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Abstract

To date, fault diagnosis is more and more studied due to its essential role in equipment availability and human safety. This
paper proposes a model-based method for event-discrete systems, using the characteristic times in its normal behavior.
Indeed, a failure can be detected is these times are not respected. Then the failure is isolate using fault signature
analysis. A failure can be distinguished from each other by a set of variables, called diagnostic variables. The choice of
these particular variables is essential to diagnose efficiently a system. The diagnosis performance can also be quantified
through two parameters : the detection and isolation times.
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1 Introduction

Fault diagnosis plays an important role in equipment availability. In fact, it enables to improve performances,
but also to minimize harmful consequences which can be catastrophic for equipment and human safety. This
explains why industry devotes a significant part of its work to fault diagnosis. Industrial systems are more and
more intricate and consequently more and more difficult to diagnose.

To date, many diagnostic methods have been implemented. They can be divided into two main types : model-free
and model-based methods. Model-free method consists in analyzing monitoring variables to diagnose the system.
In model-based method, a model of the system is established. This model includes the knowledge of normal
and faulty system behavior. In this approach, the diagnosis can be decomposed into two steps : detection and
isolation.

In the case of discrete-event systems (DES), the most used approach is the model-based method. The diagnosis
is often based on logical models, like Petri Nets. In [3], inputs and outputs are monitored in order to detect and
isolate the source of the fault.
But quickly, it appeared that DES models are sometimes insufficient to diagnose all faults. Indeed, the order
of the system steps is sometimes not affected by a fault, but the step times are. In this case, it is necessary to
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Fig. 1. Steps for modeling a system as a Timed-Automaton

add a new variable : time. That is why the recent diagnostic methods are based on timed Petri nets, stochastic
automata [7], timed automata [4], template languages [5] or Semi-Markov processes.

In this paper, a model-based method is presented for timed discrete-event systems. This approach is based on
using characteristic times of the system. After analysis and modeling of the system, a diagnostic automaton (or
diagnoser) is build. The model and the diagnoser are Timed Automata (TA).
In this first part, the subject and the context of the paper have been introduced. The second part deals with
the tools used to analyze and model a system. In a third part, the necessary steps for building the diagnoser are
detailed. The results and validation of our method are exposed in the fourth part. A conclusion with different
perspectives of this work is given in the end of the paper.

2 Analysis and modeling tools

The approach described in this paper is a model-based method. It means that the fault diagnosis goes by the
differences between the real system and its model. In this part, we expose the successive steps to model the
system (Figure 1).
The first step is to analyze the system, first by a temporal analysis (1) in order to estimate the characteristic
times of the system, and second by a functional analysis (2) using FAST diagram. It allows to model the system
in its normal behavior (3). Then, to consider the fault effects, the fault analysis (4) is made, using the FMECA.
Finally, the global model (5) of the system is build.

2.1 Temporal analysis : search of characteristic times

The diagnostic method detailed in this paper is based on characteristic times of the system. They correspond
often to the stage starts (Figure 2). If these times aren’t respected, a fault is detected. This subsection explains
how to collect these particular moments.

The first step consists in establishing the system dynamics. The objective is to know how the system behaves
in the course of time. Many methods can be used : mathematical tools, like differential equations, or symbolic
approaches, for example timed Petri nets or timed Markov processes. Once the method chosen, the dynamics
is simulated. The simulation allows to collect the characteristic times.
To make it easier to understand, you can refer to the following example.This instance will be used in the whole
article.

Fig. 2. Example of characteristic times (T1 to T4)
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Fig. 3. General diagram of an autonomous electric vehicle and its route

Fig. 4. Angle and speed in Cartesian coordinates

Example : An autonomous electric vehicle
We consider an electric vehicle (Figure 3) which moves without operator, but guiding by variables (white lines
on the ground, internal programming of a route, ...). An on-board computer gives instructions to the actuators
(engines) according to the sensor values (accelerometer, gyroscope, laser, ...) and to the program it contains.
In this example, the system route (on the right in Figure 3) is made up of five stages and two breaks (50 s).
Five sensors (C1 to C5), placed on the route, enable to know if the vehicle is present in the end of a stage (1 if
present, 0 else). The vehicle moves at a constant speed (5m/s).
The interesting variables are the speed and the direction angle of the vehicle. In Cartesian coordinates (Figure
4), dynamics correspond to the following equations : x(t) =

∫ t

0
cos(α).v.dτ

y(t) =
∫ t

0
sin(α).v.dτ

By simulating the dynamic equations, it is possible to have the characteristic times (Figure 5).

