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THE CRITICAL BRANCHING RANDOM WALK IN A RANDOM

ENVIRONMENT DIES OUT

OLIVIER GARET AND RÉGINE MARCHAND

Abstract. We study the possibility for branching random walks in random
environment (BRWRE) to survive. The particles perform simple symmetric
random walks on the d-dimensional integer lattice, while at each time unit,
they split into independent copies according to time-space i.i.d. offspring dis-
tributions. As noted by Comets and Yoshida, the BRWRE is naturally asso-
ciated with the directed polymers in random environment (DPRE), for which
the quantity Ψ called the free energy is well studied. Comets and Yoshida
proved that there is no survival when Ψ < 0 and that survival is possible when
Ψ > 0. We proved here that, except for degenerate cases, the BRWRE always
die when Ψ = 0. This solves a conjecture of Comets and Yoshida.

1. Introduction

1.1. Branching random walks in random environment. Let us introduce the
model. We write N = {0, 1, 2, . . .} and N∗ = {1, 2, . . .}.

To each (t, x) ∈ N × Zd, we associate a distribution qt,x = (qt,x(k))k∈N on the
integers; the family q = (qt,x)t∈N,x∈Zd is called an environment. We denote by

Λ = P(N)N×Z
d

the space of environments, where P(N) is the set of distributions on
N.

Given an environment q = (qt,x)t∈N,x∈Zd ∈ Λ, we define the branching random
walk in environment q as the following dynamics:

• At time t = 0, there is one particle at the origin x = 0.
• Each particle, located at site x ∈ Zd at time t, jumps at time t+1 to one of
the 2d neighbors of x chosen uniformly; upon arrival, it dies and is replaced
by k new particles with probability qt,x(k). The number of newborn parti-
cles is independent of the jump, and all these variables, indexed by the full
population at time t, are independent.

Take a random q, we obtain a branching random walk in random environment
(BRWRE). We assume here that q = (qt,x)t∈N,x∈Zd is a P(N)-valued i.i.d. sequence
with common distribution γ and we denote by Pγ the annealed law of the branching
random walk in this random environment. We also note Eγ for the expectation with
respect to Pγ .

Since the environment not only depends on the sites but also on the time, we
can be more specific and say that we work with a random space-time or random
dynamic environment. This is the model studied in Yoshida [9], Hu and Yoshida [5],
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and also Comets and Yoshida [3]. A natural question is to characterize the laws γ
that allow the branching random walk to survive.

For (t, x) ∈ N× Zd and fixed q, we introduce the mean progeny at site (t, x):

(1) mt,x =
∑

k∈N

kqt,x(k).

From here on, we assume that

Pγ(m0,0 +m−1
0,0) < +∞,(2)

Pγ(q0,0(0) > 0) > 0 and Pγ(q0,0(0) + q0,0(1) < 1) > 0.(3)

Assumptions (3) are intended to avoid obvious survival and obvious extinction.

1.2. The Comets–Yoshida Theorem and the associated conjecture. The
Comets–Yoshida Theorem [3] relates the survival of the BRWRE with a functional
on an associated directed polymer in random environment as follows: define on
a probability space (ΩS ,FS , PS) a simple symmetric random walk (St)t≥0 on Zd

starting from S0 = 0. The partition function of the directed polymer in random
environment q is given by

Zt =

∫ t−1
∏

u=0

mu,Su
dPS ,

with mt,x as in (1). It is easy to see (e.g., [9, Lemma 1.4]) that Zt is the expectation
of the number of particles of the BRWRE living at time t, knowing the random
environment q = (qt,x)(t,x)∈N×Zd . Note that (2), combined with the inequality

| log u| ≤ u ∨ u−1 for u > 0, implies that

∀t ∈ N∗ Eγ(| logZt|) < +∞
Proposition 1.1 (Comets–Yoshida). The following limit exists

Ψ(γ)
def.
= lim

t→∞

1

t
Eγ(logZt).

Moreover,

• If Ψ(γ) < 0, then Pγ(survival) = 0.
• If Ψ(γ) > 0 and Eγ [− log(1− q0,0(0))] < +∞, then Pγ(survival |q) > 0 for

Pγ-almost every q.

The number Ψ is called the free energy of the polymer. The aim of this article is
to prove the following theorem, stated as a conjecture by Comets and Yoshida [3]:

Theorem 1.2. Assume that (2) and (3) are satisfied. Then

(Ψ(γ) = 0) =⇒ (Pγ(survival) = 0).

