayesian Approach to Tactical Decision-making

Gabriel Synnaeve (gabriel.synnaeve@gmail.com) and Pierre Bessière (pierre.bessiere@imag.fr)

Abstract—We describe a generative Bayesian model of tactical
attacks in strategy games, which can be used both to predict
attacks and to take tactical decisions. This model is designed to
easily integrate and merge information from other (probabilistic)
estimations and heuristics. In particular, it handles uncertainty
in enemy units’ positions as well as their probable tech tree. We
claim that learning, being it supervised or through reinforcement,
adapts to skewed data sources. We evaluated our approach on
StarCraft1: the parameters are learned on a new (freely available)
dataset of game states, deterministically re-created from replays,
and the whole model is evaluated for prediction in realistic
conditions. It is also the tactical decision-making component of
our StarCraft AI competition bot.

I. INTRODUCTION

A. Game AI

We believe video game AI is central to new, fun, re-playable
gameplays, being them multi-player or not. In their study
on human like characteristics in RTS games, Hagelbäck and
Johansson [1] found out that “tactics was one of the most
successful indicators of whether the player was human or not”.
No current non-cheating AI consistently beats good human
players in RTS (aim cheating is harder to define for FPS
games), nor are fun to play many games against. Finally, multi-
player game AI research is in between real-world robotics (the
world is simulated but not the players) and more theoretical
AI and can benefit both fields.

B. RTS Gameplay

Real-time strategy (RTS) gameplay consist in producing
and managing group of units with attacks and movements
specificities in order to defeat an enemy. Most often, it is
required to gather resources and build up an economic and
military power while expanding a technology tree. Parts of
the map not in the sight range of the player’s units are under
fog of war, so the player only has partial information about
the enemy buildings and army. The way by which we expand
the tech tree, the specific units composing the army, and the
general stance (aggressive or defensive) form what we call
strategy. At the lower level, the actions performed by the
player (human or not) to optimize the effectiveness of its
units is called micro-management. In between lies tactics:
where to attack, and how. A good human player takes much
data in consideration when choosing: are there flaws in the
defense? Which spot is more worthy to attack? How much am
I vulnerable for attacking here? Is the terrain (height, chokes)
to my advantage? etc.

In this paper, we focus on tactics, in between strategy (high-
level) and micro-management (lower-level), as seen in Fig. 1.

1StarCraft and its expansion StarCraft: Brood War are trademarks of
Blizzard EntertainmentTM

Strategy (tech tree,
army composition)

Tactics (army
positions)

Micro-management 1 sec

30 sec

3 min

direct
knowledge

intention

partial
information

tim
e to sw

itch behaviors

more
constraints

Fig. 1. Gameplay levels of abstraction for RTS games, compared with their
level of direct (and complete) information and orders of magnitudes of time
to chance their policies.

We propose a model which can either predict enemy attacks or
give us a distribution on where and how to attack the opponent.
Information from the higher-level strategy constrains what
types of attacks are possible. As shown in Fig. 1, information
from units positions (or possibly an enemy units particle filter
as in [2]) constrains where the armies can possibly be in the
future. In the context of our StarCraft bot, once we have a
decision: we generate a goal (attack order) passed to units
groups (see Fig.2). A Bayesian model for micro-management
[3], in which units are attracted or repulsed by dynamic (goal,
units, damages) and static (terrain) influence maps, actually
moves the units in StarCraft. Other previous works on strategy
prediction [4], [5] allows us to infer the enemy tech tree and
strategies from incomplete information (due to the fog of war).

UnitGroupsUnitGroups

Incomplete Data

Opponent Strategy

Our TacticsOur Strategy Unit Groups

BayesianUnit
BayesianUnit
BayesianUnit
BayesianUnit

BayesianUnit
BayesianUnit
BayesianUnit
BayesianUnit

Production planner
and managers

Opponent Tactics Opponent Positions

Priors (can
evolve)

buildings, technologies units

opening, tech tree attacks: where, how

wanted: units,
buildings, tech

Goals

objectives, formations
units, tech order how,

where

constraints
values, decisions
distributions

O
pp

on
en

t
O

ur
 A

I

Fig. 2. Information centric view of the StarCraft bot player, the part presented
in this paper is inside dotted lines (tactics). Dotted arrows represent constraints
on what is possible, plain simple arrows represent simple (real) values, either
from data or decisions, and double arrows represent probability distributions
on possible values. The grayed surfaces are the components actuators (passing
orders to the game).

C. StarCraft Tactics

We worked on StarCraft: Brood War, which is a canonical
RTS game. It had been around since 1998, sold 9.5 millions
licenses and was played professionally for more than a decade.
StarCraft (like most RTS) has a mechanism, replays, to record
every player’s actions such that the state of the game can be
deterministically re-simulated. Numerous international com-
petitions and professional gaming (mainly in South Korea)
produced a massive amount of data of highly skilled human
players, performing about 300 actions per minute while fol-
lowing and adapting their strategies. In StarCraft, there are two
types of resources, often located close together, minerals (at
the base of everything) and gas (at the base of advanced units
and technologies). There are 3 factions (Protoss, Terran and
Zerg) which have workers to gather resources, and all other
characteristics are different: from military units to “tech trees”,
gameplay styles.

