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Abstract 

 

An experimental study of the thermal plume emerging above a number of plane rectangular 

heat sources of finite dimensions was performed with the aim of verifying the corresponding 

point source or linear source models and the evolutions of the dynamic and thermal fields in 

relation to the aspect ratio. The heat sources were assembled from four rectangular units 1.5 m 

in length and 0.25 m in width. Four different configurations with aspect ratios between 1.5 

and 6 were tested. Surface temperatures were chosen to maintain approximately the same 

convected power from the sources, for all the situations. A battery of sixteen anemometric 

probes and sixty four thermometric probes simultaneously recorded plume velocity and 

temperature distribution. These measurements allowed to determine the actual energy 

entrained by the plume above the source. Velocity measurements also allowed the plume flow 

rate to be evaluated. The evolution of ∆Tc, the temperature difference between the maximum 

temperature and the ambient temperature for a given horizontal plane, yielded an 

approximation of the virtual origin that is in close agreement with the plume thermal and 

dynamic radii above the source. The values found for the flow rate and ∆Tc are compared 

with those predicted by linear or point source formulae in order to determine an aspect ratio 

limit. 
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Nomenclature 

a,b  half-axes for ellipses in the model (m) 
bD, bT  dynamic and thermal radii, for velocity and temperature difference values  wC/e and 

∆TC/e (m) respectively  

Cp  specific heat capacity of air (J.kg-1.K-1) 
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e   exp[1]=2.718… 

f  momentum flux at a given height  (kg.m.s-2) 

g  acceleration due to gravity (m.s-2) 

Pc  convected power from the thermal source (W) 

pc  convected power divided by a characteristic length(W/m) 

Q  ventilation flow rate (m3.s-1) 

Qv  flow rate convected by the plume (m3.s-1) 

r  radial coordinate (m) 

∆T  temperature difference between plume and ambient air at same height z (K) 

∆Tc temperature difference between plume centre and ambient air at same  

height (K) 

Te  injection air temperature (K) 

Ts,Ts1, Ts2 surface temperatures of heat source (K) 

wc   velocity at plume centre 

w  vertical component of plume velocity (m.s-1) 

(x,y,z)  Cartesian coordinates (m) 

(xc,yc)  coordinates of plume centre at a given height z (m) 

zv  virtual origin coordinate (m) 

 

Greek characters 

α  entrainment coefficient for a plume 

β  volume coefficient of thermal expansion (K-1) 

ratio of thermal radius bT to dynamic radius b 

ρ∞  density of surrounding space (kg.m-3) 

Φ  plume excess enthalpy at height z (W) 
 
 
1. Introduction 
 
 Within a fluid with temperature-dependant density, any heat source will cause a plume 
to form as a result of natural convection. This plume will necessarily carry a flow rate by 
entrainment from the ambient fluid. These situations are of practical interest to industrial or 
geophysical environments since plumes convect thermal energy, but also sometimes 
pollutants of various types. Furthermore, energy recuperation and building ventilation fall 
within the scope of these studies. 
 
 The thermal sources encountered in industrial practice can be of very diverse natures: 
treatment tanks, molten metals, machine tools, and so on. For practical applications such as 
air purification, energy recuperation in workshops, the designers need to estimate parameters 
like flow rate, enlargement, maximum temperature of a plume. For this aim, two different 

bbλ T /=
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families of predictive formulae are available that must be adapted to the proper situation. In 
addition, it is understandable that authors primarily focus on circular, cylindrical, linear 
sources for which some theoretical laws exist, and the academic approach can only give a 
general formulation. The basic results are given by results (1) to (5) to which corrections must 
be made like introducing a virtual origin and other corrections. Moreover, it should be borne 
in mind that it is possible to distinguish three zones in the spatial development of a plume, 
namely: 
 - a near zone, 
 - an intermediate zone, 
 - a zone termed the "established plume zone". 
 
