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GENERATION OF TWO-DIMENSIONAL WATER WAVES BY MOVING

BOTTOM DISTURBANCES

HAYK NERSISYAN, DENYS DUTYKH∗, AND ENRIQUE ZUAZUA

Abstract. In this study we investigate the potential and limitations of the wave genera-

tion by disturbances moving at the bottom. More precisely, we assume that the wavemaker

is composed of an underwater object of a given shape which can be displaced according

to a given trajectory. The practical question we address in this study is how to com-

pute the wavemaker shape and its trajectory in order to generate a wave with prescribed

characteristics? For the sake of simplicity we model the hydrodynamics by a generalized

forced BBM equation. This practical problem is reformulated as a constrained nonlinear

optimization problem. Some constraints are imposed in order to make practically feasible

the computed solution. Finally, we show some numerical results to support our theoretical

and algorithmic developments.

Contents

1 Introduction 1

2 Mathematical model 4

3 Well-posedness of the gBBM equation 6

3.1 Optimization problem 8

4 Numerical results 9

5 Conclusions 18

1. Introduction

The problem of wave generation is complex and has many practical applications. On the
scale of a laboratory wave tank a traditional wavemaker is composed of numerous paddles
attached to a vertical wall and which can move independently according to some prescribed
program. These systems have been successfully used to conduct laboratory experiments at
least since late 60’s [27, 39].

In this study we investigate theoretically and numerically the potential for practical
applications of a different kind of wave making devices. Namely, the mechanism considered
in this study is composed mainly of an underwater object which can be displaced along
a portion of the bottom with the prescribed trajectory. In mathematical terms, we study

Key words and phrases. wave generation; moving bottom; BBM equation; optimization.
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Figure 1. An artificial wave generated in a pool by an underwater wavemaking
device. © http:// www. wavegarden.com/

the wave excitation problem by moving forcing. Similar processes are known in physics
under the name of autoresonance phenomena, thoroughly studied by L. Friedland and
his collaborators [28, 29, 30].

Recently, this type of wavemakers have found an interesting application to the man-made
surfing facilities [36]. This type of devices was proven to be successful to generate high
quality waves for surfing far from the Oceans. Our main goal consists in providing the first
elements of theoretical explanation of this process. The second objective of this study is
to provide an efficient computational procedure to determine the underwater object shape
and trajectory to generate a prescribed wave profile in a given portion of the wave tank.

The problem of wave generation by moving bottom has been particularly studied in
the context of tsunami wave generation. These extreme waves are caused by sea bed dis-
placements due to an underwater earthquake [34, 11, 44, 21, 26] or a submarine landslide
[64, 45, 65, 2]. However, the bottom motion produced by an underwater earthquake is
mainly vertical, even if some effort has been made to include also the horizontal displace-
ments components [59, 61, 60, 43, 25]. On the other hand, the wave making mechanism
studied here involves only the horizontal motion. Consequently, the knowledge of the
tsunami wave community cannot be directly transposed to this problem.

http://www.wavegarden.com/
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The wave propagation takes place in a shallow channel, so the long wave assumption
can be adopted [63, 17]. However, weak dispersive and weak nonlinear effects should be
included since the resulting wave observed in experiments has some common characteristics
with a solitary wave. Consequently, as the base model we choose the classical Boussinesq
system derived by D.H. Peregrine (1967) [46] and generalized later by T. Wu (1987)
[66], who included the time-dependent bathymetry effects. In order to simplify further the
problem, we assume the wave propagation to be unidirectional and, hence, we derive a
generalized forced BBM equation [3]. This equation is then discretized with a high order
finite volume method [4, 23, 14, 24]. Finally, the trajectory and the shape of the underwater
object are optimized in order to minimize a cost-function under some practical feasibility
constraints.

From mathematical theoretical point of view our formulation can be seen as the con-
trollability problem for the forced BBM equation [48]. Let us describe the main available
results on the controllability of dispersive wave equations such as KdV [10, 38], BBM [3]
and some Boussinesq-type systems [6].