It is a well-known fact that growth processes often die out in the critical case: it
obviously holds for the Galton–Watson tree, but it also holds for more complicated
models. This has been proved for the contact process in dimension d by Bezuiden-
hout and Grimmett in a famous paper entitled The critical contact process dies

out [1]. Recently, Steif and Warfheimer [7] generalized this result to the case of the
contact process in randomly evolving environment introduced by Broman [2]. We
also proved in [4] that is it true for a class of dependent oriented percolations on
Zd.
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1.3. Strategy of the proof. Recall that γ is the common law of the i.i.d sequence
(qt,x)t≥0,x∈Zd of distributions on N. For ρ ∈ (0, 1], we define a perturbation γρ of γ
by setting:

∀k ≥ 0 γρ(k) = ργ(k) + (1 − ρ)δ0(k),

where δ0 is the Dirac mass on 0. Under γρ, the environment is then less favorable
to births of particles than under γ.

Lemma 1.3. ∀ρ ∈ (0, 1] ∀γ ∈ (0, 1] Ψ(γρ) = log ρ+Ψ(γ).

Proof. Note Qγ = γ⊗N×Z
d

. Let qρt,x(k) = ρqt,x(k) + (1 − ρ)δ0(k). Obviously, the

law of the field (qρt,x) under Q
γ is Qγρ

. If we define, for (t, x) ∈ N× Zd,

mρ
t,x =

∑

k∈N

kqρt,x(k) and Zρ
t =

∫ t−1
∏

u=0

mρ
u,Su

dPS ,

it is easy to see that mρ
t,x = ρmt,x, that Z

ρ
t = ρtZt, and finally

Ψ(γρ) = lim
t→∞

1

t
Eγ [logZρ

t ] = log ρ+ lim
t→∞

1

t
Eγ [logZt] = log ρ+Ψ(γ).

�

To prove Theorem 1.2, we will use the strategy of Bezuidenhout and Grimmett,
which consists in characterising survival by a local event. More precisely, for a fixed
law γ allowing the branching random walk to survive, we will exhibit a local event
A, that only depends on what happens in a finite box [0, T ]× [−L,L]d, and a level
p0 < 1 such that

(C1) Pγ(A) > p0
(C2) For every law γ′ on P(N), (Pγ′

(A) > p0) =⇒ (Pγ′

(survival) > 0).

A simple coupling argument implies that Pγρ

(A) ≥ ρ(T+1)(2L+1)dPγ(A), and thus

(4) (Pγ(survival) > 0) =⇒ (∃ρ ∈ (0, 1) Pγρ

(survival) > 0).

Consider now γ such that Pγ(survival) > 0, take ρ given by (4) and assume Ψ(γ) =
0. Lemma 1.3 ensures Ψ(γρ) < 0 while Pγρ

(survival) > 0, which is in contradiction
with Proposition 1.1. Thus

(Pγ(survival) > 0) =⇒ (Ψ(γ) > 0),

which proves Theorem 1.2.

We focus now on the Bezuidenhout–Grimmett construction for the BRWRE.
First we need to give a more precise construction of the BRWRE. In particular, we
will need a FKG inequality, which we prove in the next section.

2. Notations and FKG inequality

An initial configuration A = (A(x))x∈Zd is an element of the set NZ
d

satisfying

|A| =
∑

x∈Zd

A(x) < +∞.
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The number A(x) is the number of particles sitting on site x at time t = 0. We
encode the BRWRE starting from the initial configuration A by the random vari-
ables ηAt = (ηAt (x))t∈N,x∈Zd which represent the number of particles living on site
x at time t. Thus,

|ηAt | =
∑

x∈Zd

ηAt (x)

stands for the total number of particles living at time t. To exploit the independence
properties of the environment, we also need to consider the occupied sites at time
t:

ηA
t
(x) = 1{ηA

t (x)>0} and ηA
t
= {x ∈ Zd : ηAt (x) > 0}.

We denote by |ηA
t
| the number of occupied sites at time t. We define the lifetime

of the branching random walk starting from A

τA = min{t ∈ N : ηAt = 0Zd} = min{t ∈ N : ηA
t
= ∅}.

We say that there is survival starting from A when τA = +∞.
In this article, the genealogy of the BRWRE is not central, and we choose a

description in terms of particles systems. In the proof of the next lemma on FKG
inequalities, we give a full construction of the BRWRE in the spirit of probabilistic
cellular automata.

Lemma 2.1. For any non decreasing functions f, g : NN×Z
d → R+,

E
[

f
(

ηAt
)

g
(

ηAt
)]

≥ E
[

f
(

ηAt
)]

E
[

g
(

ηAt
)]

,

E

[

f
(

ηA
t

)

g
(

ηA
t

)]

≥ E

[

f
(

ηA
t

)]

E

[

g
(

ηA
t

)]

.

Proof. To build the BRWRE, we need a probability space on which live the following
random variables:

• The (qt,x)(t,x)∈N×Zd are i.i.d, take their values in P(N), and have γ as
common law.