The first two zones depend on the geometric structure of the source and are the subject of 
work currently in progress as they remain relatively unknown; see Hunt and Kaye [1]. For the 
established zone it should be kept in mind that self-similar analytical solutions do exist 
concerning the plume generated by a punctual source; see the initial work of Morton et al. [2] 
The vertical component of the velocity field w (x,y,z), it can be written as 
 

2(r/b)- (z).expcw=z)y,w(x,                                     (1) 
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wc being the maximum of vertical velocity which can be observed in an horizontal plane. For 
the temperature difference ∆T=T-Te, it can be written 
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where r = [x2+y2]1/2, z being a coordinate counted vertically from the point source and Pc the 
total power generated at the source and convected by the plume. A detailed review of these 
results can be found in Mundt [3]. 
For an infinite linear source, the self-similar solution takes the form 
 

2(y/b)- .expcw=z)y,w(x,      (5)  
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the horizontal y axis being perpendicular to the longitudinal direction of the source . For this 
situation, as the source has an infinite length, pc designates the power generated by a unit of 
length of the source, as in the above formulae which are reported in Bender [4] . 
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This situation is more difficult to achieve experimentally; the solution of the first case is 
considered as being adaptable to any case, the plume evolving towards this asymptotic 
solution whatever the initial geometry of the source. 
It must be noticed that more recently, Fanneløp and Webber [5] obtained some solutions for 
the initial problem which are not simply powers of z. They consider the momentum flux 

∫= .dsρ.wf 2  as being the basic variable which leads to an implicit formulation for z and Qv. 
The virtual origin is defined as the point for which f=0. These solutions are especially 
interesting for the near and intermediate zones of a plume. 
 
 To take the finite dimensions of real sources into account, the analytical solutions 
available are usually adapted by a correction termed "virtual origin", a correction that consists 
in replacing temperature difference and flow rate expressions in the velocity, the coordinate z 
of the plane above the source by z-zv, zv designating the coordinate of an equivalent virtual 
source. As stated above, the plume generated by a source of finite dimensions can be rather 
well described in the fully developed zone by one of the two analytical forms mentioned in 
formulae (1-6).  The developed zone is believed to appear for heights z above the source 
larger than a few source diameters. However in typical industrial applications the source 
diameter is of the order of a few metres which means that the analytical formulae apply for 
heights larger than 5 m., i.e well above the occupied zone. A few examples could be 
mentioned: galvanization baths with typical surfaces of 15 x 2.5 m2, powder coating of hot 
surfaces (3x2 m2), bending of barrels of 1m diameter, etc. The design of ventilation systems 
(capture hoods or displacement ventilation systems, for instance) for premises with industrial 
heat source requires the characterization of the associated plumes in the intermediate zone. 
One of the objectives of this paper is typically to present an experimental method applicable 
to analyzing plumes generated by a finite rectangular source of variable aspect ratio (from 1.5 
to 6) in the development zone. The modelling of our experimental results will be based on 
generalized Gaussian distributions which can lead to non axi-symmetric iso-curves in order to 
highlight the privileged directions relative to the sources (see below). 
 
2. Material and methods 
 
 2.1. The experimental chamber 
 
It must be noticed that the experimental installation, the dimensions of which were similar to 
the ones of an industrial plant, allowed to directly determine the temperature and velocity 
fields above the heat source, the dimensions of which were also of the same order than the 
ones in practical cases. Further details concerning the experimental facilities were given 
previously, see Devienne R. et al. [6], nevertheless the main characteristics of the installation 
are shown in Figure 1.The bottom of the test chamber was delimited by a perforated floor 
allowing the injection of a controlled air flow rate Q. The same flow rate was extracted from 
the upper part of the chamber. For the following tests these flow rates were fixed at Q 
=2000m3/h. As the installation was used to determine the temperature and velocity fields 
only, the system works as a closed loop circuit, an air conditioning unit insuring a constant 
inlet temperature Te=293K. 
 
 2.2. The thermal sources 
 
For the experiments, a total of four heat sources were available. Figure 2 provides the 
description of one of these modules. The upper horizontal plane constituted the heating 
element and was thermally insulated from the rest of the structure, the main geometric 
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characteristics being the length L= 1.5 m and the width l=0.25 m. This upper part was made 
of copper on which a nickel coating had been deposited to limit radiation effects. The heating 
material could provide an adjustable electric power. A Platinum probe measured the surface 
temperature Ts which could be fixed by the operator. 
  
 2.3. Associated metrology 
 
Temperature and velocity measurements within the plume were made using a battery of 64 
thermocouples (K type) and 16 anemometric probes. All were mounted on a support which 
could be moved along the x,y or z direction, see Figure 1 for the definition of axes. 
 
