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VECTOR PENALTY-PROJECTION METHOD FOR
INCOMPRESSIBLE FLUID FLOWS WITH OPEN BOUNDARY

CONDITIONS

PHILIPPE ANGOT ∗ AND RIMA CHEAYTOU †

Abstract. A new family of methods, the so-called vector penalty-projection methods (V PPr,ε),
were introduced recently by Angot et al. [1, 2] to compute the solution of unsteady incompressible
fluid flows and to overcome most of the drawbacks of the usual incremental projection methods. In
this work, we deal with the time-dependent incompressible Stokes equations with outflow boundary
conditions using the present method. The spatial discretization is based on the finite volume scheme
on a MAC staggered grid and the time discretization is based on the backward difference formula
of second-order BDF2 (namely also Gear’s scheme). We show that the (V PPr,ε) method provides
a second-order convergence for both velocity and pressure in space and time even in the presence of
open boundary conditions with small values of the augmentation parameter r; typically 0 ≤ r ≤ 1
and a penalty parameter ε small enough; typically ε = 10−10. The resulting constraint on the
discrete divergence of velocity is not exactly equal to zero but is satisfied approximately as O(ε δt)
with a penalty parameter ε as small as desired. Finally, the efficiency and the second-order accuracy
of our method are illustrated by several numerical cases.

Key words. Vector penalty-projection methods, Stokes equations, incompressible flows, open
boundary conditions, second-order convergence.
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1. Introduction. The numerical solution of incompressible fluid flows has al-
ways been one of important subjects in fluid dynamics. The major difficulty in numer-
ically solving unsteady incompressible Navier-Stokes equations in primitive variable
form arises from the fact that the velocity and the pressure are coupled by the in-
compressibility constraint at each time step. There are numerous ways to discretize
these equations. The most widespread methods are projection methods like pressure-
correction methods. This family of methods has been introduced by Chorin and
Temam [6, 14] in the late sixties. The interest of pressure-correction projection meth-
ods is that the velocity and the pressure are computed separately. Actually, in a first
step, we solve the momentum balance equation to obtain an intermediate velocity
and then, this intermediate velocity is projected on the space of solenoidal vector
fields. Using this method, a numerical error named the splitting error appears and
several papers have been written to estimate this error. In 1992, Shen [13] has intro-
duced a modified approach which consists of adding in the first step of the scheme a
penalty term built from the divergence constraint, it is the so-called penalty-projection
method. In the same way, Jobelin et al. [10] proposed a numerical scheme which falls
in the category of the penalty-projection method with an augmentation parameter
r ≥ 0 independent of the time step δt. Recently, Angot et al. [1] propose a new
family of methods, the so-called two-parameters vector penalty-projection method
(V PPr,ε)r≥0,0<ε≤1 (r and ε represent the augmentation parameter and the penalty
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parameter respectively). Angot et al. have tested in [1, 2, 5] the (V PPr,ε) method
using a first-order scheme in time and in presence of Dirichlet boundary conditions.
They found that the scheme is O(δt) in time for velocity and pressure. However,
many applications such as free surface problems and channel flows have to deal with
open boundary conditions on a part of the boundary which is still the challenging
problem. Many recent progress were made in this direction including Guermond et
al. [9], Jobelin et al. [10], Fevriére et al. [7], Liu [11] and Poux et al. [12].

The objective of the present work is to show the optimal convergence of the
vector-penalty projection methods when solving the unsteady incompressible Stokes
problems including open boundary conditions.