Units have different abilities, which leads to different
possible tactics. Each faction has invisible (temporarily or
permanently) units, flying transport units, flying attack units
and ground units. Some units can only attack ground or air
units, some others have splash damage attacks, immobilizing
or illusion abilities. Fast and mobile units are not cost-effective
in head-to-head fights against slower bulky units. We used the
gamers’ vocabulary to qualify different types of tactics: ground
attacks (raids or pushes) are the most normal kind of attacks,
carried by basic units which cannot fly. Then comes air
attacks (air raids), which use flying units mobility to quickly
deal damage to undefended spots. Invisible attacks exploit
the weaknesses (being them positional or technological) in
detectors of the enemy to deal damage without retaliation.
Finally, drops are attacks using ground units transported by
air, combining flying units mobility with cost-effectiveness of
ground units, at the expense of vulnerability during transit.

II. BACKGROUND

A. Related Works

Aha et al. [6] used case-based reasoning (CBR) to perform
dynamic tactical plan retrieval (matching) extracted from do-
main knowledge in Wargus. Ontañó et al. [7] based their real-
time case-based planning (CBP) system on a plan dependency
graph which is learned from human demonstration in Wargus.
A case based behavior generator spawn missing goals which
are missing from the current state and plan according to the
recognized state. In [8], [9], they used a knowledge-based
approach to perform situation assessment to use the right plan,
performing runtime adaptation by monitoring its performance.
Sharma et al. [10] combined CBR and reinforcement learning
to enable reuse of tactical plan components. Cadena and Gar-
rido [11] used fuzzy CBR (fuzzy case matching) for strategic
and tactical planning. Chung et al. [12] adapted Monte-Carlo
tree search (MCTS) to planning in RTS games and applied
it to a capture-the-flag mod of Open RTS. Balla and Fern
[13] applied upper confidence bounds on trees (UCT: a MCTS
algorithm) to tactical assault planning in Wargus.

In Starcraft, Weber et al. [14], [15] produced tactical goals
through reactive planning and goal-driven autonomy, finding
the more relevant goal(s) to follow in unforeseen situations.
Kabanza et al. [16] performs plan and intent recognition to
find tactical opportunities. On spatial and temporal reasoning,
Forbus et al. [17] presented a tactical qualitative description
of terrain for wargames through geometric and pathfinding
analysis. Perkins [18] automatically extracted choke points and
regions of StarCraft maps from a pruned Voronoi diagram.
We used this technique to extract our regions representations.
Wintermute et al. [19] used a cognitive approach mimicking
human attention for tactics and units control. Ponsen et al.
[20] developed an evolutionary state-based tactics generator
for Wargus. Finally, Avery et al. [21] and Smith et al. [22]
co-evolved influence map trees for spatial (tactical) reasoning
in RTS games.

Our approach (and bot architecture, depicted in Fig. 2) can
be seen as goal-driven autonomy [14] dealing with multi-level
reasoning by passing distributions (without any assumption
about how they were obtained) on the module input. Using
distributions as messages between specialized modules makes
dealing with uncertainty first class, this way a given model do
not care if the uncertainty comes from incompleteness in the
data, a complex and biased heuristic, or another probabilistic
model. We then take a decision by sampling or taking the most
probable value in the output distribution. Another particularity
of our model is that it allows for prediction of the enemy
tactics using the same model with different inputs. Finally, our
approach is not exclusive to most of the techniques presented
above, and it could be interesting to combine it with UCT [13]
and more complex/precise tactics generated through planning.

B. Bayesian Programming

Probability is used as an alternative to classical logic and we
transform incompleteness (in the experiences, observations or
the model) into uncertainty [23]. We introduce Bayesian pro-
grams (BP), a formalism that can be used to describe entirely
any kind of Bayesian model, subsuming Bayesian networks
and Bayesian maps, equivalent to probabilistic factor graphs
[24]. There are mainly two parts in a BP, the description of
how to compute the joint distribution, and the question(s) that
it will be asked.

The description consists in explaining the relevant variables
{X1, . . . , Xn} and explain their dependencies by decom-
posing the joint distribution P(X1 . . . Xn|δ, π) with existing
preliminary knowledge π and data δ. The forms of each term
of the product specify how to compute their distributions:
either parametric forms (laws or probability tables, with free
parameters that can be learned from data δ) or recursive
questions to other Bayesian programs.

Answering a question is computing the distribution
P(Searched|Known), with Searched and Known two dis-
joint subsets of the variables. P(Searched|Known)

=

∑
Free P(Searched, Free, Known)

P(Known)

=
1

Z
×
∑
Free

P(Searched, Free, Known)

BP

Desc.

Spec.(π)

V ariables

Decomposition

Forms (Parametric or Program)

Identification (based on δ)

Question

Bayesian programming originated in robotics [25] and
evolved to all sensory-motor systems [26]. For its use in
cognitive modeling, see [27] and for its first use in video
games (FPS, Unreal Tournament), see [28]; for Massively
Multi-Player Online Role-Playing Games, see [29].

III. METHODOLOGY

A. Dataset

We downloaded more than 8000 replays to keep 7649
uncorrupted, 1v1 replays of very high level StarCraft games
(pro-gamers leagues and international tournaments) from spe-
cialized websites234, we then ran them using BWAPI5 and
dumped units positions, pathfinding and regions, resources,
orders, vision events, for attacks (we trigger an attack tracking
heuristic when one unit dies and there are at least two military
units around): types, positions, outcomes. Basically, every
BWAPI event was recorded, the dataset and its source code
are freely available6.