2.2 Functional analysis : using a FAST diagram

The functional analysis is used to determine the main functions, as well as the secondary ones. It allows to know
exactly what the system have to do (and how). Among the mass of functional analysis tools, we have chosen to
explain the FAST diagram (Figure 6). It consists in breaking a system down into its main functions. Then each
function can be broken down into basic functions. For each one, the building solution is specified.
This method is often used to described complex systems as exhaustive as possible.

Example : An autonomous electric vehicle
In the case of the autonomous electric vehicle, the analysis will be made for a quarter of the system. In fact,
the vehicle can be decomposed into four identical parts, each made up of a axle-xheel block (wheel, suspension,
engine), a steering block (steering jack, steering bar, bracket) and a power block (batteries).
The FAST diagram of the subsystem is shown on the right in the figure 6. For each component, it is now easy
to know its role and the associated function.
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Fig. 5. Characteristic times of the vehicle on the route

Fig. 6. General FAST diagram (on the left) and for the autonomous electric vehicle (on the right)

Fig. 7. A simple example of TA

2.3 Modeling of the normal behavior

Thanks to the temporal and the functional analysis, the system is well-known enough to build the model of the
normal behavior. We have chosen to model the system as a TA.
A timed-automaton is a finite-state machine extended with a set of clocks. In this way, the automaton states
change depending on variable value and on time, that is to say that the transition from a state to another can
be a comparison between a sensor and a desired value and/or a comparison between the clock and an integer.
Besides, the clocks can be reset during the run of the automaton.
A simple example is given in figure 7 with four states and three transitions and where α, β are control variables
and a, b sensors values.

In order to model the system in its normal behavior, we need to represent the operative and control parts
(Figure 8).
The operative part, or process, is composed of the dynamics (studied previously in 2.1) and the state of the
sensors, depending on the system variables. In the ”Sensors” block, the sensors values are changed according to
system values.
The control part gives the order to the operative part in function. The order depends on the state of the system.
The transition between states depends on the sensor values and the time it occurs. Therefore, this ”Control”
block has to be a TA.
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Fig. 8. Modeling of the normal behavior using a TA

Fig. 9. Modeling of the vehicle in its normal behavior in Matlab (left : entire model - right : control part)

We propose in the following example a modeling using Matlab. Matlab is a development environment, often
used for numerical calculation, and which has two useful libraries for automation : Simulink and Stateflow.
Thanks to them, it is possible to model finite-state machine and TA.

Example : An autonomous electric vehicle
In the case of the autonomous electric vehicle, the control variables are the speed and the angle. From this
control values, the dynamics calculates the coordinates of the vehicle (system variables). Then the sensors on
the route (C1 to C5) are updated. If the vehicle is present in the same coordinates that a sensor, its value is
”1”, else it is ”0”. The process is modeled using Matlab-Simulink (on the left in Figure 9). The ”Process” block
contains two Matlab programs for dynamics and sensor changes. For more informations, see [6].
As for the control part, a Stateflow chart is build (on the right in Figure 9). It has an initialization state and
then the seven states of the route (five movements and two breaks). The transition depends on the value sensors
(to finish the first state and get in the second, the sensor C2 has to be ”up”, ...) and on time (a break is finished
if the break lasts 50s). In each state, the control values for speed and angle are defined.
If a simulation of the model is started up, the displayed vehicle behavior is the one in Figure 5.

2.4 Fault analysis : the FMECA approach

Now take an interest in the failures and their modelings. In order to model the behavior of a system in a fault
state, the faults have to be listed and their consequences and causes clarified. The FMECA (Failure Mode,
Effects and Criticality Analysis) is a powerful tool to describe and analyze the faulty behavior. It appears as
a table (Table 1). This is a Component-FMECA : it means that the faults are listed for each component. For
each fault, the FMECA gives the faulty component, the altered functions (using the FAST diagram), the effects
on the system (locally and on the global behavior) and its probable causes. Then the Criticality level (C) is
determined as the product of the occurrence (Occ), the severity (Sev) and the detectability (Det) :

C = Occ.× Sev.×Det.

A grading scale is provided for occurrence, severity and detectability. These ranking scales are ranging from 1
to 5 : for instance, if the occurrence is 1/5, that means that there is a few risk that it occurs ; if severity is
5/5, the consequences on the system are very serious ; if detectability is 1/5, it is easy to detect the failure.
Therefore the higher the criticality, the more critical the fault is for the system.
It is possible to add columns to the FMECA in order to specify the maintenance operations, the prevention
tasks to avoid having the fault or the tests to identify the failure.

Example : An autonomous electric vehicle
In the case of the autonomous vehicle system, there are 18 failures related to the components of the subsystem
and 10 related to the add of the five sensors. The table 2 shows some rows of the FMECA.
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Table 1
Structure of a FMECA

Failure Item Failure Mode Function Causes Effects Occ. Sev. Det. Criticality

Mode Id.