2. Formulation of the continuous problem. Let Ω ⊂ Rd (d = 2 or 3 in
practice) be an open, bounded and connected domain with a Lipschitz continuous
boundary Γ = ∂Ω. We suppose that Γ is partitioned in two subsets ΓD and ΓN , of
outward unit normal vector n, such that Γ = ΓD ∪ ΓN , ΓD ∩ ΓN = Ø. The generic
point of Ω is denoted x. For T > 0, we consider the time-dependent Stokes equations
governing incompressible fluid flow on a finite time interval [0,T] which read:

ρ
∂v
∂t

− µ ∆v +∇p = f in Ω×]0, T [ (2.1)

∇ · v = 0 in Ω×]0, T [ (2.2)
v = vD on ΓD×]0, T [ (2.3)

− pn + µ∇v · n = g on ΓN×]0, T [ (2.4)

where v=(u, v)T stands for the fluid velocity of initial value v(t = 0) = v0, p for
the pressure field, ρ for the fluid density (the density is taken to be one), µ for the
dynamic viscosity (here, µ = 1

Re with Re a given Reynolds number). We impose
Dirichlet boundary conditions (2.3) on ΓD, and open boundary condition (2.4) on
ΓN . The external body forces f, the pseudo-stress vector g and the Dirichlet boundary
condition vD are known.

Finally, the reader will keep in mind that bold letters like v, g, etc., indicate
vector valued quantities.

3. Vector penalty-projection methods with open boundary condition.
Let 0 = t0 < t1 < ... < tN = T be a partition of the time interval of computation
[0,T], which we suppose uniform for the sake of simplicity. We denote by δt the time
step, i.e., the constant difference between two successive times tn and tn+1.

3.1. Description of the (V PPr,ε) method with OBC (3.6). We describe
now, the two-step vector penalty-projection method (V PPr,ε) using OBC (3.6) as
an open boundary condition in the projection step with an augmentation parameter
r ≥ 0 and a penalty parameter 0 < ε ¿ 1.

3.1.1. BDF2 time scheme. For all n ≥ 1 such that (n + 1)δt ≤ T and for
ṽ0, ṽ1,v0,v1 ∈ L2(Ω) and p0, p1 ∈ L2

0(Ω) given, find (vn+1, pn+1) such that:
• Vector penalty-prediction step with an augmentation parameter

r ≥ 0:
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3ṽn+1 − 4ṽn + ṽn−1

2δt
− µ ∆ṽn+1 − r∇(∇ · ṽn+1) +∇p?,n+1 = fn+1 in Ω (3.1)

ṽn+1 = vn+1
D on ΓD (3.2)

(−p?,n+1 + r∇ · ṽn+1)n + µ∇ṽn+1 · n = gn+1on ΓN (3.3)

where p?,n+1 = 2pn − pn−1 ( by a second-order Richardson’s extrapolation)
• Vector penalty-projection step with a penalty parameter 0 < ε ≤ 1:

3v̂n+1 − 4v̂n + v̂n−1

2δt
− ε µ ∆v̂n+1 − 1

ε
∇

(
∇ · v̂n+1

)
=

1
ε
∇

(
∇ · ṽn+1

)
in Ω(3.4)

v̂n+1 = 0 on ΓD (3.5)
µ∇v̂n+1 · n = 0 on ΓN (OBC) (3.6)

• Correction step for velocity and pressure:

vn+1 = ṽn+1 + v̂n+1 (3.7)

pn+1 = 2pn − pn−1 − 1
ε

(∇ · vn+1)− r∇ · ṽn+1 (3.8)

Remark 1. Summing the prediction and projection steps gives the discrete prob-
lem which is effectively solved by the above splitting scheme:

3vn+1 − 4vn + vn−1

2δt
− µ (∆ṽn+1 + ε∆v̂n+1) +∇pn+1 = fn+1 in Ω×]0, T [

(εδt)
pn+1 − p?,n+1

δt
+∇ · vn+1 + r ε∇ · ṽn+1 = 0 in Ω×]0, T [

vn+1 = vn+1
D on ΓD×]0, T [

(−p?,n+1 + r∇ · ṽn+1)n + µ∇vn+1 · n = gn+1 on ΓN×]0, T [

As a consequence of the previous system, one would note that the (V PPr,ε) method
lost a little consistency. Nevertheless, the method can be ultra-fast and very cheap if
η = ε/δt is sufficiently small due to the adapted right hand-side in the correction step
which lies in the range of the left hand side as ε is taken small enough. This crucial
property was already shown in [5, Theorem 1.1 and Corollary 1.3] and in [4, Theorem
3.1] and numerically confirmed also in [4, 5].