The controllability of the KdV equation:

ut + uxxx + ux + uux = 0, x ∈ [0,L], t > 0
is well studied in the literature. The controllability and stabilization properties were ob-
tained by L. Russell & B.-Y. Zhang (1993) [53] for periodic boundary conditions with
an internal control. The boundary control was investigated by the same authors later [54].
The controllability of the KdV equation with Dirichlet boundary conditions was studied
in the following papers [55, 49, 67, 47, 15, 51, 12, 32, 13, 33, 40]. This list of references is
not exhaustive.

Let us briefly describe now some results on the controllability of the BBM equation.
Rosier & Zhang (2012) [52] proved the Unique Continuation Property (UCP) for the
solution of BBM equation on a one dimensional torus T ∶= R/2πZ with small enough initial
data from H1(T) with nonnegative mean values:

ut − utxx + ux + uux = 0, u(0) = u0, (1.1)

∫
T

u0(x)dx ≥ 0, ∣∣u0∣∣∞ < 3, (1.2)

i.e. for any open nonempty set ω ⊂ T the only solution of (1.1) with

u(x, t) = 0 for (x, t) ∈ ω × (0, T )

is the trivial solution u = 0. Moreover, they proved the UCP also for BBM-type equations
of the form

ut − utxx + [f(u)]x = 0,
where f ∈ C1(R), f(u) ≥ 0 for all u ∈ R, and the only solution u ∈ (−δ, δ) of f(u) = 0 is
u = 0, for some number δ > 0. Furthermore, they consider the following control problem:

ut − utxx + ux + uux = a(x + ct)h(x, t),
where a ∈ C∞ is given and h(x, t) is the control. They prove local exact controllability in
Hs(T) for any s ≥ 0 and global exact controllability in Hs(T) for any s ≥ 1. A necessary
and sufficient algebraic condition for approximate controllability of the BBM equation
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with homogeneous Dirichlet boundary conditions was given in [1]. The controllability of
linearized BBM and KdV equations was studied in [50, 41, 69]. The controllability of
a family of Boussinesq equations have been studied theoretically as well [68]. In [62],
Touboul recently obtained controllability results for the heat and wave equations with a
moving boundary.

The present study is organized as follows. In Section 2 we derive the governing equation.
Then, this model is analysed mathematically in Section 3. The results of some numerical
simulations are presented in Section 4. Finally, in Section 5 we outline the main conclusions
of this study.

2. Mathematical model

Consider an ideal incompressible fluid of constant density in a two-dimensional domain.
The horizontal independent variable is denoted by x and the upward vertical one by y. The
origin of the Cartesian coordinate system is chosen such that the line y = 0 corresponds to
the still water level. The fluid is bounded below by an impermeable bottom at y = −h(x, t)
and above by an impermeable free surface at y = η(x, t). We assume that the total depth
H(x, t) ≡ h(x, t) + η(x, t) remains positive H(x, t) ⩾ H0 > 0 at all times t. The sketch
of the physical domain is shown in Figure 2. The depth-averaged horizontal velocity is
denoted by u(x, t) and the gravity acceleration by g. The fluid layer has the uniform depth
d everywhere, which is perturbed only by a localized object, which can move along the
bottom:

h(x, t) = d − ζ(x, t), ζ(x, t) = ζ0(x − x0(t)), (2.1)

where the function ζ0(x) has a compact support and x = x0(t) is the trajectory of its
barycenter. The meaning of the segment I = [a, b] is explained in Section 3.1.