• The (Ut,x,k)(t,x,k)∈N×Zd×N∗ are i.i.d and follow the uniform law on [0, 1].
With the environment q, the random variable Ut,x,k is used to generate the
progeny of the k-th particle sitting on site x at time t.

• The (Dt,x,k)(t,x,k)∈N×Zd×N∗ are i.i.d and follow the uniform law on V =

{v ∈ Zd : ‖v‖1 = 1}. The random variable Dt,x,k gives the displacement
of the children of the k-th particle sitting on site x at time t.

• All these variables are independent.

So we can choose Ω = P(N)N×Z
d × [0, 1]N×Z

d×N
∗ × V N×Z

d×N
∗

and

Pγ = γ⊗N×Z
d ⊗ U([0, 1])⊗N×Z

d×N
∗ ⊗ U(V )⊗N×Z

d×N
∗

.

For t ≥ 1, we denote by θt the time translation operator acting on each coordinate
of Ω.

We define then the number Et,x(v, p) of children born on site x at time t and
moving to x+ v when p particles live on x at time t:

Et,x(v, p) =

p
∑

k=1

11{Dt,x,k=v}

+∞
∑

i=1

11{
∑

i
j=0

qt,x(j)≤Ut,x,k}
.
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An initial configuration A ∈ NZ
d

being given, we set η0 = A, and

ηAt+1(x) =
∑

v∈V

Et,x−v(v, η
A
t (x − e)).

We note Ft = σ((qs,x, Us,x,k, Ds,x,k)0≤s≤t,x∈Zd,k∈N∗). Then, ηt+1 is Ft-measurable.
Note that

• for every ω ∈ Ω and v ∈ V , p 7→ Et,x(v, p)(ω) is non-decreasing.
• The coordinates of the random field (Et,x)t∈N,x∈Zd are i.i.d. under Pγ .

By induction on t ∈ N, we thus see that A 7→ ηAt (x) is non-decreasing; also
for fixed A, the (ηAt (x))t∈N,x∈Zd are non-decreasing with respect to the vectors
(Et,x)t∈N,x∈Zd . As these vectors are independent, Holley’s inequality holds for the

(ηAt (x))t∈N,x∈Zd .

As the (ηA
t
(x))t∈N,x∈Zd are non-decreasing functions of the (ηAt (x))t∈N,x∈Zd , Hol-

ley’s inequality also holds for the (ηA
t
(x))t∈N,x∈Zd . �

Truncating. To localize the events we consider, we also need truncated versions
of the BRWRE: for B ⊂ Zd, and A ∈ NB such that |A| < +∞, we set Bη

A
0 = A

and

Bη
A
t+1(x) = 11B(x)

∑

v∈V

Et,x−v(v,Bη
A
t (x− v)).

In words, we keep in Bη
A
t only particles living in B: other particles are simply

discarded. Note that Bη
A
t (x) is obviously non-decreasing in L and non-decreasing

in B. A straight adaptation of the previous proof ensures that the FKG inequalities
of Lemma 2.1 still hold for the truncated BRWRE. Note that the process (Bη

A
t )t≥0

is σ((qt,x, Ut,x,k, Dt,x,k)t∈N,x∈B,k∈N∗)-measurable.
We mainly work with restrictions on subsets B = {−L, . . . , L}d. In that case,

we simply note Lη
A
t instead of {−L,...,L}dηAt .

3. Construction of the block event

Outline of proof. Recall that we are looking for a local event A which satisfies
(C1) and (C2). The idea is to find an event that expresses the fact that if the
branching random walk occupies a sufficiently large area at a given place, it will
presumably extend itself a bit further.

Set, for every integer n ≥ 1,

An =

{

x ∈ Zd : ‖x‖1 ≤ n and

n
∑

i=1

xi ≡ 0 [2]

}

.

Note that when n is even, An is the maximal set that a branching random walk
can reach at time n.

The next proposition ensures that starting from An with n large enough, the
BRWRE restrained to a large box {−2L−2n, . . . , 2L+2n}d×{0, . . . , 2T } occupies
with high probability a translated copy of An:

Proposition 3.1. For every ε > 0, there exist positive integers n, L, T , with n ≤ L
such that

Pγ

(

∃x ∈ {L+ n, . . . , 2L+ n} × {0, . . . , 2L}d−1, t ∈ {T, . . . , 2T }
2L+2nη

An

t
⊃ x+An

)

≥ 1− ε.
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Proposition 3.1 provides an event A that satisfies (C1). The fact that A also
satisfies (C2) follows from a quite standard construction of an embedded supercrit-
ical percolation of blocks. This construction does not rely on the specificities of
the model. We can find in the literature many examples of similar block events.
Most of these papers adapt the initial construction of the Bezuidenhout–Grimmett
article [1]: The critical contact process dies out. Their proof is also exposed in the
reference book by Liggett [6].