3.1.2. Correction of pressure gradient for r = 0 and small values of
ε. The augmentation parameter r in our method is kept constant and within small
values (0 ≤ r ≤ 1) to avoid to excessively degrade the conditioning of the linear
system associated to the prediction step. However, taking r = 0, we obtain a poor
convergence convergence rate in time for velocity and pressure: see the numerical
results in Section 4. To improve the convergence rate, we reconstruct the pressure
field itself very fast from its gradient as already proposed by Angot et al. in [3, 2, 5]
where they observed that it is numerically far better to update directly the pressure
gradient to avoid the effect of round-off errors when ε is very small.

In this regard, the updating of the pressure in our method is as follows:
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Taking the gradient of the equation (3.8), we get:

∇pn+1 = 2∇pn −∇pn−1 − 1
ε
∇(∇ · vn+1)− r∇(∇ · ṽn+1) (3.9)

Moreover, we have the following equality in the penalty-projection step:

3v̂n+1 − 4v̂n + v̂n−1

2δt
− ε µ ∆v̂n+1 =

1
ε
∇(∇ · vn+1)

Now, replacing the term , 1
ε∇(∇ ·vn+1) in (3.9) by the term deduced from the above

equality. It yields the estimation of the gradient of the pressure:

∇pn+1 = 2∇pn−∇pn−1−3v̂n+1 − 4v̂n + v̂n−1

2δt
+ε µ ∆v̂n+1−r∇(∇·ṽn+1) with r ≥ 0

(3.10)

3.2. Description of (V PPr,ε) method with OBC1 (3.16). The (V PPr,ε)
method with OBC (3.6) yields good numerical results (see Section 4). However, we
observe that the well-posedness of the penalty-projection step using OBC (3.6) is
not straightforward. Thus, we propose to replace OBC (3.6) by OBC1 (3.16) which
clearly yields a well-posed penalty-projection step (see Lemma 3.1).

3.2.1. BDF2 time scheme. For all n ≥ 1 such that (n + 1)δt ≤ T and for ṽ0,
ṽ1,v0, v1 ∈ L2(Ω) and p0, p1 ∈ L2

0(Ω) given, find (vn+1, pn+1) such that:
• Vector penalty-prediction step with an augmentation parameter

r ≥ 0:

3ṽn+1 − 4ṽn + ṽn−1

2δt
− µ∆ṽn+1 − r∇(∇ · ṽn+1) +∇p?,n+1 = fn+1 in Ω (3.11)

ṽn+1 = vD on ΓD (3.12)
(−p?,n+1 + r∇ · ṽn+1)n + µ∇ṽn+1 · n = gn+1 on ΓN (3.13)

where p?,n+1 = 2pn − pn−1 (by a second-order Richardson’s extrapolation)
• Vector penalty-projection step with a penalty parameter 0 < ε ≤ 1:

3v̂n+1 − 4v̂n + v̂n−1

2δt
− εµ∆v̂n+1 − 1

ε
∇

(
∇ · v̂n+1

)
=

1
ε
∇

(
∇ · ṽn+1

)
in Ω(3.14)

v̂n+1 = 0 on ΓD (3.15)
v̂n+1 · n = 0 and (µ∇v̂n+1 · n) ∧ n = 0 (OBC1) on ΓN (3.16)

• Correction step for velocity and reconstruction of the pressure from
its gradient:

vn+1 = ṽn+1 + v̂n+1

∇pn+1 = 2∇pn −∇pn−1 − 3v̂n+1 − 4v̂n + v̂n−1

2δt
+ ε µ∆v̂n+1 − r∇(∇ · ṽn+1)

Remark 2. For any vector u ∈ Rd defined on Γ, the tangential component
u

∧
n|Γ is defined by: u

∧
n|Γ = uτ

∧
n|Γ with uτ = u− (u · n)n. Thus, in 2-D (d
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= 2), we have simply: u
∧

n|Γ = u · τ , where τ denotes a unit tangential vector on
Γ.