In 1987 T. Wu [66] derived the following Boussinesq-type system to study the generation
of solitary waves by moving disturbances:

ηt + ((h + η)u)x = −ht, (2.2)

ut + uux + gηx =
1

2
h (ht + (hu)x)xt − 1

6
h2uxxt. (2.3)

x

y

d

x0(t)

y = η(x, t)
I = [a, b]

Figure 2. Sketch of the physical domain with an underwater object moving along
the bottom.
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This system represents a further generalization of the classical Boussinesq equations derived
by D.H. Peregrine (1967) [46] for the case of the moving bottom h(x, t). In our work we
take the system (2.2), (2.3) as the starting point. In order to simplify it further, we will
switch to dimensionless variables (denoted with primes):

x′ =
x

l
, η′ =

η

a
, h′ =

h

d
, u′ =

u
ga√
gd

, t′ =
t
ℓ√
gd

, and ζ ′ =
ζ

a
,

where a and ℓ are the characteristic wave amplitude and wavelength correspondingly. We
can compose three important dimensionless numbers which characterize the Boussinesq
regime:

ε ∶=
a

d
≪ 1, µ2 ∶= (d

ℓ
)2 ≪ 1, and S ∶=

ε

µ2
= O(1),

where S is the so-called Stokes-Ursell number [63], which measures the relative importance
of dispersive and nonlinear effects. In unscaled variables the Peregrine-Wu system takes
the following form (for simplicity we drop out the primes):

ηt + ((h + εη)u)x = −ht, (2.4)

ut + εuux + ηx =
µ2

2
h (ht + (hu)x)xt − µ2

6
h2uxxt. (2.5)

To simplify the problem, we will reduce the Boussinesq system (2.2), (2.3) to the unidi-
rectional wave propagation. For instance, in the original work of T. Wu [66] a similar
reduction to a forced KdV is also performed. However, the resulting model in our work
will be of the BBM-type [3], since it possesses better numerical stability properties.

The reduction to the BBM equation can be done in the following way [37]. The horizontal
velocity u can be approximatively represented in unscaled variables as

u = +η + εP + µ2Q +O(ε2 + εµ2 + µ4), (2.6)

where P (x, t) and Q(x, t) are some functions to be determined. The sign + in front of
η means that we consider the waves moving in the rightward direction. Substituting the
representation (2.6) into unscaled Boussinesq equations (2.4), (2.5) yields two equivalent
relations:

ηt + ηx + εPx + µ
2Qx + 2εηηx − ε(ζη)x − εζt = O(ε2 + εµ2 + µ4), (2.7)

ηt + ηx + εPt + µ
2Qt + εηηx =

µ2

2
h (−ζt + (hη)x)xt − µ2

6
h2ηxxt +O(ε2 + εµ2 + µ4).

By subtracting two last asymptotic relations we obtain the following compatibility condi-
tion:

ε (Px − Pt)+µ2 (Qx −Qt)+εηηx−ε (ζη)x = εζt− µ2

2
(−ζt + ηx)xt+ µ2

6
h2ηxxt+O(ε2+εµ2+µ4).

(2.8)
For the right-going waves we have the following identities:

Pt = −Px +O(ε), Qt = −Qx +O(ε).
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Finally, the unknown functions Px and Qx can be chosen to satisfy asymptotically the
compatibility condition (2.8), which yields

2Px = (ζη)x − ηηx + ζt, 2Qx =
1

2
ζxtt −

1

3
ηxxt,

where we used also the analytical representation of h(x, t) = 1−εζ(x, t). The BBM equation
in unscaled variables can be now easily obtained by substituting expressions for Px and Qx

into equation (2.7):

ηt + ηx +
ε

2
((ζη)x − ηηx + ζt) + µ2

2
(1
2
ζxtt −

1

3
ηxxt) + 2εηηx − ε(ζη)x = εζt.

Turning back to physical variables, the generalized forced BBM (gBBM) equation takes
the following form:

ηt + (√gdη +

√
g

d
(3
4
η2 −

1

2
ζη))

x

−
d2

6
ηxxt = −

1

4

d2√
gd

ζxtt +
1

2
ζt.

