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Max-Plus Control Design for Temporal Constraints

Meeting in Timed Event Graphs

Saïd Amari, Isabel Demongodin, Jean Jacques Loiseau, and

Claude Martinez

Abstract—The aim of the presented work is the control of Timed Event
Graph to meet tight temporal constraints. The problem of temporal

constraints is formulated in terms of control of linear Max-Plus models.
First, the synthesis of a control law that ensures the satisfaction of a single
constraint for a single input system is presented. Then, the single input

multi-constraints problem is tackled and finally, the method is extended
to the multi-inputs, multi-constraints problem. The proposed method is

illustrated on the example of a simple production process.

Index Terms—Discrete event systems (DES), feedback control, max-plus

algebra, temporal constraints, timed event graph (TEG).

I. INTRODUCTION

Many manufacturing systems are subject to tight time constraints in

their production process. Such constrained plants can be found in the

semiconductor industry [17], or in the automotive industry [21]. The

aim of the presented work is to design a method to manage such a plant,

so the strict time constraints are satisfied.

Production control and manufacturing plant problems are generally

considered as Discrete Event Systems (DES) control problems. Petri

Nets have been extensively used [9], [23] to deal with DES. Event

graphs (a subclass of Petri nets) are often used, when the possible

choices, for instance in the routing, are resolved with the help of the

production control. We consider in the sequel a class of deterministic

controlled processes modeled with Timed Event Graphs (TEG), that

permit to take time constraints explicitely into account.

The problem tackled here could be formulated as a verification of

some temporal conditions, see for instance [6], [10], [13]. In the present

contribution, the verification of time constraints is formulated in terms

of a control problem, assuming that some inputs of the process can be

controlled (it is generally the case). As is well-known from [5], TEG

give rise to Max-Plus algebraic models, which are linear over the dioid

���, and we make use of this linear framework. The plant behavior

is modeled with Max-Plus equations, and the temporal constraints are

represented with inequalities, also linear in the Max-Plus algebra. We

propose a method for the synthesis of control law that permits to meet

a given set of time constraints. The resulting control law itself is fi-

nally defined as a Max-Plus linear difference equation, involving a fi-

nite number of delays. This control law is causal, and can be imple-

mented on-line, from the knowledge of the system state. Such an equa-

tion corresponds to a feedback that is also a TEG.

The control approach that we propose is quite different from that

considered within the so-called supervisory control framework of

timed discrete event systems ([15], [22]). Time is explicitly taken

into account in the proposed approach. TEGs and dioid framework

have been used in the literature to treat a number of control problems.

In [5] is calculated the latest control that permits to match a given
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target. The computation is based on residuation theory, and in terms

of manufacturing processes, this control is interpreted in terms of a

just-in-time production strategy. The residuation theory was further

used by Cottenceau et al. [11], to compute a feedback that delays as

far as possible the input of the system without altering the input-output

transfer relationship. It has also been used for time-varying systems in

[18], and for uncertain systems with uncertain targets in [19]. Houssin

et al. in [14] propose a control strategy for the system to meet a set

of general constraints, that includes time constraints. In the case that

is considered here, the latest control (just-in-time) leads to a trivial

behavior, if no more constraint is specified. The interpretation for a

manufacturing system is that when the production is stopped, no part

violates the time constraint, but this is not a pertinent solution to our

problem. One seeks a control that is as permissive as possible, which

means as early as possible. Unfortunately, there is no optimal control

in that sense, since the usual method for the synthesis of control

strategies for Max-Plus systems, that are based on residuation theory,

does not apply in our case.

An interesting formulation of our synthesis problem can be given in

terms of controlled invariance. Katz [16] has shown that the satisfaction

of linear inequality constraints defined in terms of a matrix � can be

stated in terms of �����-invariance of a semimodule included into

the image of the Kleene star �� (see Section II-A for the definition

of the Kleene star operation). The control design hence comes down to

the computation of the maximal �����-invariant semimodule included

into the image of��, as illustrated in Section VI of [16]. Unfortunately,

this computation is difficult, and no general procedure is known for

this computation. It may happen that this semimodule is not finitely

generated, or that the �����-invariant algorithm does not stabilize,

because the dioid ��� is not artinian. We consider the case where

not all components of the state are constrained, hence some entries of

�� are not finite. As a consequence the condition proposed in [16] for

the maximal �����-invariant semimodule to be finitely generated is

not satisfied, and we cannot use this formulation.

A first attempt to control TEG under strict temporal constraints has

been presented in [4]. This initial approach was developed in the Min-

Plus algebra, under the assumption that all delays of the considered

graph are integers. In the present contribution, this condition is not re-

quired, i.e., we consider a TEG with delays that may be real numbers.

The technical note is organized as follows. In Section II, some back-

grounds on Max-Plus algebra and TEGs are recalled. The problem of

finding a causal control law that satisfies critical time constraints is for-

mulated in Section III. In Section IV, we first introduce a sufficient con-

dition for the existence of a feedback under a single input and a single

constraint. The method is constructive, and a suitable feedback is pro-

posed, provided that the condition is satisfied. Then, the method is ex-

tended to the case of several temporal constraints. Finally, the general

case, i.e., the characterization of a causal control law that guarantees

several temporal constraints of a multi-input dynamic system modeled

by a TEG is proposed in Section V. Section VI is devoted to an illus-

trative example. Concluding remarks are presented in Section VII.