Lemma 3.1. (Well-posedness of the velocity correction step (3.14-3.16))
For all ṽn+1 given in H1(Ω) and for all ε > 0 and δt > 0, there exists at each time
step a unique solution v̂n+1 ∈W(Ω) to the velocity-correction step (3.14-3.16), where
W(Ω) =

{
u ∈ H1(Ω)d; u = 0 onΓD and u · n = 0 onΓN

}
is an Hilbert space.

Sketch of Proof.
For sake of simplicity, we take the discrete form of projection step and we use Euler
scheme to discretize in time. Multiplying the projection step by a test function ϕ
∈ W(Ω) and applying the Green formula, we obtain the following bilinear form:
a(v̂, ϕ) = ε

δt (v̂, ϕ)0 + ε2µ(∇v̂,∇ϕ)0 + (∇ · v̂,∇ ·ϕ)0 in W(Ω)×W(Ω). We note that
a(v̂, ϕ) is a continuous and coercive form in W(Ω)×W(Ω) and L(ϕ) := (∇· ṽ,∇·ϕ)0
is a linear continuous form in W(Ω). Under these hypotheses, we can easily apply
Lax-Milgram theorem which ensures that the penalty-projection step is well-posed
and admits a unique solution v̂n+1 in the Hilbert space W(Ω) equipped with the
usual norm of H1(Ω).

4. Numerical experiments. We consider the unit square as our computation
domain Ω = ]0, 1[2. The Dirichlet condition is prescribed on ∂Ω, except for the part
included in the y-axis, where the open boundary conditions (2.4) are imposed. We
present hereafter a convergence study for two manufactured test cases with an open
boundary condition, homogeneous or not.

4.1. Homogeneous outflow boundary conditions ( g = 0 ). We choose
a test case already used in the literature [9, 10]. It consists in unstationary Stokes
problem, with a forcing term and initial and boundary conditions corresponding to
the following expression for the velocity and pressure:

u(x, y, t) = sin(x) sin(y + t)
v(x, y, t) = cos(x) cos(y + t)
p(x, y, t) = cos(x) sin(y + t)

Convergence rate in space We are interested to study the space convergence rate
for Stokes equations with open boundary conditions. In order to estimate the spatial
error, we focus on the stationary solution of the above numerical experiment. We
fix the time step at a small value: δt = 10−2, the penalty parameter ε at 10−10, the
augmentation parameter r at 10−4 and we run the algorithm for different values of
the spatial mesh step h.

The convergence rate of the error on velocity and pressure is around O(h2) (see
Figs. 4.1 and 4.2).

As a conclusion on the spatial convergence rate, we can say that the results
obtained here conform with those reported by Poux et al. [12]. Besides, the (V PPr,ε)
method appears more accurate than the standard incremental scheme studied by
Guermond et al. [9]. Particularly, our method improves the spatial convergence from
O(h) to O(h2) for the velocity and from O(h1/2) to O(h2) for pressure.
Convergence rate in time We consider the unsteady homogeneous case. The
convergence tests with respect to δt are reported in Figs 4.3 and 4.4. The convergence
rate of the error on the velocity in the L2-norm is close to O(δt2). The situation is
somewhat similar for the pressure. The convergence results for this quantity in L2-
norm seem to behave like O(δt2). These rates seem similar to those obtained by
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Fig. 4.1. Homogeneous open boundary con-
dition - OBC - Velocity error L2-norm versus
mesh step at T=2, δt=10−2, ε=10−10, r = 10−4.
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Fig. 4.2. Homogeneous open boundary con-
dition - OBC - Pressure error L2-norm versus
mesh step at T=2, δt=10−2, ε=10−10, r = 10−4.