 2.4. Description of the model developed  
 
Due to the quantity of experimental data, a mathematical approach had to be developed to 
extract the essential characteristics of the thermal and velocity fields. As the velocity and 
temperature profiles predicted by the theory actually appeared, the following modelling is 
proposed 

( ) y)]f(x,(z).exp[wzy,x,w c −=     (7) 
( ) y)]f(x,(z)exp[ΔTz)y,ΔT(x,Tzy,x,T ca −==−   (8) 
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x, y, z designate the coordinates of a measurement point. 
 
The parameters appearing in the equation of function f are naturally dependent on the physical 
quantity modelled, namely velocity or temperature. According to this model, in a fixed z 
coordinate plane, the isothermal lines are ellipses with a centre (x0, y0) and half-axes a and b 
whose orientation is given by the angle θ; the same applies to the iso-velocity lines. 
Anticipating the results to be be presented, the iso-velocity and isothermal ellipses possessing 
the same centre and same orientation, it could be interesting to put forward: 
 DTa /aaλ =   DTb /bbλ =  
where index T corresponds to the thermal field and index D corresponds to the velocity field. 
It should be noted that these ratios can a priori be dependent on coordinate z of the plane 
considered. Determination of the parameters entering into formula 8 is achieved by means of 
a numerical solver with a least squares type approach between estimate and measurement.  
 
Clearly, many other possibilities for the function f can be proposed, especially when the fields 
are supposed to be asymmetrical, see Zukowska et al. [7] The model we propose is the 
simpler evolution between the two theoretical cases, with a minimal number of parameters. 
Certain magnitudes such as orientation θ can be set a priori so as to reduce the number of 
degrees of freedom in the model. The proposed model has necessarily some limits, because 
the plume is supposed to exhibit some symmetry around a vertical axis. A numerical 
simulation developed in the laboratory showed that the thermal field may present two 
maximums for horizontal planes situated closely to the heat source but they are not very 
marked. Another limit is linked with the following. Then arises the question of estimating the 
uncertainty attached to the parameters stemming from the modelling. In the case of the 
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temperature field, the process used requires expressing the seven partial derivatives relative to 

the parameters of the model, i.e. 
ce ΔT

T,
T
T

∂
∂

∂
∂ ,and so on, then calculating these magnitudes for 

each of the 64 measurement points. This therefore means drawing up a X(64 x 7) matrix, the 
confidence intervals being obtained by way of the diagonal elements of the matrix [ ] 1-XX , see 
Press et al. [8] . 
Error bars on Figure 3 correspond to this interpretation. Again, anticipating the experimental 
results obtained, Figure 3 gives an example of the thermal field approach, an approach in 
which the temperature variations along the x and y axes are represented. 
 
3. Experimental results 
 
The full set of experimental results can be found in the PhD thesis by Blaise J. [9]  
Four characteristic configurations were retained for presentation, namely: 
Case 1: source comprising only one heating element; aspect ratio = length/width = 6, surface 
temperature = 623 K 
Case 2: source comprising 2 heating elements; aspect ratio = 3, surface temperature = 593 K 
Case 3: source comprising 3 heating elements; aspect ratio = 2, surface temperature = 423 K 
Case 4: source comprising 4 heating elements; aspect ratio = 1.5, surface temperature = 393 K 
 In fact, the surface temperatures were limited by technical constraints linked to the 
construction of the sources as well as by the total electrical power that could be supplied by 
the installation. The aforementioned surface temperature values were chosen as a function of 
the criteria stated, but also to obtain total convected powers of the same order of magnitude. 
In fact, according to classical correlations, the powers for cases 1, 3 and 4 were about half as 
that for case 2.  
 
3.1Global characterization of velocity and temperature fields, expansion of the plume 
 

Figures 4a, b, c, d present the sequence of isotherms corresponding to ∆T=∆Tc/e, for 
horizontal planes with 1.25m<z<3.75m. Figure 4a gives a spatial view of this isotherms. More 
explicitly, Figure 4b is a projection of this isotherms on the horizontal plane z=0, Figures 4c 
and d correspond to projections on planes x=0 or y=0 and show the evolution of aT and bT 
with the z coordinate (two heat sources), Figure 4e corresponds to the case of one heat source. 
It should be noted that for cases 1 and 2, these isotherms are made up of ellipses whose main 
axes are aligned with the longitudinal and transversal directions of the sources. These ellipses 
evolve towards a circular shape as the measurement plane goes up. The large half-axis aT 
varies only slightly in the domain tested, and small half-axis bT increases with z.  
 For cases 3 and 4, the isotherms appear to be practically circular for the first 
measurement planes; see Figure 5a ,b.  
A similar situation can observed for the velocity field. Figure 5c gives an example of the 
evolution of the iso-velocity lines with z (case 2. Note however that the evolution does not 
appear  to be complete for the last measurement plane). Also is also noteworthy that the 
values of parameters aD and bD, obtained for the characterization of the velocity field, are 
higher than those of the temperature field.  
 Since a and b parameters may evolve in different manners, we propose to test two 
distinct  characteristic lengths corresponding to dynamic radii, b or ab . Figures 6a and 6b 
illustrate the evolution of these quantities as a function of coordinate z: (bT for Fig. 6a and 