In subsequent sections we will use this equation to model wave-bottom interaction. How-
ever, in order to simplify the notations, we will introduce a new set of dimensionless
variables, where all the lengthes are unscaled with the water depth d, velocities with

√
gd

and the time variable with

√
d

g
. In this scaling the gBBM equation reads:

ηt + (η + 3

4
η2 −

1

2
ζη)

x

−
1

6
ηxxt = −

1

4
ζxtt +

1

2
ζt. (2.9)

Recall that here η is the unknown free surface elevation, and ζ is a given function, which
is the topography of moving body defined by (2.1). The last equation has to be completed
by appropriate initial and boundary conditions (when posed on a finite or semi-infinite
domain):

η(x,0) = η0(x), x ∈ R. (2.10)

The method that we used to get the model (2.9) is known in the literature. For instance,
in [9], by the similar arguments, it was obtained the model for generation of waves by a
moving boundary. The system BBM was justified also by some laboratory experiments
(see cite [7]).

3. Well-posedness of the gBBM equation

In this section we give a proof of the well-posedness of gBBM equation (2.9) in the
Sobolev spaces Hs ∶= Hs(R). First, we have the following result of the well-posedness of
this problem.

Theorem 1. For any ζ ∈ C2([0,∞),Hs)∩C([0,∞),H[s]+1) and η0 ∈Hs, s ≥ 0 the problem

(2.9), (2.10) admits a unique solution η ∈ C([0,∞),Hs).
Proof. Uniqueness. Let us assume that for some given functions ζ and η0 our problem
(2.9), (2.10) admits two different solutions η1 and η2. The difference η̃ ∶= η1 − η2 satisfies
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the following initial-value problem:

η̃t + (η̃ + 3
4
η̃(η1 + η2) − 1

2
ζη̃)

x

−
1

6
η̃xxt = 0, η̃(x,0) = 0. (3.1)

Using Fourier transformation, we can rewrite (3.1) in the form

iη̃t = ϕ(Dx)(η̃ + 3

4
η̃(η1 + η2) − 1

2
ζη̃) , (3.2)

where ϕ(Dx) is defined by ϕ̂(Dx)v(ξ) ∶= ξ

1+1/6ξ2 v̂(ξ). Clearly, (3.2) implies

η̃(x, t) = −i∫ t

0

ϕ(Dx)(η̃ + 3

4
η̃(η1 + η2) − 1

2
ζη̃)dt.

From the inequality ∥ϕ(Dx)(uv)∥0 ≤ C∥u∥0∥v∥0
it follows that

sup
t∈[0,T ]

∥η̃(x, t)∥0 ≤ CT (1 + ∥η1∥0 + ∥η2∥0 + ∥ζ∥0) ∥η̃∥0. (3.3)

Thus, the application of the Gronwall inequality yields η̃ = 0. �

Existence. For any fixed time horizon T > 0 let us show that our problem (2.9), (2.10)
has a solution η ∈ C([0, T ),Hs). J. Bona & N. Tzvetkov (2009) [8] proved that for any
given initial data η0 ∈ Hs the following BBM equation

ut + ux + uux − uxxt = 0, u(x,0) = u0(x),
admits a unique solution u ∈ C([0,∞),Hs) (for s < 0 they proved that the system is ill-
posed). Using a scaling argument, we have also the well-posedness of the same equation
with some positive coefficients:

ut + (u + 3
4
u2)

x

−
1

6
uxxt = 0, u(x,0) = η0(x). (3.4)

We seek a solution of (2.9), (2.10) in the form η = u + v, where u ∈ C([0,∞),Hs) is the
solution of (3.4) and v satisfies

vt + (v + 3

4
(v2 + 2uv) − 1

2
ζ(v + u))

x

−
1

6
vxxt = −

1

4
ζxtt +

1

2
ζt, v(x,0) = 0. (3.5)

Let us prove the existence of such v ∈ C([0,∞),Hs) by induction on [s]. First, we
assume [s] = 0. Taking the scalar product of (3.5) with v in L2, we obtain

d

dt ∫
R

(1
2
v2(x, t) + 1

12
v2x(x, t)) dx = −∫

R

1

4
ζxttvdx+∫

R

1

2
ζtvdx+∫

R

(3
2
uv −

1

2
ζ(v + u))vxdx.