Poux et al [12] in the rotational form of their method. Also, the errors of velocity
and pressure for the (V PPr,ε) method seem to be smaller than that computed in [12]
even if the mesh we have used is coarser. Moreover, the (V PPr,ε) methods improves
the poor convergence rates of the standard BDF2 pressure-correction [8] scheme from
O(δt) to O(δt2) for the velocity and from O(δt1/2) to O(δt2) for the pressure. Indeed,
in [8], the second-order rotational pressure-correction yields O(δt3/2) accuracy for the
velocity in the L2-norm and O(δt) accuracy for the pressure.

It is useful to note that we checked numerically the value of v̂ ·n on the boundary
ΓN in the projection step using (V PPr,ε) method with OBC (3.6). We obtain that
v̂ · n is of order 10−12 so, practically equal to zero.

Besides, Fig. 4.5 shows the L2-norm of the velocity divergence as a function of
epsilon. We find that the constraint on the discrete velocity divergence is satisfied
approximately as O(εδt) with 0 < ε ≤ 1 a small as desired. Moreover, in Fig. 4.6,
we plot the L2-norm of the velocity divergence as a function of the time step δt. We
obtain that the velocity divergence varies like O(ε δt) for ε quite small.

Finally, in order to check also the (V PPr,ε) method using OBC1 (3.16) in the
projection step, we simulate numerically the same test case already done. Figs. 4.7
and 4.8 display the errors of the computed velocity and gradient pressure in the L2-
norm for ε = 10−10 and r = 0. The numerical results show that a 2nd order accuracy
in time is recovered for both velocity and gradient pressure.
Convergence rate in time at r = 0 for the (V PPr,ε) method with OBC (3.6)
with the pressure gradient in (3.10) We treat now the temporal convergence of
the velocity and pressure in the case when r = 0 and ε ¿ 1. For this purpose, we
use BDF2 scheme for discretization in time, the open boundary condition OBC (3.6)
in the projection step and we take the same above test. Fig. 4.9 displays the errors
of the computed velocity in the L2-norm for r = 0 and ε = 10−10. The second-order
convergence rate is not clearly observed contrary to the cases when 10−4 ≤ r ≤ 1.
Unfortunately, the slope of the velocity-error appears to be rather of first order. For
the considered case also, Fig. 4.11 shows the distribution of the pressure error (using
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Fig. 4.4. Homogeneous open boundary con-
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sus time step at T=2, mesh size: 1/h = 128,
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Fig. 4.5. Homogeneous open boundary con-
dition - OBC - Velocity divergence L2-norm ver-
sus ε at T=2, mesh size: 1/h = 128, r = 10−4.
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Fig. 4.6. Homogeneous open boundary con-
dition - OBC - Velocity divergence L2-norm ver-
sus time step at T=2, mesh size: 1/h = 128,
ε=10−6.

(13)). As expected, the behavior of the pressure error in L2-norm is strongly affected;
we observe a sharp degradation of the pressure convergence (order 1/2 only) compared
to the case when 10−4 ≤ r ≤ 1. In fact, this deterioration of the convergence rate is
due to the cumulation of round-off errors when ε is small enough.

Using the improvement of pressure explained in Section. 3.1.2, we repeat the
same tests for r = 0. Fig. 4.10 presents the errors of the velocity in the L2-norm.
The velocity exhibits now a second-order convergence rate in time as well as in the
case when 10−4 ≤ r ≤ 1. In Fig. 4.12, the pressure gradient field achieves successfully
1.8th-order rate of convergence. These good results confirm the interest of updating
the pressure by its gradient and provide a second-order convergence in time for r ≥ 0
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condition-OBC1-Velocity error L2-norm versus
time step at mesh size: 1/h = 128, ε=10−10,
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Fig. 4.9. Homogeneous open boundary con-
dition - OBC - Velocity error L2-norm versus
time step with standard pressure correction (3.8)
at mesh size: 1/h = 128, r = 0, ε=10−10.
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Fig. 4.10. Homogeneous open boundary
condition - OBC - Velocity error L2-norm versus
time step with the pressure gradient correction
(3.10) at mesh size: 1/h = 128, r = 0, ε=10−10.

which is in agreement with [3].