DDba for Fig.6b) 
 - cases 1 and 2: a ≈  constant 
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 - cases 3 and 4: a and b evolve in an identical way, with 1b
a ≈ . 

 
Due to limited precision on b values and also to a small number of points, the values observed 
are perfectly compatible with the formulae for the radius, i.e.: 

 ( )vzz
6

5αb −=  

 ( )vzz
π

2αb −=  

additional results stemming from formulae 1 to 6. 
The corresponding values for the slopes being 0.12 ± 0.02 [Figure 6.a] and 0.11 ±0.02 
[Figure6.b]. These values are consistent with an entrainment coefficient like 0.78<α< 1.03 
values for which there is some consensus for the cylindrical or circular sources, see Kokofed 
and Nielsen [10]. The existence of a constant entrainment coefficient α is an hypothesis on 
which formulae 1 and 2 are based, an hypothesis that is still debated. 
So, it appears that we cannot discriminate between the use of the two proposed formulation b 
or ab . 
 
3.2. Energy convected by the plume 
 
When a problematic like air conditioning or energy recuperation is considered, the total 
energy extracted from the source and convected by the plume is necessarily one of the most 
important parameters. The excess of enthalpy is expressed as 

[ ] z).dx.dyy,.w(x,TTρC(z) ep −=Φ ∫∫ . Insofar as the experimental results highlighted a 

coincidence for the central points (x0, y0) and for the orientation θ for the modelling of the 
dynamic and thermal fields, the preceding result can be simplified to the form 

 .a.b(z).(z).wΔT
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2
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2
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Table I includes information concerning the entrained energies. A mean value of the 
magnitudes was used for the calculus of the following paragraph. 
 
3.3. Virtual origin correction, influence of the aspect ratio 
 
From the curves on Figures 6, it is possible in principle to determine the virtual origin zv, but 
given the low value of slope and its relative error, the determination turns out not to be very 
precise in the present situation. Moreover, some of the first experimental planes may be still 
situated in the developing zone of the plume. 
It appears that a more precise determination of zv can be obtained using the variations of ∆Tc 
with the z coordinate ( ∆Tc being the maximum temperature difference observed for a given 
horizontal plane). For all cases, it is possible to find a valuable approximation like 
∆Tc(z)=C.(z-zv)-n in the domain tested. An important remark is that the index n must be 
confined between the two extremes values 1<n<5/3. Another work indicates that this is not 
possible if points too close to the heat source are considered, see Devienne et al. [11] An 
example of this determination is given on Figure 7. The results obtained are the following 
ones zv=-0.9m, n= 1.1, zv=-1m, n=1.33, zv=-1.2m, n=1.5, zv=-1.4m, n=1.61 for cases 1 to 4. 
The estimates obtained for –zv appear to be realistic and are of an order of magnitude of one 
characteristic dimension of the source. 
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 The flow rate entrained by the plume is a fundamental characteristic necessary for 
sizing capture devices. Measuring the vertical velocity component and modelling the field 
allows the determination of the entrained flow rate at a fixed coordinate z in accordance with 
the formula: cπabww.dsQv == ∫∫  
 According to Figure 8, the experimental points corresponding to cases 1 and 2 can be 
grouped into a single curve, provided that a quantity dependence ( ) 3

1
cv /LP/L)(Q −  

proportional to ( z – zv) is chosen (which is not possible for cases 3 and 4), the characteristic 
length L being taken as the length of one source module. This evolution corresponds to the 
case of a linear source.  
 For cases 3 and 4, the experimental points can be grouped into a single curve 

depending on the choice of a ( ) 3
5

vzz −  evolution of the quantity 3
1

cv .PQ −  This evolution 
corresponds to the case of a point source (Figure 9). 
The theoretical models are also acceptable for determining the maximum velocity wc, a 
function of coordinate z, see table II. 
It should however be pointed out that: 
-the variations in wc remain limited in our measurement interval. 
-the calculated velocity is slightly overestimated in relation to the measured values. This 
difference can be explained by the fact that the theoretical model considers a plume free in an 
ambient medium at rest. In the case of our installation, external air is injected into the lower 
section of the test cell, the flow rate being set to a value higher than that of an estimate of the 
plume flow rate at outlet level, to avoid stratification. Even if the iso-velocity lines are 
evolving, the low or zero dependence of wc regarding coordinate z does not allow the valid 
establishment of a law of variation as a function of this coordinate. 