We used two kinds of regions: BroodWar Terrain Anal-
yser (BWTA) regions and choke-dependent (choke-centered)
regions. BWTA regions are obtained from a pruned Voronoi
diagram on walkable terrain [18] and gives regions for which
chokes are the boundaries. As battles often happens at chokes,
choke-dependent regions are created by doing an additional
(distance limited) Voronoi tesselation spawned at chokes, its
regions set is (regions\chokes)∪chokes. Results for choke-
dependent regions are not fully detailed.

B. Tactical Model

The idea is to have (most probably biased) lower-level
heuristics from units observations which produce information
exploitable at the tactical level, and take some advantage of
strategic inference too. The advantages are that 1) learning will
de-skew the model output from biased heuristic inputs 2) the
model is agnostic to where input variables’ values come from
3) the updating process is the same for supervised learning
and for reinforcement learning.

We note sa or d
unit type(r) for the balanced score of units from

attacker or defender (a or b) of a given type in region r. The
balanced score of units is just the sum on all units of each unit
score (= minerals value+ 4

3gas value+50supply value).

2http://www.teamliquid.net
3http://www.gosugamers.net
4http://www.iccup.com
5http://code.google.com/p/bwapi/
6http://snippyhollow.github.com/bwrepdump/

The heuristics we used in our benchmarks (which we could
change) are:

economical scored(r) =
sdworkers(r)∑

i∈regions s
d
workers(i)

tactical scored(r) =
∑

i∈regions
sdarmy(i)× dist(i, r)−1.5

We used −1.5 such that the tactical value of a region in between
two halves of an army, each at distance 2, would be higher
than the tactical value of a region at distance 4 of the full
(same) army. For flying units, dist is the Euclidean distance,
while for ground units it takes pathfinding into account.

ground defensed(r) =
sdcan attack ground(r)

saground units(r)

air defensed(r) =
sdcan attack air(r)

saair units(r)

invis defensed(r) = numberddetectors

We preferred to discretize continuous values to enable quick
complete computations. An other strategy would keep more
values and use Monte Carlo sampling for computation. We
think that discretization is not a concern because 1) heuristics
are simple and biased already 2) we often reason about
imperfect information and this uncertainty tops discretization
fittings.

1) Variables: With n regions, we have:
• A1:n ∈ {true, false}, Ai: attack in region i or not?
• E1:n ∈ {no, low, high}, Ei is the discretized economical

value of the region i for the defender. We choose 3 values:
no workers in the regions, low: a small amount of workers
(less than half the total) and high: more than half the total
of workers in this region i.

• T1:n ∈ discrete levels, Ti is the tactical value of the
region i for the defender, see above for an explanation of
the heuristic. Basically, T is proportional to the proximity
to the defender’s army. In benchmarks, discretization
steps are 0, 0.05, 0.1, 0.2, 0.4, 0.8 (log2 scale).

• TA1:n ∈ discrete levels, TAi is the tactical value of
the region i for the attacker (see above).

• B1:n ∈ {true, false}, Bi tells if the region belongs (or
not) to the defender. P(Bi = true) = 1 if the defender
has a base in region i and P(Bi = false) = 1 if the
attacker has one. Influence zones of the defender can be
measured (with uncertainty) by P(Bi = true) ≥ 0.5 and
vice versa.

• H1:n ∈ {ground, air, invisible, drop}, Hi: in predictive
mode: how we will be attacked, in decision-making: how
to attack, in region i.

• GD1:n ∈ {no, low,med, high}: ground defense (relative
to the attacker power) in region i, result from a heuristic.
no defense if the defender’s army is ≥ 1/10th of the
attacker’s, low defense above that and under half the
attacker’s army, medium defense above that and under

comparable sizes, high if the defender’s army is bigger
than the attacker.

• AD1:n ∈ {no, low,med, high}: same for air defense.
• ID1:n ∈ {no detector, one detector, several}: invisible

defense, equating to numbers of detectors.
• TT ∈ [∅, building1, building2, building1 ∧
building2, techtrees, . . .]: all the possible technological
trees for the given race. For instance {pylon, gate} and
{pylon, gate, core} are two different T ech T rees.

• HP ∈ {ground, ground∧air, ground∧invis, ground∧
air∧invis, ground∧drop, ground∧air∧drop, ground∧
invis∧drop, ground∧air∧invis∧drop}: how possible
types of attacks, directly mapped from TT information.
In prediction, with this variable, we make use of what we
can infer on the opponent’s strategy [5], [4], in decision-
making, we know our own possibilities (we know our
tech tree as well as the units we own).

Finally, for some variables, we take uncertainty into account
with “soft evidences”: for instance for a region in which no
player has a base, we have a soft evidence that it belongs more
probably to the player established closer. In this case, for a
given region, we introduce the soft evidence variable(s) B′ and
the coherence variable λB and impose P(λB = 1|B,B′) =
1.0 iff B = B′, else P(λB = 1|B,B′) = 0.0; while
P(λB |B,B′)P(B′) is a new factor in the joint distribution.
This allows to sum over P(B′) distribution (soft evidence).