Using the Sobolev and Hölder inequalities, we get

d

dt
∥v(⋅, t)∥21 ≤ C(∥ζtt(⋅, t)∥0∥v(⋅, t)∥1 + ∥ζt(⋅, t)∥0∥v(⋅, t)∥0 + ∥u(⋅, t)∥0∥v(⋅, t)∥21

+ ∥ζ(⋅, t)∥1∥v(⋅, t)∥1 (∥v(⋅, t)∥0 + ∥u(⋅, t)∥0)). (3.6)
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After integrating (3.6) on the interval (0, t) we obtain

∥v(⋅, t)∥21 ≤ C sup
t∈[0,T ]

∥v(⋅, t)∥1 T

∫
0

(∥ζtt(⋅, s)∥0 + ∥ζt(⋅, s)∥0 + ∥u(⋅, s)∥0∥v(⋅, s)∥1+
∥ζ(⋅, s)∥1 (∥v(⋅, s)∥0 + ∥u(⋅, s)∥0))ds, (3.7)

which is valid for any t ∈ [0, T ]. Hence, sup
t∈[0,T ]

∥v(⋅, t)∥2
1
also can be estimated by the right

hand-side of (3.7). Dividing by sup
t∈[0,T ]

∥v(⋅, t)∥2
1
and applying the Gronwall inequality, we

deduce

sup
t∈[0,T ]

∥v(⋅, t)∥1 ≤ C T

∫
0

(∥ζtt(⋅, s)∥0 + ∥ζt(⋅, s)∥0 + ∥ζ(⋅, s)∥1∥u(⋅, s)∥0)ds×
exp
⎛⎝

T

∫
0

(∥u(⋅, s)∥0 + ∥ζ(⋅, s)∥1)ds⎞⎠ .
Using this estimation and applying fixed point argument, we can obtain the existence of
the solution in the case s ∈ [0,1].

By induction, now we assume the existence of v for [s] < α for some integer α > 1 and
let us prove it for [s] = α. To this end, let us take the d

α

dxα , α ≤ [s] derivative of (3.5),

multiply the resulting equation by vα ∶= d
αv

dxα and integrating in x over R, we obtain

d

dt ∫
R

(1
2
v2α(x, t) + 1

12
vα

2

x(x, t)) dx = −∫
R

(1
4
( d α

dxα
ζxtt) vα)dx + ∫

R

(1
2
( d α

dxα
ζt) vα)dx+

∫
R

(3
4

d α

dxα
(v2 + 2uv)− 1

2

d α

dxα
(ζ(v + u))) vαxdx. (3.8)

All the terms can be treated as above, except the term ∫
R

d
α

dxα (v2)vαxdx, which is not zero

in general. Using the induction hypothesis and the fact that α − 1 ≥ 1, we can estimate

RRRRRRRRRRRR
∫
R

d α

dxα
(v2)vαxdx

RRRRRRRRRRRR
≤ C∥vα∥21∥v∥α−1 <M∥vα∥21.

Using the last estimation along with (3.8), the Sobolev and Hölder inequalities, as above,
we prove the required estimation for vα, which completes the proof. �

3.1. Optimization problem

In this section we turn to the optimization problem for the gBBM equation (2.9). We
assume that the wavemaking piston is a solid, non-deformable object. Thus, its shape,
given by a localized function ζ0(x), is preserved during the motion and it is sufficient to
prescribe the trajectory of its barycenter only x = x0(t). Consequently, the time-dependent
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bathymetry is given by the following equation

h(x, t) = d − ζ0(x − x0(t)).