A complete description of these procedures can be found in Steif–Warfheimer [7]
in the case of a contact process where the death rate depends on a dynamical
environment or in Garet–Marchand [4] for a class of dependent oriented percolation.

3.1. Some properties of the surviving branching random walk. We fix γ
such that the probability of survival Pγ(τ0 = +∞) is positive. At first, we prove
that survival implies the explosion of the number of particles.

Lemma 3.2. For every finite initial configuration A,

Pγ(τA = +∞, lim
t→+∞

|ηAt | = +∞) = Pγ(τA = +∞).

Proof. Let A be a fixed finite initial configuration, and N be a fixed positive integer.
By assumption (3), there exist ε0, α0 > 0 such that

Pγ(q0,0(0) > ε0) > α0.

By blocking the progenies of all living particles at time s, we see that,

∀s > 1 Pγ
(

τA < +∞ | Fs−1

)

≥ ε
|ηA

s |
0 α

|ηA

s
|

0 ≥ (ε0α0)
|ηA

s |.

By the martingale convergence theorem, lim
s→+∞

Pγ
(

τA < +∞ | Fs−1

)

= 11{τA<+∞}.

So on the event {τA = +∞}, lim
s→+∞

|ηAs | = +∞. �

To exploit the independence properties of the environment, we need particles to
sit on distinct sites; the fact that the number of particles at time t explodes when
the BRWRE survives does not directly ensure that the number of occupied sites
also explodes. It will be a by-product of our construction, but we are not able to
prove it at this stage. So we need to work separately under the two complementary
assumptions:

(H) Pγ(q0,0(0) = 1) > 0,

(Hc) Pγ(q0,0(N
∗) > 0) = 1.

Under Assumption (H), we prove that survival implies the explosion of the
number of occupied sites:

Lemma 3.3. Assume (H) is fulfilled. For every finite initial configuration A,

Pγ(τA = +∞, lim
t→+∞

|ηA
t
| = +∞) = Pγ(τA = +∞).

Proof. Let A be a fixed finite initial configuration, and N be a fixed positive integer.
Under (H)

∃ε1 > 0 Pγ(q0,0(0) = 1) ≥ ε1.

By blocking the progenies of all occupied sites at time s, we see that,

∀s ≥ 1 Pγ
(

τA < +∞ | Fs−1

)

≥ ε
|ηA

s
|

1 .
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By the martingale convergence theorem, lim
s→+∞

Pγ
(

τA < +∞ | Fs−1

)

= 11{τA<+∞}.

So on the event {τA = +∞}, lim
s→+∞

|ηA
s
| = +∞. �

Besides, under Assumption (Hc), we prove that if we start with many particles
sitting on the same site, there is a large probability that after some time many sites
are occupied. We denote by (N) the initial configuration where N particles sit on
0. Formally, we have (N) = (Nδ0(x))x∈Zd .

Lemma 3.4. Assume (Hc) is fullfilled. Let n be a fixed even integer. Set Bn =

{0, . . . , 2n} × {−n, . . . , n}d−1. Then lim
N→+∞

Pγ(ne1 +An ⊂ Bn
η
(N)
2n ) = 1.

Proof. Fix n ≥ 1 and α > 0. Under (Hc),

(5) ∀ε > 0 ∃η > 0 Pγ(q0,0(N\{0}) ≥ η) ≥ 1− ε/2.

We say that the environment q is fertile in the box Bn × {0, . . . , 2n} if

∀x ∈ Bn ∀t ∈ {0, . . . , 2n} qx,t(N\{0}) ≥ η;

we denote this event by F . Thus, with ε and η satisfying (5),

Pγ(F ) ≥ (1− ε)(4n+1)d(2n+1).

We choose ε > 0 such that Pγ(F ) ≥ 1 − α/2, and take the corresponding η given

by (5). Now, as Pγ(ne1+An ⊂ η
(N)
2n ) ≥ Pγ(ne1+An ⊂ η

(N)
2n |F )(1−α/2), we restrict

ourselves to environments in F . For an environment q in F , each coordinate qx,t,
x ∈ Bn, t ∈ {0, . . . , 2n} stochastically dominates the fixed law γ0 = ηδ1+(1− η)δ0.
Thus by coupling, it is sufficient to prove that

(6) lim
N→+∞

Pγ0(ne1 +An ⊂ Bn
η
(N)
2n ) = 1.

Let now x ∈ ne1 +An be fixed. As ‖x‖1 ≤ 2n,

Pγ0(x ∈ Bn
η
(1)
2n ) ≥

( η

2d

)2n

> 0.

As the environment is non-random, the behavior of distinct particles are indepen-
dent under Pγ0 . Thus,

lim
N→+∞

Pγ0(x ∈ Bn
η
(N)
2n ) ≥ lim

N→+∞
1−

(

1−
( η

2d

)2n
)N

= 1,

which proves (6); this ends the proof. �

A last lemma ensures that starting from An with n large, the survival probability
is large:

Lemma 3.5. lim
n→+∞

Pγ
(

τAn = +∞
)

= 1.