2) Decomposition: The joint distribution of our model
contains soft evidence variables for all input family variables
(E, T, TA,B,GD,AD, ID, P) to be as general as possible,
i.e. to be able to cope with all possible uncertainty (from
incomplete information) that may come up in a game. To avoid
being too verbose, we explain the decomposition only with the
soft evidence for the family of variables B, the principle holds
for all other soft evidences. For the n considered regions, we
have:

P(A1:n, E1:n, T1:n, TA1:n, B1:n, B
′
1:n, λB,1:n,

H1:n, GD1:n, AD1:n, ID1:n, P, TT)

=

n∏
i=1

[
P(Ai)P(Ei, Ti, TAi, Bi|Ai) (1)

P(λB,i|B1:n, B
′
1:n)P(B

′
1:n)

P(ADi, GDi, IDi|Hi)P(Hi|HP)
]
P(HP |TT)P(TT)

3) Forms and Learning: We will explain the forms for a
given/fixed i region number:
• P(A) is the prior on the fact that the player attacks in this

region, in our evaluation we set it to nbattles/(nbattles +
nnot battles). In a given match it should be initialized
to uniform and progressively learn the preferred attack
regions of the opponent for predictions, learn the regions
in which our attacks fail or succeed for decision-making.

• P(E, T, TA,B|A) is a covariance table of the econom-
ical, tactical (both for the defender and the attacker),
belonging scores where an attacks happen. We just use
Laplace succession law (“add one” smoothing) [23] and

count the co-occurrences, thus almost performing maxi-
mum likelihood learning of the table.

• P(λB |B,B′) = 1.0 iff B = B′ is just a coherence
constraint.

• P(AD,GD, ID|H) is a covariance table of the air,
ground, invisible defense values depending on how the
attack happens. As for P(E, T, TA,B|A), we use a
Laplace’s law of succession to learn it.

• P(H|HP) is the distribution on how the attack hap-
pens depending on what is possible. Trivially P(H =
ground|HP = ground) = 1.0, for more complex
possibilities we have different maximum likelihood multi-
nomial distributions on H values depending on HP .

• P(HP |TT) is the direct mapping of what the tech tree
allows as possible attack types: P(HP = hp|TT) = 1 is
a function of TT (all P(HP 6= hp|TT) = 0).

• P(TT): if we are sure of the tech tree (prediction without
fog of war, or in decision-making mode), P(TT = k) = 1
and P(TT 6= k) = 0; otherwise, it allows us to take
uncertainty about the opponent’s tech tree and balance
P(HP |TT). We obtain a distribution on what is possible
(P(HP)) for the opponent’s attack types.

There are two approaches to fill up these probability tables,
either by observing games (supervised learning), as we did
in the evaluation section, or by acting (online learning). In
match situation against a given opponent, for inputs that
we can unequivocally attribute to their intention (style and
general strategy), we also refine these probability tables (with
Laplace’s rule of succession). To keep things simple, we
just refine

∑
E,T,TA P(E, T, TA,B|A) corresponding to their

aggressiveness (aggro) or our successes and failures, and
equivalently for P(H|HP). Indeed, if we sum over E, T
and TA, we consider the inclination of our opponent to
venture into enemy territory or the interest that we have to
do so by counting our successes with aggressive or defensive
parameters. In P(H|HP), we are learning the opponent’s
inclination for particular types of tactics according to what
is available to their, or for us the effectiveness of our attack
types choices.

The model is highly modular, and some parts are more
important than others. We can separate three main parts:
P(E, T, TA,B|A), P(AD,GD, ID|H) and P(H|HP). In
prediction, P(E, T, TA,B|A) uses the inferred (uncertain)
economic (E), tactical (T) and belonging (B) scores of the
opponent while knowing our own tactical position fully (TA).
In decision-making, we know E, T,B (for us) and estimate
TA. In our prediction benchmarks, P(AD,GD, ID|H) has
the lesser impact on the results of the three main parts, either
because the uncertainty from the attacker on AD,GD, ID is
too high or because our heuristics are too simple, though it
still contributes positively to the score. In decision-making,
it allows for reinforcement learning to have pivoting tuple
values for AD,GD, ID at which to switch attack types. In
prediction, P(H|HP) is used to take P(TT) (coming from
strategy prediction [4]) into account and constraints H to what

is possible. For the use of P(H|HP)P(HP |TT)P(TT) in
decision-making, see the Results sections.

4) Questions: For a given region i, we can ask the proba-
bility to attack here,

P(Ai = ai|ei, ti, tai, λB,i = 1)

=

∑
Bi,B

′
i
P(ei, ti, tai, Bi|ai)P(ai)P(B′

i).P (λB,i|Bi, B
′
i)∑

Ai,Bi,B
′
i
P(ei, ti, tai, Bi|Ai)P(Ai)P(B′

i)P(λB,i|Bi, B′
i)

∝
∑
Bi,B′

i

P(ei, ti, tai, Bi|ai)P(ai)P(B′i)P(λB,i|Bi, B
′
i)

and the mean by which we should attack,

P(Hi = hi|adi, gdi, idi)
∝

∑
TT,P

[
P(adi, gdi, idi|hi)P(hi|P)P(HP |TT)P(TT)

]
For clarity, we omitted some variables couples on which we
have to sum (to take uncertainty into account) as for B (and
B′) above. We always sum over estimated, inferred variables,
while we know the one we observe fully. In prediction mode,
we sum over TA,B, TT, P ; in decision-making, we sum
over E, T,B,AD,GD, ID. The complete question that we
ask our model is P(A,H|FullyObserved). The maximum of
P(A,H) may not be the same as the maximum of P(A) or
P(H), for instance think of a very important economic zone
that is very well defended, it may be the maximum of P(A),
but not once we take P(H) into account. Inversely, some
regions are not defended against anything at all but present
little or no interest. Our joint distribution (1) can be rewritten:
P(Searched, FullyObserved,Estimated), so we ask:

P(A1:n, H1:n|FullyObserved) (2)

∝
∑

Estimated

P(A1:n, H1:n, Estimated, FullyObserved)

IV. RESULTS

A. Learning

To measure fairly the prediction performance of such a
model, we applied “leave-100-out” cross-validation from our
dataset: as we had many games (see Table. I), we set aside
100 games of each match-up for testing (with more than 1
battle per match: rather u J11 . . . 35K battles/match) and train
our model on the rest. We write match-ups XvY with X and Y
the first letters of the factions involved (Protoss, Terran, Zerg).
Note that mirror match-ups (PvP, TvT, ZvZ) have less games
but twice as many attacks from a given faction. Learning
was performed as explained in III.B.3: for each battle in r
we had one observation for: P(er, tr, tar, br|A = true), and
#regions−1 observations for the i regions which were not at-
tacked: P(ei 6=r, ti6=r, tai6=r, bi 6=r|A = false). For each battle
of type t we had one observation for P(ad, gd, id|H = t) and
P(H = t|hp). By learning with a Laplace’s law of succession
[23], we allow for unseen event to have a non-null probability.

An exhaustive presentation of the learned tables is out of
the scope of this paper, but we displayed interesting cases
in which the posteriors of the learned model concur with

human expertise in Figures 3,4,5. In Fig. 3, we see that air
raids/attacks are quite risk averse and it is two times more
likely to attack a region with less than 1/10th of the flying
force in anti-aircraft warfare than to attack a region with up
to one half of our force. We can also notice than drops are to be
preferred either when it is safe to land (no anti-aircraft defense)
or when there is a large defense (harassment tactics). In Fig. 4
we can see that, in general, there are as many ground attacks
at the sum of other types. The two top graphs show cases
in which the tech of the attacker was very specialized, and,
in such cases, the specificity seems to be used. In particular,
the top right graphic may be corresponding to a “fast Dark
Templars rush”. Finally, Fig. 5 shows the transition between
two types of encounters: tactics aimed at engaging the enemy
army (a higher T value entails a higher P(A)) and tactics
aimed at damaging the enemy economy (at high E, we look for
opportunities to attack with a small army where T is lower).

Fig. 3. P(H = air) and P(H = drop) for varying values of AD (summed
on other variables), for Terran in TvP.

Fig. 4. P(H|HP) for varying values H and for different values of HP
(derived from inferred TT), for Protoss in PvT.

B. Prediction Performance

We learned and tested one model for each race and each
match-up. As we want to predict where (P(A1:n)) and how
(P(Hbattle)) the next attack will happen to us, we used inferred
enemy TT (to produce HP) and TA, our scores being fully
known: E, T , B, ID. We consider GD, AD to be fully known
even though they depend on the attacker force, we should have
some uncertainty on them, but we tested that they accounted
(being known instead of fully unknown) for 1 to 2% of P(H)
accuracy (in prediction) once HP was known. We should

Fig. 5. P(A) for varying values of E and T , summed on the other variables,
for Terran in TvT. Higher economical values are strongly correlated with
surprise attacks with small tactical squads and no defenses.

point that pro-gamers scout very well and so it allows for
a highly accurate TT estimation with [4]. Training requires to
recreate battle states (all units positions) and count parameters
for 5,000 to 30,000 battles. Once that is done, inference is very
quick: a look-up in a probability table for known values and
#F look-ups for free variables F on which we sum. We chose
to try and predict the next battle 30 seconds before it happens,
30 seconds being an approximation of the time needed to go
from the middle of a map (where the entropy on “next battle
position” is maximum) to any region by ground, so that the
prediction is useful for the defender (they can position their
army).

The model code7 (for learning and testing) as well as
the datasets (see above) are freely avaible. Raw results of
predictions of positions and types of attacks 30 seconds before
they happen are presented in Table. I: for instance the bold
number (38.0) corresponds to the percentage of good positions
(regions) predictions (30 sec before event) which were ranked
1st in the probabilities on A1:n for Protoss attacks against
Terran (PvT). The measures on where corresponds to the
percentage of good prediction and the mean probability for
given ranks in P(A1:n) (to give a sense of the shape of the
distribution). As the most probable The measures on how
corresponds to the percentage of good predictions for the
most probable P(Hbattle) and the number of such battles
seen in the test set for given attack types. We particularly
predict well ground attacks (trivial in the early game, less
in the end game) and, interestingly, Terran and Zerg drop
attacks. The where & how row corresponds to the percentage
of good predictions for the maximal probability in the joint
P(A1:n, H1:n): considering only the most probable attack
(more information is in the rest of the distribution, as shown
for where!) according to our model, we can predict where and

7https://github.com/SnippyHolloW/AnalyzeBWData

how an attack will occur in the next 30 seconds u 1/4th of the
time. Finally, note that scores are not ridiculous 60 seconds
before the attack neither (obviously, TT , and thus HP , are
not so different, nor are B and E): PvT where top 4 ranks
are 35.6, 8.5, 7.7, 7.0% good versus 38.0, 16.3, 8.9, 6.7% 30
seconds before; how total precision 60 seconds before is 70.0%
vs. 72.4%, where & how maximum probability precision is
19.9% vs. 23%.