The piston shape ζ0(x) and its trajectory x0(t) will be determined as a solution of the
optimization problem. More precisely, in the next section we will find numerically these
functions in order to produce the largest possible wave (in L2 sense) in a given subintervalI = [a, b] of the numerical wave tank at some fixed time T > 0. In other words, we minimize
the following functional:

J(x0, ζ0) = −∫
I

η(x,T )2dx Ð→min, (3.9)

where η(x, t) is the solution of (2.9), (2.10). The existence of this solution is proven in the
following

Theorem 2. For any constants ε,M > 0, there exists (x∗
0
, ζ∗

0
) ∈ BM such that

J(x∗0 , ζ∗0 ) = inf
(x0,ζ0)∈BM

J(x0, ζ0),
where BM is a closed ball in H2+ε[0, T ] ×H2+ε

0
([0,1]) centered at origin with radius M .

Proof. Let (xn
0
, ζn

0
) be an arbitrary minimizing sequence of J . SinceH2+ε[0, T ]×H2+ε

0
([0,1])

is Hilbert space, extracting a subsequence, if it is necessary, we can assume that there is(x∗
0
, ζ∗

0
) ∈ BM such that (xn

0
, ζn

0
)⇀ (x∗

0
, ζ∗

0
) in BM .

Let us denote ηn the solution of (2.9), (2.10) with ζ = ζn ∶= ζn
0
(x − xn

0
(t)). Let us show

that we have ηn(T ) → η∗(T ) in L2, where η∗ is the solution of (2.9), (2.10) with ζ = ζ∗.
Indeed, for η̃n,m ∶= ηn − ηm we have

η̃
n,m
t +(η̃n,m + 3

4
η̃n,m(ηn + ηm) − 1

2
ζnη̃n,m −

1

2
ζn,mη̃m)

x

−
1

6
η̃
n,m
xxt = −

1

4
ζ̃
n,m
xtt +

1

2
ζ̃
n,m
t . η̃n,m(x,0) = 0.

(3.10)
Since ζntt → ζ∗tt ∶= ∂tt(ζ∗0 (x − x∗0(t))) in L2([0, T ],L2), multiplying (3.10) in L2 by η̃n,m,
integrating by parts and applying the Gronwall inequality, we obtain that ηn is a Cauchy
sequence in H1. Hence,

J(x∗0 , ζ∗0 ) = lim
n→∞

J(xn
0 , ζ

n
0 ).

This completes the proof of the theorem. �

However, in practice, the functional (3.9) has to be completed by appropriate constraints
in order to provide a solution realizable in practice. For example, the speed of the under-
water piston is limited by technological and energy consumption constraints. Some more
realistic formulations will be addressed numerically in the next Section.

4. Numerical results

In order to discretize the gBBM equation (2.9), posed on a finite interval [α,β], we use
a modern high-order finite volume scheme with the FVCF flux [31] and the UNO2 recon-
struction [35]. The combination of these numerical ingredients has been extensively tested
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Parameter Value

Computational domain [α,β]: [−5,10]m
Wave quality evaluation area [a, b]: [0,6]m
Number of discretization points N : 1000
CFL number: 1.95
Gravity acceleration g: 9.8ms

−2

Undisturbed water depth d: 1.0m
Final simulation time T : 6.0 s
Piston motion total time Tf : 4.0 s
Piston length ℓ0: 1.0m
Piston maximal height a0/d: 0.12
Piston starting point x0

0
: x = 0.0m

Upper bound of the piston position xmax: xmax = 4.5m
Upper bound of the piston speed vf : 1.5m/s
Wave generation limit xf : x = 1.0mN -wave solution ceter xm: x = 2.0m

Table 1. Values of various parameters used in numerical computations.

and validated in the context of the unidirectional wave models [24] and Boussinesq-type
equations [22, 23]. For the time-discretization, we use the third-order Runge-Kutta scheme,
which is also used in the ode23 function in Matlab [56]. In all experiments presented below
we assume that the water layer is initially at rest:

η(x,0) = η0(x) ≡ 0.
The computational domain [α,β] is discretized in N equal subintervals, called usually the
control volumes. The time step is chosen locally in order to satisfy the following CFL
condition [16] used in shallow-water models:

∆t ≤
∆x

max
1≤i≤N

ui +
√
gd

.