Proof. By monotonicity, lim
n→+∞

Pγ
(

τA2n = +∞
)

= Pγ
(

τA∞ = +∞
)

, with

A∞ = {x ∈ Zd :
n
∑

i=1

xi ∈ 2Z}.

The event {τA∞ = +∞} is invariant under the spatial translation x 7→ x+ 2e1, so
by ergodicity, it is either null or full. Since Pγ(τA∞ = +∞) ≥ Pγ(τ0 = +∞) > 0,
it is equal to 1. �
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Lemma 3.6. Recall that Bn = {0, . . . , 2n} × {−n, . . . , n}d−1. For every n ≥ 1,
there exists h > 0 such that

Pγ(An ⊂ nη
0
h
) > 0 and Pγ(ne1 +An ⊂ Bn

η0
h
) > 0.

Proof. By (3), there exists η > 0 and ε > 0 such that

Pγ(q0,0(0) + q0,0(1) ≤ 1− η) ≥ ε.

Let k be even with 2k ≥ |An| and let h = k + 2n. Note

G = {∀(x, t) ∈ Bn × {0, . . . , k + 2n} q0,0(0) + q0,0(1) ≤ 1− η} .
Pγ(G) ≥ ε|Bn×{0,...,h}| > 0. On the event G, the environment allows each individual
to have more than one daughter with probability η. For an environment q in F ,
each coordinate qx,t, x ∈ Bn, t ∈ {0, . . . , h} stochastically dominates the fixed law
γ1 = ηδ2 + (1 − η)δ0, so for each event E, we have

Pγ(G) ≥ ε|Bn×{0,...,h}|Pγ1(G).

Thus, it is sufficient to prove that Pγ1(An ⊂ nη
0
h
) > 0 and Pγ1(ne1+An ⊂ Bn

η0
h
) >

0.
We only prove the second inequality; the first one is similar.
Under Pγ1 , the probability that there is at least |An| particles at the origin at

time k whose ancesters never left {0; e1} is at least ( η
2d )

2k+1−1. Then, there is a

probability at least ( η
2d )

2n|An| that their progeny fills ne1 + An in 2n steps, with

trajectories remaining inside {−2n, . . .2n}d. Finally,

Pγ1(ne1 +An ⊂ Bn
η0
h
) ≥ (

η

2d
)2

k+1−1(
η

2d
)2n|An| > 0.

The other proof is similar. �

3.2. From survival to local events.

Lemma 3.7. For every finite A ⊂ Zd, for every positive integer N ,

lim
t→+∞

lim
L→+∞

P
(

|LηAt | ≥ N
)

= P
(

τA = +∞
)

.

Under the extra assumption (H),

lim
t→+∞

lim
L→+∞

P

(

|LηAt | ≥ N
)

= P
(

τA = +∞
)

.

Proof. Let A be a fixed finite subset of Zd, and N be a fixed positive integer.

∀t ∈ N ηAt =
⋃

L∈N

Lη
A
t .

Indeed, the inclusion ⊃ follows from positivity, and if L ≥ ‖A‖∞ + 2t+ 1, then for
every s ≤ t, ηAs = Lη

A
s . Thus

{

|ηAt | ≥ N
}

=
⋃

L∈N

{

|LηAt | ≥ N
}

and thus lim
L→+∞

P
(

|LηAt | ≥ N
)

= P
(

|ηAt | ≥ N
)

. But Lemma 3.2 and the dominated

convergence theorem ensure that

lim
t→+∞

Pγ(τA = +∞, |ηAt | ≥ N) = P(τA = +∞).
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In the same way, lim
L→+∞

P

(

|LηAt | ≥ N
)

= P

(

|ηA
t
| ≥ N

)

. Under Assumption (H),

we use Lemma 3.3 to conclude. �

Then, using the FKG inequality with a classical square root trick, we can ensure
that the truncated process at time t contains many points in a prescribed orthant
of Zd:

Lemma 3.8. For every positive integers n,N, t, for every integer L > n,

Pγ
(

|LηAn

t ∩ {0, . . . , L}d| ≤ N
)2d

≤ Pγ
(

|LηAn

t | ≤ N2d
)

,

Pγ
(

|LηAn

t
∩ {0, . . . , L}d| ≤ N

)2d

≤ Pγ
(

|LηAn

t
| ≤ N2d

)

.