When we are mistaken, the mean ground distance (pathfind-
ing wise) of the most probable predicted region to the good
one (where the attack happens) is 1223 pixels (38 build tiles,
or 2 screens in StarCraft’s resolution), while the mean max
distance on the map is 5506 (172 build tiles). Also, the mean
number of regions by map is 19, so a random where (attack
destination) picking policy would have a correctness of 1/19
(5.23%). For choke-centered regions, the numbers of good
where predictions are lower (between 24% and 32% correct
for the most probable) but the mean number of regions by
map is 42. For where & how, a random policy would have
a precision of 1/(19*4), and even a random policy taking
the high frequency of ground attacks into account would at
most be u 1/(19*2) correct. For the location only (where
question), we also counted the mean number of different
regions which were attacked in a given game, the ratio over
these means would give the best (consider only attacks that
happened instead of threats) prediction rate we could expect
from a baseline heuristic based solely on the location data
and would yield (depending on the match-up) prediction rates
between 20.5 and 25.2% for regions, versus our 32.8 to 40.9%,
and between 16.1% and 19.5% for choke-dependent regions,
versus our 24% to 32%.

Note that our current model consider a uniform prior on
regions (no bias towards past battlefields) and that we do not
incorporate any derivative of the armies’ movements. There
is no player modeling at all: learning and fitting the mean
player’s tactics is not optimal, so we should specialize the
probability tables for each player. Also, we use all types of
battles in our training and testing. Short experiments showed
that if we used only attacks on bases, the probability of
good where predictions for the maximum of P(A1:n) goes
above 50% (which is not a surprise, there are far less bases
than regions in which attacks happen). To conclude on tactics
positions prediction: if we sum the 2 most probable regions
for the attack, we are right at least half the time; if we sum the
4 most probable (for our robotic player, it means it prepares
against attacks in 4 regions as opposed to 19), we are right u
70% of the time.

Mistakes on the type of the attack are high for invisi-
ble attacks: while these tactics can definitely win a game,
the counter is strategic (it is to have detectors technology
deployed) more than positional. Also, if the maximum of
P(Hbattle) is wrong, it doesn’t mean than P(Hbattle =
good) = 0.0 at all! The result needing improvements the most
is for air tactics, because countering them really is positional,
see our discussion in the conclusion.

TABLE I
RESULTS SUMMARY FOR MULTIPLE METRICS AT 30 SECONDS BEFORE ATTACK. THE NUMBER IN BOLD (38.0) IS READ AS “38% OF THE TIME, THE

REGION i WITH PROBABILITY OF RANK 1 IN P(Ai) IS THE ONE IN WHICH THE ATTACK HAPPENED 30 SECONDS LATER”.

%: good predictions Protoss Terran Zerg
Pr: mean probability P T Z P T Z P T Z

total # games 445 2408 2027 2408 461 2107 2027 2107 199
measure rank % Pr % Pr % Pr % Pr % Pr % Pr % Pr % Pr % Pr

1 40.9 .334 38.0 .329 34.5 .304 35.3 .299 34.4 .295 39.0 0.358 32.8 .31 39.8 .331 37.2 .324

w
he

re

2 14.6 .157 16.3 .149 13.0 .152 14.3 .148 14.7 .147 17.8 .174 15.4 .166 16.6 .148 16.9 .157
3 7.8 .089 8.9 .085 6.9 .092 9.8 .09 8.4 .087 10.0 .096 11.3 .099 7.6 .084 10.7 .100
4 7.6 .062 6.7 .059 7.9 .064 8.6 .071 6.9 .063 7.0 .062 8.9 .07 7.7 .064 8.6 .07

measure type % N % N % N % N % N % N % N % N % N
G 97.5 1016 98.1 1458 98.4 568 100 691 99.9 3218 76.7 695 86.6 612 99.8 567 67.2 607

ho
w A 44.4 81 34.5 415 46.8 190 40 5 13.3 444 47.1 402 14.2 155 15.8 19 74.2 586

I 22.7 225 49.6 337 12.9 132 NA NA NA NA 36.8 326 32.6 227 NA NA NA NA
D 55.9 340 42.2 464 45.2 93 93.5 107 86 1183 62.8 739 67.7 535 81.4 86 63.6 588

total 76.3 1662 72.4 2674 71.9 983 98.4 806 88.5 4850 60.4 2162 64.6 1529 94.7 674 67.6 1802
where & how (%) 32.8 23 23.8 27.1 23.6 30.2 23.3 30.9 26.4

C. In Game Decision-Making

In a StarCraft game, our bot has to make decisions about
where and how to attack or defend, it does so by reasoning
about opponent’s tactics, bases, its priors, and under strategic
constraints (Fig. 2). Once a decision is taken, the output of
the tactical model is an offensive or defensive goal. There
are different military goal types (base defense, ground attacks,
air attacks, drops...), and each type of goal has pre-requisites
(for instance: a drop goal needs to have the control of a
dropship and military units to become active). The spawned
goal then autonomously sets objectives for Bayesian units
[3], sometimes procedurally creating intermediate objectives
or canceling itself in the worst cases.