1 Component
block

Failure of the
component

Altered func-
tion(s)

Causes (extern
aggression, intern
problem, ...)

Effects (in the block,
in the sub-system, in
the global system)

*/5 */5 */5 (product)

Table 2
Some rows of the FMECA of the autonomous electric vehicle

Failure Item Failure Mode Function Causes Effects Occ. Sev. Det. Criticality

Mode Id.

1 Axle-Wheel
block

Damaged
wheel

Transform elec-
tric energy in
mechanical en-
ergy

nails, pebble, tire
wear, ...

-Transmitted mechan-
ical energy does not
correspond to request
-Altered wheel motion
-Altered vehicle direc-
tion
-Reduced speed
-Important energetic
consumption

5 3 1 15

6 Axle-Wheel
block

Out-of-order
suspension

Store energy

Defective suspen-
sion jack, dfail-
lant, broken sus-
pension jack ele-
ment

No store of the load
energy

3 5 2 30

11 Steering
block

Crooked
steering bar

Convey turning
cycle energy

Too high pressure
on the bar

Unsufficient turning
cycle energy

2 4 4 32

17 Power
Empty bat-
tery

System power
Forgetting load,
manufacturing
fault, wear

No power in the sys-
tem, no motion

5 3 1 15

18 Power No power System power Short circuit
No power in the sys-
tem, no motion

4 3 3 36

Fig. 10. Modeling of the global system behavior

2.5 Modeling of the global behavior

With the knowledge of the fault behavior (thanks to the FMECA) and the base of the modeling (in the normal
behavior), the final stage is to model the global system, that is to say in normal but also in faulty behavior. We
are going to consider a single-fault scenario, which means that only one fault can occur on the system.
In order to model the global system, the first step consists in choosing a failure. Then the second step is to
consider the consequences on the basic model.

Firstly, the failure has to be chosen. Two methods can be used : a ”random-time” method and a ”random-
failure-and-time” method. The ”random-time” method consists in choosing the failure to inject but the time
it occurs is random. In the ”random-failure-and-time” method, both failure and time are randomly chosen. In
this case, the occurrence of a failure depends on its probability (present in component data sheets). For more
information, refer to figure 10 (”Fault Choice” block) in the example and [2].

Secondly, the model behavior has to change because of the injection of the fault. When a failure occurs, it can
alter sensor values (if it is a fault on a sensor) or control variables. Therefore, the injection of fault in the system
alters only the process in the model (Figure 10). If the fault analysis is precise enough about local failure effects,
this step of modeling is quite easy.

Example : An autonomous electric vehicle
As said previously, two steps are necessary : failure choice and injection (Figure 11). First at all, for the failure
choice, all we have to do is to tell how many failures can happen and their probabilities. Then, it is possible to
choose the method for the simulation thanks to the switch.
About the injection of failure effects in the model, the problem is broken down into two parts : effects on sensor
values and on control variables. In the Matlab ”Fault on sensors” block, each sensor are handled separately
(Figure 12). Here, sensors are binary, consequently if a fault occurs on a sensor, it stays either in ”down” state
or in ”up” state ; that is why the programming is made of logical operations.
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Fig. 11. Fault choice and injection for the autonomous electric vehicle

Fig. 12. Failure injection on sensors (the ”Fault on sensors” block and its content)

Fig. 13. Failure injection on control variables (the ”Fault on process variables” block and its content)

For failures affecting control variables, the ”Fault on process variables” block altered separately each variable :
here the speed and the angle (Figure 13). We consider that speed have several alteration degrees : low increase,
no change, low decrease, high decrease and no speed. In the same manner, the angle can be unchanged (from the
normal route), low deflected, high deflected and ”straight ahead” (unchanged while it should). In the program,
depending on the fault number, the variables have a definite alteration degree ; accordingly they take randomly
values on a definite set.
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Fig. 14. Failure detection

Fig. 15. Failure isolation

Finally, the global model of the system has been built successfully : the system is modeled in its normal behavior
but also when a failure occurs. Now we will use this model in order to diagnose failures in the system. With
only the system behavior and its characteristic times, the objective is to detect and isolate the fault.

3 Diagnosis by using of signature analysis

In this part, detection and isolation are first explained. Then the notion of fault signature is introduced, which
is essential in the diagnostic method in this paper. Finally, the diagnoser building is explained for the example
of the autonomous electric vehicle.

3.1 Detection principle

When a failure occurs in the system, the first step is to detect it. It is possible by comparing the system with
its model in normal behavior for a same control. If a difference between the two behaviors is noticed, a failure
is detected (Figure 14).