Proof. By the symmetries of the model and of An, the law of the intersection of
the process with a given orthant does not depend on the orthant. With the FKG
inequality, we get

Pγ
(

|LηAn

t ∩ {0, . . . , L}d| ≤ N
)2d

≤ Pγ

(

∩
ε∈{+1,−1}d

{∣

∣

∣

∣

Lη
An

t ∩
n
∏

i=1
εi{0, . . . , L}

∣

∣

∣

∣

≤ N

})

,

which is smaller than Pγ
(

|LηAn

t | ≤ N2d
)

. The other proof is similar. �

For every positive integers n, L, T with L > n, we define NAn(L, T ) as the
number of particles sitting on sites (x, t) such that t ∈ {0, . . . , T }, ‖x‖∞ = L,
x ∈ Lη

An

t
: this is the number of particles sitting on a given lateral face of the

large box. We also define NAn(L, T ) as the number of occupied sites (x, t) such
that t ∈ {0, . . . , T }, ‖x‖∞ = L, x ∈ Lη

An

t
: this is the number of occupied sites

on a given lateral face of the large box. The next point is to ensure that when
the BRWRE survives, it must occupy many points and on the top face and on the
lateral faces of a large box:

Lemma 3.9. For any positive integers M,N, n, for any increasing sequences of

integers (Tj)j≥1 and (Lj)j≥1,

lim
j→+∞

Pγ

(

NAn(Lj , Tj, )
≤ M

)

Pγ

(

|Lj
ηAn

Tj
|

≤ N

)

≤ Pγ
(

τAn < +∞
)

.

Under the extra assumption (H),

lim
j→+∞

Pγ

(

NAn(Lj , Tj, )
≤ M

)

Pγ

(

|Lj
ηAn

Tj
|

≤ N

)

≤ Pγ
(

τAn < +∞
)

.

Proof. For integers L, T , let FL,T = σ((qs,x, Us,x,k, Ds,x,k)0≤s≤T,x∈{−L,...,L}d,k∈N∗).
Set k = M +N . Let (Tj)j and (Lj)j be two increasing sequences of integers.

Hj = {NAn(Lj , Tj) + |Lj
ηAn

Tj
| ≤ k} and G = {τAn < +∞}.

We proceed as in Lemma 3.2. Since Hj ∈ FLj,Tj−1, we have

Pγ(G|FLj ,Tj
) ≥ 11Hj

(ε0α0)
k.

By the martingale convergence theorem, Pγ(G|FLj ,Tj
) almost surely converges

to 11G, which implies that

lim
j→+∞

Hj ⊂ G, and thus lim
j→+∞

Pγ(Hj) ≤ P

(

lim
j→+∞

Hj

)

≤ Pγ(G).
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Using the FKG inequality once again, note that

Pγ(Hj) = Pγ(NAn(Lj, Tj) + |Lj
ηAn

Tj
| ≤ M +N)

≥ Pγ
(

NAn(Lj , Tj) ≤ M
)

Pγ
(

|Lj
ηAn

Tj
| ≤ N

)

,

which ends the proof. The proof of the result under (H) is obtained by adapting
the proof as Lemma 3.3 is adapted from Lemma 3.2. �

Exactly as in Lemma 3.8, the FKG inequality and the symmetries of the process
allow to control the number of colonized points in a prescribed orthant of a lateral
face of the box {−L, . . . , L}d × {0, . . . , T }.

For every positive integers L, T and every finite A ⊂ Zd, we define NA
+ (L, T )

as the number of particles sitting on sites (x, t) such that t ∈ {0, . . . , T }, x1 = L,

xi ≥ 0 for 2 ≤ i ≤ d, x ∈L ηA
t
, and NA

+(L, T ) as the number of occupied sites (x, t)

such that t ∈ {0, . . . , T }, x1 = L, xi ≥ 0 for 2 ≤ i ≤ d, x ∈L ηA
t
. Then

Lemma 3.10. For every positive integers n,N,K, t, for every integer L ≥ n,

Pγ
(

NAn

+ (L, T ) ≤ M
)d2d

≤ Pγ
(

NAn(L, T ) ≤ Md2d
)

.

Pγ
(

NAn

+ (L, T ) ≤ M
)d2d

≤ Pγ
(

NAn(L, T ) ≤ Md2d
)

.

Proof. This is the same square root trick as in the proof of Lemma 3.8. �

3.3. Proof of Proposition 3.1. With the previous lemmas in hand, we can now
prove Proposition 3.1.

3.3.1. First case: assume that (H) holds. In that case, we can work with the num-
ber of occupied sites.

Let ε > 0 be fixed and 0 < δ < 1 to be chosen later.
With Lemma 3.5, we first choose a positive even integer n such that

(7) Pγ
(

τAn = +∞
)

> 1− 2δ2.

We take then h > 0 given by Lemma 3.6. Choose an integer N ′ such that

(8)
(

1− Pγ
(

nη
0
h
⊃ An

))N ′

≤ δ,

and then N such that every finite subset A of Zd with cardinal N contains a subset
A′ of N ′ points such that

∀x, y ∈ A′ (x 6= y) =⇒ ‖x− y‖∞ ≥ 2n+ 1.