The destinations of goals are from P(A), while the type of
the goal comes from P(H). In input, we fully know tactical
scores of the regions according to our military units placement
TA (we are the attacker), what is possible for us to do HP
(according to units available) and we estimate E, T , B, ID,
GD, AD from past (partial) observations. Estimating T is
the most tricky of all because it may be changing fast, for
that we use a units filter which just decays probability mass
of seen units. An improvement would be to use a particle
filter [2], with a learned motion model. From the joint (2)
P(A1:n, H1:n|ta, p, tt) may arise a couple i,Hi more probable
than the most probables P(Ai) and P(Hj) taken separately
(the case of an heavily defended main base and a small
unprotected expand for instance). Fig. 6 displays the mean
P(A,H) for Terran (in TvZ) attacks decision-making for the
most 32 probable type/region tactical couples. It is in this kind
of landscape (though more steep because Fig. 6 is a mean)
that we sample (or pick the most probable couple) to take a
decision. Also, we may spawn defensive goals countering the
attacks that we predict from the opponent.

Finally, we can steer our technological growth towards the
opponent’s weaknesses. A question that we can ask our model
(at time t) is P(TT), or, in two parts: we first find i, hi which
maximize P(A,H) at time t+1, and then ask a more directive:

P(TT |hi) ∝
∑
HP

P(hi|HP)P(HP |TT)P(TT)

Fig. 6. Mean P(A,H) for all H values and the top 8 P(Ai, Hi) values,
for Terran in TvZ. The larger the white square area, the higher P(Ai, Hi).

so that it gives us a distribution on the tech trees (TT) needed
to be able to perform the wanted attack type. To take a decision
on our technology direction, we can consider the distances
between our current ttt and all the probable values of TT t+1.

V. CONCLUSIONS

A. Possible Improvements

There are three main research directions for possible im-
provements: improving the underlying heuristics, improving
the dynamic of the model and improving the model itself.
The heuristics presented here are quite simple but they may be
changed, and even removed or added, for another RTS or FPS,
or for more performance. In particular, our “defense against
invisible” heuristic could take detector positioning/coverage
into account. Our heuristic on tactical values can also be re-
worked to take terrain tactical values into account (chokes and
elevation in StarCraft). For the estimated position of enemy
units, we could use a particle filter [2] with a motion model
(at least one for ground units and one for flying units). There
is room to improve the dynamics of the model: considering the
prior probabilities to attack in regions given past attacks and/or
considering evolutions of the T ,TA,B,E values (derivatives)
in time. The discretizations that we used may show their limits,
though if we want to use continuous values, we need to setup
a more complicated learning and inference process (MCMC
sampling). Finally, one of the strongest assumptions (which
is a drawback particularly for prediction) of our model is that

the attacking player is always considered to attack in this most
probable regions. While this would be true if the model was
complete (with finer army positions inputs and a model of
what the player thinks), we believe such an assumption of
completeness is far fetched. Instead we should express that
incompleteness in the model itself and have a “player decision”
variable D ∼Multinomial(P(A1:n, H1:n), player).

B. Final Words

We have presented a Bayesian tactical model for RTS
AI, which allows both for opposing tactics prediction and
autonomous tactical decision-making. Being a probabilistic
model, it deals with uncertainty easily, and its design allows
easy integration into multi-granularity (multi-scale) AI systems
as needed in RTS AI. Without any temporal dynamics, its exact
prediction rate of the joint position and tactical type is in [23-
32.8]% (depending on the match-up), and considering the 4
most probable regions it goes up to u 70%. More importantly,
it allows for tactical decision-making under (technological)
constraints and (state) uncertainty. It can be used in production
thanks to its low CPU and memory footprint. The dataset,
its documentation8, as well as our model implementation9

(and other data-exploration tools) are free software and can
be found online. We plan to use this model in our StarCraft
AI competition entry bot as it gives our bot tactical autonomy
and a way to adapt to our opponent.

REFERENCES

[1] J. Hagelbäck and S. J. Johansson, “A Study on Human like Character-
istics in Real Time Strategy Games,” in CIG (IEEE), 2010.

[2] B. G. Weber, M. Mateas, and A. Jhala, “A Particle Model for State
Estimation in Real-Time Strategy Games,” in Proceedings of AIIDE,
AAAI Press. Stanford, Palo Alto, California: AAAI Press, 2011, p.
103–108.

[3] G. Synnaeve and P. Bessière, “A Bayesian Model for RTS Units Control
applied to StarCraft,” in Proceedings of IEEE CIG 2011, Seoul, South
Korea, Sep. 2011.

[4] G. Synnaeve and P. Bessière, “A Bayesian Model for Plan Recognition
in RTS Games applied to StarCraft,” in Proceedings of the Seventh
Artificial Intelligence and Interactive Digital Entertainment Conference
(AIIDE 2011), ser. Proceedings of AIIDE, AAAI, Ed., Palo Alto, CA,
USA, Oct. 2011, pp. 79–84.

[5] G. Synnaeve and P. Bessière, “A Bayesian Model for Opening Prediction
in RTS Games with Application to StarCraft,” in Proceedings of 2011
IEEE CIG, Seoul, South Korea, Sep. 2011.

[6] D. W. Aha, M. Molineaux, and M. J. V. Ponsen, “Learning to Win:
Case-Based Plan Selection in a Real-Time Strategy Game,” in ICCBR,
2005, pp. 5–20.