3.2 Isolation principle

Once the failure is detected, it need to be isolated (Figure 15). Firstly, the faulty component has to be found :
it is the localization. Then a component can be associated with several failures. So all these failures are studied
to find the one, which occurs in the system : it is the identification.

3.3 Fault signature analysis

In order to isolate the failure, the method described in this paper uses the notion of fault signature. It considers
that a failure can be distinguished from each other by the values of some system variables. The definition of
fault signature in this paper is based on [1]. More precisely, a fault affects some variable values in a definite
manner. It can be represented as a diagnostic matrix.
On figure 16, you can see an example of diagnostic matrices. M1 is the diagnostic matrix for a variable x1 which
can take three values V1 to V3, in a system with five failures d1 to d5. If x1 can take the value Vj in presence
of the failure di, the matrix element mij = 1 (ith line, jth column), else mij = 0. Then, the signature of the
failure di corresponds to the ith row of the matrix.

Moreover, it is interesting to use several system variables in order to refined the diagnosis. Indeed, in the example
on figure 16, if x1 = V2, the possible failures are d1 and d3. But to distinguish the two failures, it is necessary
to add a new variable which does not take the same value for both failures. By adding the variable x2 and its
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Fig. 16. Example of diagnostic matrices for variables x1 and x2

Fig. 17. Matlab interface with the diagnoser

diagnostic matrix, it becomes possible to differentiate between the two failures.
In conclusion, the system variables used for the diagnosis have to be well-chosen in order to isolate correctly all
failures.

3.4 Example of diagnoser building

In this subsection, the method to build a diagnoser using fault signatures is introduced. The approach is directly
applied to the example of the autonomous electric vehicle, programed with Matlab.
The diagnoser considers time in order to detect failures, consequently the detection has to be a TA (Figure 17).
After detection, the failure is isolated thanks to diagnostic matrices and the variable values.

Let’s take an interest in the detection (Figure 18). In this figure, the program is broken down into six parts.
The first block is the control model of the system. In the second part, the cycle of the system is represented
again but if the characteristic times are not respected, the TA leaves the cycle to enter in a detection state. At
this moment, the detection occurs.
Once the fault is detected, the system variable values (angle and speed) are calculated (3rd block in figure 18).
Indeed, we consider that the system variables used for isolation are unobservable, but can be calculated using
observable variables. Once the calculus made, the values are sent out of the TA.
Moreover, the TA contains three blocks to save the injection, detection and isolation times. They will serve to
validate the diagnostic method (Section 3).

Now, let’s take an interest in the isolation (Figure 17). The isolation block has as entries the diagnostic matrices
and the variable values from the TA. For each variable, the column of its diagnostic matrix which corresponds
in the calculated value is recovered. By applying a logical ”AND” operation between these column vectors, the
result of the diagnosis is returned. In the best case, the result column vector contains only one ”1” and the
failure is isolated. Else, the result is a set of possible failures including the one which occurred.

4 Results and validation

The diagnostic method explained in this paper has been validated. Indeed, for each failure injection, the diagnoser
is able to detect and isolate it, as you can see in the table 3.
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Fig. 18. The detection as a TA

1: control model - 2: detection - 3: variable calculation - 4,5,6: injection, detection and isolation times

Table 3
Results of the diagnosis method : detection and isolation times and diagnoser results for several fault injections

Injected failure number Injection time Detection time Isolation time Diagnostic time Diagnoser result (failure number)

1 197.5 250.5 254 56.5 1

15 139.5 250.5 254 114.5 9, 11, 13, 14 or 15

For some failures, the diagnoser is unable to distinguish failures and return a set of failure instead of only one.
That means that the variables used for the diagnosis are not enough precise and another one would be necessary
to distinguish the failures. However, the set of failures in result contains always the fault which occurred and
it targets a precise block of the system : in the case of the 15th failure (i.e. an out-of-order encoder for the
steering), all the failures proposed in the diagnoser result belongs to the steering block. The diagnoser allows
nevertheless to locate the failure and helps the operate for the maintenance.
About the speed of the diagnostic, in this method, it depends on the injection time. If the injection occurs at
the beginning of a new state, the detection can be a bit long : the failure is detected when the state should
change in the normal behavior or in the worst case (for the sensor faults) after an entire cycle. However, the
isolation is quite fast. It depends essentially on the calculation of variables values.

5 Conclusion

The diagnostic method presented in this paper is interesting, because it can be applied on all timed event-
discrete systems easily. Some improvements can nevertheless be brought about : the choice of system variables
used for the diagnosis could be studied in order to avoid the uncertainty of the diagnoser. By adding some
sensors in precise place on the system, it could be possible to add diagnostic variables and refine the results.
In every case, using the characteristic times of a system is a good idea to diagnose failures. It is an interesting
way of work.
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