The values of all physical and numerical parameters used in simulations are given in Table
1.

On the left and right boundaries we apply the Neumann-type boundary conditions which
do not produce reflections. In any case, we stop the simulation before the generated
wave reaches the right boundary. We recall that the gBBM equations (2.9) describes the
unidirectional (rightwards, for instance) wave propagation. So, the influence of the left
boundary condition is negligible.

Let us describe the constraints that we impose on the shape ζ0(x) ≥ 0 and trajectory
x0(t) of the underwater wavemaker. First of all, we fix the length 2ℓ0 of this object. Then,
we assume that its height is also bounded:

max
x∈R

ζ0(x)
d
≤ a0.
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We allow the piston to move during the first Tf s, its motion always starts at the same
initial point x0

0
and it is confined to some wave generation area [x0(0), xf ] ⊆ [α,β]:

suppx′0(t) ⊆ [0, Tf ], x0(0) = x0

0, x0

0 ≤ x0(t) ≤ xf , ∀t ∈ [0, Tf].
However, the cost function J(x0, ζ0) is evaluated at time T > Tf so that the generated
waveform can evolve further into the desired shape.

Moreover, we require that the piston speed and acceleration are bounded, since too
fast motions are difficult to realize in practice because of the gradually increasing energy
consumption:

sup
t∈[0,Tf ]

(∣x′0(t)∣ +
√

d

g
∣x′′0(t)∣) ≤ vf

In order to parametrize the wavemaker shape, we use only three degrees of freedom
ζ0(− ℓ0

2
), ζ0(0), ζ0( ℓ02 ) which represent the height of the object in three points equally

spaced on the supp ζ0. Finally, the continuous shape is reconstructed by applying the
interpolation with cubic splines1 through the following points:

(−ℓ0,0), (−ℓ0
2
, ζ0(−ℓ0

2
)), (0, ζ0(0)), (ℓ0

2
, ζ0(ℓ0

2
)), (ℓ0,0).

In a similar way we proceed with the parametrization of the piston trajectory x0(t) which
is represented with 4 degrees of freedom (three in the interior of the interval (0, Tf) and
the final point x0(Tf) which is not fixed as in the case of ζ0). Obviously, more degrees of
freedom can be taken into account when it is needed for a specific application. However,
the number of degrees of freedom determines the dimension of the phase space where
we seek for the optimal solution. In examples below we operate in a closed subset of
R7. In order to obtain an approximate solution to our constrained optimization problem,
we use the function fmincon function of the Matlab Optimization Toolbox. This solver
is a gradient-based optimization procedure which uses the SQP algorithm. The iterative
process is stopped when the default tolerances are met or the maximal number of iterations
is reached. In all simulations presented below the convergence of the algorithm has been
achieved.

As the first numerical example, we minimize the functional J(x0, ζ0) subject to con-
straints described in above. Basically, this cost-function measures the wave deviation from
the still water level in a fixed portion [a, b] of the wave tank. consequently, bigger waves
in this interval will provide lower values to the functional J . The result of the numerical
optimisation procedure is represented on Figure 3. The free surface elevation computed
at the final time T is shown on Figure 3(a). One can see that in the region of interest[a, b] = [2,4] m we have a big depression wave which is followed by a wave of elevation. We
make a conclusion that we succeeded to generate a wave suitable for surfing purposes in
artificial environments. The computed shape of the underwater object is shown on Figure
3(b) and its trajectory is represented on Figure 3(c). It is interesting to note that the com-
puted optimal shape is composed of two bumps. The piston trajectory can be conditionally
decomposed into three parts. During the first 1.25 s we have a stage of slow motion, which
is followed by a rapid acceleration and, during the last 0.75 s, we can observe a slight

1Cubic splines ensure that the interpolant belongs to the class C2.
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Figure 3. Computed numerically the optimal piston shape and its trajectory

which minimize the functional J(x0, ζ0).

backward motion of the piston before it is frozen in its final point. Then, the wait has
T − Tf = 4 s to evolve before its quality is estimated using the cost function J(x0, ζ0).