Since background random variables in disjoint areas are independent, as a conse-
quence of (8), we get that for every subset A of Zd.

|A| ≥ N =⇒ Pγ(∃x ∈ A n+‖A‖∞
ηx
h
⊃ x+An) ≥ 1− δ(9)

Similarly, there exists M > 0 such that

|A| ≥ M =⇒ Pγ(∃x ∈ A 2n+‖A‖∞
ηx
h
⊃ x+ ne1 + An) ≥ 1− δ(10)

Since 1− 2δ < 1− 2δ2 < Pγ
(

τAn = +∞
)

, there exist by Lemma 3.7 T0 ∈ N and a
map L′ : [T0,+∞) → N such that

∀T ≥ T0 ∀L ≥ L′(T ) Pγ
(

|LηAn

T
| > 2dN

)

≥ 1− δ.



CRITICAL BRANCHING RANDOM WALK IN RANDOM ENVIRONMENT 11

Define L0 = L′(T0), then for i ≥ 0

Ti+1 = inf
{

T > Ti; Pγ
(

|Li
ηAn

T
| > 2dN

)

< 1− 2δ
}

.

Note that Ti+1 < +∞ is finite because with assumption (H) we have

lim
t→+∞

Pγ
(

|Li
ηAn

t
| > 2dN

)

= 0.

Then simply take Li+1 = max(L′(Ti+1), Li + 1). Then, we have two increasing
sequences (Ti)i≥1 and (Li)i≥1 such that

∀i ≥ 1 Pγ
(

|Li
ηAn

Ti
| > 2dN

)

≥ 1− 2δ

∀i ≥ 1 Pγ
(

|Li
ηAn

Ti+1
| > 2dN

)

< 1− 2δ.

With Lemma 3.9 and (7), there exists K such that

Pγ

(

NAn(LK , TK + 1)
≤ d2dM

)

Pγ

( |LK
ηAn

TK+1
|

≤ 2dN

)

≤ 2δ2.

From now on, set L = LK and T = TK + 1. We get

Pγ
(

|LηAn

T−1
| > 2dN

)

≥ 1− 2δ,

Pγ
(

NAn(L, T ) > d2dM
)

≥ 1− 2δ2

1− P

(

|LηAn

T | > 2dN
) ≥ 1− δ.

With lemmas 3.8 and 3.10, we obtain

Pγ
(

|LηAn

T−1
∩ {0, . . . , L}d| > N

)

≥ 1− (2δ)2
−d

,(11)

Pγ
(

NAn

+ (L, T ) > M
)

≥ 1− δ2
−d/d.(12)

Putting (9) and (11) together, we get

Pγ
(

∃x ∈ {0, . . . , L}d L+2nη
An

T−1+h
⊃ x+An

)

≥ (1− (2δ)2
−d

)(1 − δ).

Now, we can use (12) and (10) starting from the translated x + An occupied at
time T − 1 + h: it leads to

Pγ





∃x ∈ {L+ n, . . . , 2L+ n} × {0, . . . , 2L}d−1,
∃t ∈ {T − 1 + 2h, . . . , 2T − 1 + 2h}

2L+2nη
An

t ⊃ x+An



 ≥ (1−(2δ)2
−d

)(1−δ)(1−δ2
−d/d)(1−δ).

By choosing δ > 0 small enough, the right-hand side can be made larger than
1− ε, and renaming T + h by T gives the result.

3.3.2. Second case: assume that (Hc) holds. We can not work with the number of
occupied sites anymore, so we must work with the number of particles.

Let ε > 0. Let δ ∈ (0, 1) be such that δ ≤ ε/4 and

(1− (2δ)2
−d

)(1 − δ)(1− δ2
−d/d)(1 − δ) ≥ 1− ε.

We must again split the proof into two complementary subcases.
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(Aδ) : ∀L > 0 lim
T→+∞

Pγ(|LηAn

T | > 0) < 1− 2δ

(Ac
δ) : ∃L > 0 lim

T→+∞
Pγ(|LηAn

T | > 0) ≥ 1− 2δ.

Suppose first that (Hc) and (Aδ) hold.

Choose n, N , M exactly as in (7), (9) and (10). Under (Hc), by Lemma 3.4, we
can choose J large enough to have

(13)
(

1− Pγ
(

ne1 +An ⊂ Bn
η
(J)
2n

))

≤ δ.

Set R = max{N,M, J}2.
Using 1 − 2δ < 1 − 2δ2 < Pγ

(

τAn = +∞
)

, (Aδ) and Lemma 3.7 together, the
same reasoning as in case (H) gives the existence of two increasing sequences (Ti)i≥1

and (Li)i≥1 such that

∀i ≥ 1 Pγ
(

|Li
ηAn

Ti
| > 2dR

)

≥ 1− 2δ

∀i ≥ 1 Pγ
(

|Li
ηAn

Ti+1| > 2dR
)

< 1− 2δ.