4.2. Nonhomogeneous outflow boundary conditions ( g 6= 0 ). To fur-
ther assess the influence of open boundary condition on the accuracy of the BDF2
vector penalty-projection methods, we have performed convergence tests with the
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Fig. 4.11. Homogeneous open boundary
condition - OBC - Pressure error L2-norm ver-
sus time step with standard pressure correction
(3.8) at mesh size: 1/h = 128, ε=10−10.
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Fig. 4.12. Homogeneous open boundary
condition - OBC - Gradient pressure error L2-
norm versus time step with the pressure gradi-
ent correction (3.10) at mesh size: 1/h = 128,
ε=10−10.

nonhomogeneous case. For this aim, we take the same problem as in [11, 12]:

u(x, y, t) = cos2(
πx

2
) sin(πy) cos(2πωt)

v(x, y, t) = − cos2(
πy

2
) sin(πx) cos(2πωt)

p(x, y, t) = cos(
πx

2
) sin(

πy

2
) cos(2πωt)

Convergence rate in time In the computations reported herein, we use the (V PPr,ε)
method with OBC (3.6). The curves are drawn for ω = 1, ε = 10−10 and different
values of the augmentation parameter r; 10−4 ≤ r ≤ 1. As one can see in Figs. 4.13
and 4.14, a convergence rate of order O(δt2) is approximately observed for velocity
and pressure. These results are in agreement with those reported in [12]. Indeed, it
seems that the velocity divergence is almost of order (ε δt) for ε small enough. The
results are not shown here for sake of shortness.

We have also tested the convergence rate of velocity and gradient pressure using
(V PPr,ε) method with OBC1 (3.16). The results ensure also a second-order conver-
gence for both unknowns (the results are not shown for brevity).

5. Conclusions. In this work, we have extended the vector penalty-projection
(V PPr,ε) method to the case of incompressible viscous flows with open boundary con-
ditions. The numerical experiments reported here show that the (V PPr,ε) method
yields a considerable gain in accuracy compared to incremental pressure-correction
scheme as well as in the standard form as rotational form [8] with small values of
the augmentation parameter r; typically 0 ≤ r ≤ 1 and a penalty parameter ε small
enough. We also show that using the BDF2 second-order scheme for time discretiza-
tion, the (V PPr,ε) method yields O(δt2) accuracy for velocity and pressure as well
as in the homogeneous and nonhomogeneous open boundary conditions. Besides, the
loss of spatial convergence in case of open boundary conditions does not occur any-
more with our method. In fact, we obtain O(h2) convergence in the L2-norm of the
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Fig. 4.13. Nonhomogeneous open boundary
condition - OBC - Velocity error L2-norm ver-
sus time step at T = 2, mesh size: 1/h = 128,
ε=10−10.
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Fig. 4.14. Nonhomogeneous open boundary
condition - OBC - Pressure error L2-norm ver-
sus time step at T = 2, mesh size: 1/h = 128,
ε=10−10.

velocity and pressure. The price to pay in the present method is that the constraint
on the discrete divergence of velocity is not exactly equal to zero, but is satisfied ap-
proximately as O(ε δt) with a penalty parameter ε as small as desired up to machine
precision. Finally, this method proves to be really efficient since it is fast, cheap,
and provides very accurate results with an optimal spatial and temporal convergence
despite the existence of outflow boundary conditions whereas other famous methods
don’t reach the same high convergence rate.
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