 
3.4 Influence of non-uniform temperatures. 
 
As each heating unit is controlled independently of the neighbouring ones, it is possible to test 
situations for which the surface temperatures are not equal. We have considered the following 
particular cases: 
 - three heating units Ts1=Ts2=Ts3=423K , Ts2 standing for the surface temperature of 
the middle element 
 - three heating units Ts1=Ts3=423K,Ts2=623K 
 - three heating units Ts1=Ts3= 358K,Ts2=623K 

- one heating unit Ts= 623K, that is to say the preceding case 1. 
On Figure 10, the quantity Qv/Pc

1/3 is compared to the one for the case 358-623-358 chosen as 
a reference case. As the height above the source is growing up, the influence of the real size 
of the source and that of the distibution of surface temperatures tend to disappear and the ratio 
go to 1. The case 423-423-423 is somewhat different from the other ones. This is more 
evident considering the quantity ∆TC/Pc

1/3which is reported on Figure 11, this is also 
confirmed by wc/Pc

1/3. From a practical point of view, it is possible to conclude that for the 3 
last situations, the central zone of heating source impose a comportment similar to the one of 
a linear source, the first case 423-423-423 must be treated like a ‘circular’ source. 
 
Conclusion 
 
In this paper we developed experimental methods combined with plume data modelling to 
describe temperature and velocity distributions of the convective flow generated by a two-
dimensional rectangular heat source of variable aspect ratio in the development zone that is of 
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major interest for industrial hygiene applications. Within the limits of the experimental 
parameters interval, isotherm or iso-velocity lines are close to ellipses, the principal directions 
of which coincide with the longitudinal and transversal directions of the sources. The 
evolution towards a circular shape relies on different evolutions of the a and b parameters 
with the height z above the source. Quantities like  a or a.b   exhibit a linear behaviour z but 
the experimental domain of the test is not sufficient to give a precise determination of the 
virtual origin zv, this determination appear to be more accurate using the central temperature 
excess ∆Tc as a function of z, with some limitations. 
Concerning Qv, the flow rate convected by the plume, it is possible to state the following : 
-for an aspect ratio greater than 2, a better approach is provided by considering the punctual 
heat source formulae. 
- for an aspect ratio less than 2, the formulae corresponding to a linear source must be 

considered. This relies on the fact that the curves for 3
1

cv .PQ −  or ( ) 3
1

c
v p

L
Q − may be grouped 

on two different lines. 
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Figure captions 
 
Fig. 1 General view of the experimental installation 1 Test zone 2 Perforated floor 3 Heat 
source 4 Inlet pipes 5 Air conditioning unit  6 Perforated ceiling 7 Outlet pipes 
 
Fig. 2 Heat source 
 
Fig. 3 Variations of the temperature difference ∆T with x or y coordinate for a fixed value of 
the z coordinate 
 
Fig. 4 Isotherms evolution with the height above the source a) 3D view of ∆TC/e isotherms b) 
Vertical projection on a z=0 plane c) Projection on x=0 plane d) Projection on y=0 plane  e) 
Case of one source 
  
Fig. 5 Isotherms ∆Tc/e or iso-velocity lines wC/e evolution with the height above the source. 
a) Isotherms, 3 sources b) Isotherms, 4 sources c) Iso-velocity lines 
 
Fig. 6 Variations of the bT or bD parameters with the z coordinate 
 
Fig. 7 The central temperature difference ∆Tc as a function of z-zv 

 
Fig. 8 Reduced flow rate (Qv/L)/(Pc/L)-1/3versus z-zv

  

 

Fig. 9 Reduced flow rate Qv3/5/Pc
-1/5versus z-zv 

 
Fig. 10 Flow rate comparison for non uniform surface temperatures 
 
Fig. 11 Temperature difference comparison for non uniform surface temperatures 
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