[7] S. Ontañón, K. Mishra, N. Sugandh, and A. Ram, “Case-based planning
and execution for real-time strategy games,” in Proceedings of the 7th
international conference on Case-Based Reasoning: Case-Based Rea-
soning Research and Development, ser. International Joint Conference
on Neural Networks (ICCBR-07). Springer-Verlag, 2007, pp. 164–178.

[8] K. Mishra, S. Ontañón, and A. Ram, “Situation Assessment for Plan
Retrieval in Real-Time Strategy Games,” in ECCBR, 2008, pp. 355–
369.

[9] M. Meta, S. Ontañón, and A. Ram, “Meta-Level Behavior Adaptation
in Real-Time Strategy Games,” in ICCBR-10 Workshop on Case-Based
Reasoning for Computer Games, Alessandria, Italy, 2010.

8http://snippyhollow.github.com/bwrepdump/
9https://github.com/SnippyHolloW/AnalyzeBWData

[10] M. Sharma, M. Holmes, , J. Santamaria, A. Irani, C. L. Isbell, and
A. Ram, “Transfer Learning in Real-Time Strategy Games Usinging
Hybrid CBR/RL,” in International Joint Conference of Artificial Intel-
ligence, IJCAI, 2007.

[11] P. Cadena and L. Garrido, “Fuzzy Case-Based Reasoning for Managing
Strategic and Tactical Reasoning in StarCraft,” in MICAI (1), ser. Lecture
Notes in Computer Science, I. Z. Batyrshin and G. Sidorov, Eds., vol.
7094. Springer, 2011, pp. 113–124.

[12] M. Chung, M. Buro, and J. Schaeffer, “Monte Carlo Planning in RTS
Games,” in CIG. IEEE, 2005.

[13] R. krishna Balla and A. Fern, “UCT for Tactical Assault Planning in
Real-Time Strategy Games,” in IJCAI, 2009.

[14] B. G. Weber, M. Mateas, and A. Jhala, “Applying Goal-Driven Au-
tonomy to StarCraft,” in Artificial Intelligence and Interactive Digital
Entertainment (AIIDE), 2010.

[15] B. G. Weber, P. Mawhorter, M. Mateas, and A. Jhala, “Reactive Planning
Idioms for Multi-Scale Game AI,” in CIG (IEEE), 2010.

[16] F. Kabanza, P. Bellefeuille, F. Bisson, A. R. Benaskeur, and H. Irandoust,
“Opponent Behaviour Recognition for Real-Time Strategy Games,” in
AAAI Workshops, 2010.

[17] K. D. Forbus, J. V. Mahoney, and K. Dill, “How qualitative
spatial reasoning can improve strategy game ais,” IEEE Intelligent
Systems, vol. 17, pp. 25–30, July 2002. [Online]. Available:
http://dx.doi.org/10.1109/MIS.2002.1024748

[18] L. Perkins, “Terrain Analysis in Real-Time Strategy Games: An Inte-
grated Approach to Choke Point Detection and Region Decomposition,”
in AIIDE, G. M. Youngblood and V. Bulitko, Eds. The AAAI Press,
2010.

[19] S. Wintermute, J. Z. Joseph Xu, and J. E. Laird, “SORTS: A Human-
Level Approach to Real-Time Strategy AI,” in AIIDE, 2007, pp. 55–60.

[20] M. J. V. Ponsen, H. Muñoz-Avila, P. Spronck, and D. W. Aha, “Auto-
matically Generating Game Tactics through Evolutionary Learning,” AI
Magazine, vol. 27, no. 3, pp. 75–84, 2006.

[21] P. Avery, S. Louis, and B. Avery, “Evolving Coordinated Spatial Tactics
for Autonomous Entities using Influence Maps,” in Proceedings of the
5th international conference on Computational Intelligence and Games,
ser. CIG’09. Piscataway, NJ, USA: IEEE Press, 2009, pp. 341–348.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1719293.1719350

[22] G. Smith, P. Avery, R. Houmanfar, and S. Louis, “Using Co-evolved
RTS Opponents to Teach Spatial Tactics,” in CIG (IEEE), 2010.

[23] E. T. Jaynes, Probability Theory: The Logic of Science. Cambridge
University Press, June 2003.

[24] J. Diard, P. Bessière, and E. Mazer, “A Survey of Probabilistic Models
Using the Bayesian Programming Methodology as a Unifying Frame-
work,” in Conference on Computational Intelligence, Robotics and
Autonomous Systems, CIRAS, 2003.

[25] O. Lebeltel, P. Bessière, J. Diard, and E. Mazer, “Bayesian Robot
Programming,” Autonomous Robots, vol. 16, no. 1, pp. 49–79, 2004.

[26] P. Bessière, C. Laugier, and R. Siegwart, Probabilistic Reasoning and
Decision Making in Sensory-Motor Systems, 1st ed. Springer Publishing
Company, Incorporated, 2008.

[27] F. Colas, J. Diard, and P. Bessière, “Common Bayesian Models for
Common Cognitive Issues,” Acta Biotheoretica, vol. 58, pp. 191–216,
2010.

[28] R. Le Hy, A. Arrigoni, P. Bessière, and O. Lebeltel, “Teaching Bayesian
behaviours to video game characters,” Robotics and Autonomous Sys-
tems, vol. 47, pp. 177–185, 2004.

[29] G. Synnaeve and P. Bessière, “Bayesian Modeling of a Human
MMORPG Player,” in 30th international workshop on Bayesian Infer-
ence and Maximum Entropy, Chamonix, France, Jul. 2010.