By Lemma 3.9 and (7), there exists K such that

Pγ
(

NAn(LK , TK + 1) ≤ d2dR
)

Pγ
(

|LK
ηAn

TK+1| ≤ 2dR
)

≤ 2δ2,

From now on, set L = LK and T = TK + 1. We get

Pγ
(

|LηAn

T−1| > 2dR
)

≥ 1− 2δ,

Pγ
(

NAn(L, T ) > d2dR
)

≥ 1− 2δ2

1− Pγ
(

|LηAn

T | > 2dR
) ≥ 1− δ.

By lemmas 3.8 and 3.10, we obtain

Pγ
(

|LηAn

T−1 ∩ {0, . . . , L}d| > R
)

≥ 1− (2δ)2
−d

,(14)

Pγ
(

NAn

+ (L, T ) > R
)

≥ 1− δ2
−d/d.(15)

But if |LηAn

T−1 ∩ {0, . . . , L}d| > R,

• either |LηAn

T−1
∩ {0, . . . , L}d| ≥

√
R ≥ N ,

• or there is one x ∈ Lη
An

T−1
∩ {0, . . . , L}d such that ηAn

T−1(x) ≥
√
R ≥ J .

Using Equation (14), either the choice we made for N or the choice (13) we made
for J leads to

Pγ
(

∃x ∈ {0, . . . , L}d L+2nη
An

T−1+h
⊃ x+An

)

≥ (1− (2δ)2
−d

)(1 − δ).

Now, we can use (15) starting from the translated x+An occupied at time T−1+h.

But if NAn

+ (L, T ) > R,

• either the number of occupied sites on this face is larger than
√
R ≥ M ,

• or one of the occupied sites contains more than
√
R ≥ J particles.
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Using Equation (15), either the choice we made for M or the choice (13) we made
for J leads to

Pγ





∃x ∈ {L+ n, . . . , 2L+ n} × {0, . . . , 2L}d−1,
∃t ∈ {T − 1 + 2h, . . . , 2T − 1 + 2h}

2L+2nη
An

t ⊃ x+An





≥(1− (2δ)2
−d

)(1− δ)(1 − δ2
−d/d)(1 − δ) ≥ 1− ε.

Renaming T + h by T gives the result.

Suppose finally that (Hc) and (Ac
δ) hold

In other words, there exists L such that

lim
T→+∞

Pγ(|LηAn

T | > 0) = Pγ( Lτ
An = +∞) ≥ 1− 2δ.(16)

We see that this is the most favorable case for the branching random walk, because
it can survive even in a finite box. We will see it is also the easiest case to deal
with.

We fix then a large L such that (16) is satisfied. There exists h > 0 such that

Pγ(∀x ∈ {−L, . . . , L}d, (L+ n)e1 +An ⊂ 2L+2nη
x
h
) = r > 0.

For k ≥ 0, set Tk = kh and

Bk = {∀x ∈ {−L, . . . , L}d, (L+ n)e1 +An ⊂ 2L+2nη
x
h
◦ θTk

}.

The B′
ks are clearly independent. Moreover

{ Lτ
An = +∞}∩Bk ⊂ {(L+ n)e1 +An ⊂ 2L+2nη

An

Tk+1

}.

Thus, for any K > 1,

Pγ( Lτ
An = +∞, ∀t ∈ {TK , . . . , T2K} (L+ n)e1 +An 6⊂ 2L+2nη

An

t
)

≤ Pγ( Lτ
An = +∞,

2K−1
∩

k=K−1
Bc

k)

≤ Pγ

(

2K−1
∩

k=K−1
Bc

k

)

= (1− r)K+1.

We set now 2δ = ε/2, and take K large enough to have (1 − r)K+1 < ε/2, and

Pγ

(

∃x ∈ {L+ n, . . . , 2L+ n} × {0, . . . , 2L}d−1, t ∈ {T, . . . , 2T }
2L+2nη

An

t ⊃ x+An

)

≥ Pγ( Lτ
An = +∞, ∃t ∈ {TK , . . . , T2K} (L + n)e1 +An ⊂ 2L+2nη

An

t
)

≥ Pγ( Lτ
An = +∞)− Pγ( Lτ

An = +∞, ∀t ∈ {TK , . . . , T2K} (L+ n)e1 +An 6⊂ 2L+2nη
An

t
)

≥ 1− 2δ − ε/2 = 1− ε.

One can see that we had to split the study into three cases and to make (not
so) different proofs. This can seem odd, but we think it is unavoidable. Note for
instance that there is a similar disjunction in Yao and Chen [8].
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