Since the choice of the functional to minimize is far from being unique, we decided to
perform some additional tests. Instead of maximizing the wave height, one can try to
maximize, for example, the wave steepness in a given portion of the wave tank. In other
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words, we will minimize the following functional (subject to the same constraints as above):

J1(x0, ζ0) = −∫
I

ηx(x,T )dx.
The result of the numerical optimization procedure is shown on Figure 4. One can see on
the free surface snapshot 4(a) that effectively the wave became steeper. The optimal shape
of the wavemaker is almost the same as for the functional J(x0, ζ0). However, the piston
trajectory is almost monotonic and close to the uniform motion. This solution might be
easier to implement in practice.

We can simply minimize the mismatch between the obtained solution and a fixed desired
wave profile:

J2(x0, ζ0) = ∫
I

(η(x,T ) − ηT (x))2 dx,
where ηT (x) is a given function on the interval I .

To illustrate this concept, in numerical computations we take the N -wave ansatz put
forward by S. Tadepalli & C. Synolakis (1994, 1996) [57, 58]:

η
(1)
T (x) = (x − xm) sech2(x − xm), η

(2)
T (x) = −(x − xm) sech2(x − xm).

The first profile η
(1)
T (x) corresponds to the leading elevation N -wave solution (LEN), while

the second function η
(2)
T (x) is a typical leading depression N -wave (LDN). The results of

optimization procedures are shown on Figures 5 and 6. One can notice that the resulting
optimal shapes of the wavemaker are completely different (see Figures 5(b) and 6(b)). For
the surfing applications the LDN wave might be more interesting. It requires also more
uniform piston motion comparing to the LEN wave (see Figures 5(c) and 6(c)).

In the final experiment are the target state is the solitary wave for gBBM:

η
(3)
T (x) = 2(c − 1)sech2(√1 − c−1

2
∣x − xm∣).

As one can notice we can find the shapes of the wavemaker which generates waves close to
the solitary waves for gBBM see Figures 7).

Remark 1. The arguments used to prove Theorem 2 can be also applied to show the

existence of minimizers for the functionals J1(x0, ζ0) and J2(x0, ζ0).
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Figure 4. Computed numerically the optimal piston shape and its trajectory
which minimize the functional J1(x0, ζ0).
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Figure 5. Computed numerically the optimal piston shape and its trajectory

which minimize the functional J2(x0, ζ0) and the terminal state η
(1)
T (x) = (x −

xm) sech
2(x − xm).
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Figure 6. Computed numerically the optimal piston shape and its trajectory

which minimize the functional J2(x0, ζ0) and the terminal state η
(1)
T (x) = −(x −

xm) sech
2(x − xm).
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Figure 7. Computed numerically the optimal piston shape and its trajectory

which minimize the functional J2(x0, ζ0) and the terminal state η
(2)
T (x) = (c −

1)sech2(
√
1−c−1
2
∣x − xm∣).
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5. Conclusions

In the present work we considered the water wave generation problem by disturbances
moving along the bottom. This problem has many important applications going even to
the design of artificial surfing facilities [36]. In order to study the formation of water waves
due to the motion of the underwater piston, we derived a generalized forced BBM (gBBM)
equation. The existence and uniqueness of its solutions were rigorously established. The
trajectory of the piston is determined as the solution of a thoroughly formulated opti-
mization problem. The existence of minimizers is also proven. Finally, the theoretical
developments of this study are illustrated with numerical examples where we solve several
constrained optimization problems with various forms of the cost functional. The resulting
solutions are compared and discussed.

In future studies this problem will be addressed in the context of more complete bidi-
rectional wave propagation models of Boussinesq-type [5, 19, 42, 18]. The optimization
algorithm can be also further improved by evaluating the gradients analytically, for exam-
ple. From physical point of view, one may want to include some weak dissipative effects
for more realistic wave description [20].
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