II. BACKGROUNDS

A. Max-Plus Algebra

A monoid is a set, say �, endowed with an internal law, noted �,

which is associative and has a neutral element, denoted �. A semiring

is a commutative monoid endowed with a second internal law, denoted

�, which is associative, distributive with respect to the first law �,

has a neutral element, denoted �, and admits � as absorbing element:

�� � �, �� � � �� � � �. A dioid is a semiring with an idempotent

internal law: �� � �, �� � � �. The dioid is said to be commutative

0018-9286/$26.00 © 2011 IEEE
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if the second law � is commutative. Max-Plus algebra is defined as

� ������������. This semi-ring, denoted ���, is a commutative

dioid, the law � is the operation ��� with the neutral element � �
��, and the second law � is the usual addition, with neutral element

� � �. For � � and � ,� � ���
��� , by � �� we denote the matrix

with components �� �� ��� � ������� �����. Given �, � � , and

matrices 	 � ���
��� and 
 � ���

��� , the symbol 	�
 (or just 	�
)

will denote the result of matrix multiplication defined by the formula

�	�
��� �

�

���

�	�� �
��� � �����	�� �
����

The Kleene star of a square matrix � � ���
��� , written �� is de-

fined as �� �
�� � �, where �� equals the unit matrix, with

entries equal to � on the diagonal, and � elsewhere. Let us recall that

for , � � �
��� the minimal solution of both the inequality,  	 � .

 � �, and the equality,  � � �  � �, is  � �� � � [5]. We

denote by �� the vector of �
��� with its �th entry equal to �, and the

other entries equal to ��

The following lemma and theorem will be useful to determine the

existence of a solution to the problem of multivariable control tackled

in this article. Lemma 1 concern a specific case of 	� 
 
�, see

[1] and [7], [8]. We provide it with its proof, that is simple, since it gives

some hints for the proof of Theorem 1, which is more complicated, and

for the sake of completion, because we use it in the proof of Lemma 2,

in Section V.

Lemma 1: For any two row vectors �, � in ���
��� , there exists a non

trivial solution to inequality � �  
 � � , if and only if there is

� � 	�, such that �� 
 �� .

Proof: The vector  � � is always a solution, called the trivial

solution. A solution  is called non trivial if there exists an index � so

that � �� �. Under this condition, we can choose � so that also �� �
�� � � . Therefore we have �� � � 
 ��  
 � �  � �� � � ,

which, since �� �� �, shows the necessity of the statement. Conversely,

under the stated condition, one can choose � � �, and � � �, for

� �� �, which defines a non trivial solution.

Theorem 1 gives explicitly the set of solutions to 	 �  
 
 � ;

details are given in [1] and proof in [2].

Theorem 1: Let �  �
��� be defined as the set � � �

��� � 	 


�, where 	, 
 � ���

��� (with � � �). Let ��� ��� 
 
 
 � �� denote

the sequence of finite subsets of �
��� defined as follows:

�� � ��� � � �

�� � �� � ���� � 	� � � 
 
� � ��

���	� � ��� � � �
� � ��� � � �� � � �����

	� � � 
 
� � �� and 	� � � � 
� � ��

for all � � �, where 	� and 
� are the �-th rows of matrices 	 and 
.

Then � is generated by the finite set �� .

B. TEGs, Linear Max-Plus Models

An event graph is an ordinary Petri net where each place has ex-

actly one upstream transition and one downstream transition. A TEG

is obtained by associating delays to places or to transitions of a given

event graph. In our case, delays are associated to places. Let ��� 
 
 
 � ��
be transitions having at least one upstream place, and let ��� � 
 
 
 � �

�
� be

transitions having no upstream place and assumed to be controllable.

If it exists, the place linking �� to ��, unique by hypothesis, is denoted

by ��� , its corresponding delay is denoted ��� and its marking, i. e. the

number of tokens within this place, is denoted by ��� .

Transition �� is controllable if there exists a path from transition ��	 to

transition �� . Such a path� is an alternating sequence of transitions and

places, of the form ���	 � �� 	� �� � 
 
 
 � �� � ��� � �� �. By �
 we denote

Fig. 1. TEG example.

the sum of markings along path�, such as:�
 � �� 	�� � ����� �
�� 	 � � � � ���� .

To represent the dynamic behavior of TEGs in Max-Plus algebra, a

firing time �	��� of the �th occurrence is associated with each transi-

tion ��	 and a firing time ����� of the �th occurrence is associated with

each transitions ��.

Example 1: The dynamic behavior of the TEG in Fig. 1 is charac-

terized by the following equation:

����� � ������� � ���������� ��� � ����������

which, in Max-Plus algebra appears to be linear

����� � ��� � ���������� ��� � ���������

The dynamic behavior of a TEG can be expressed by means of a

linear equation in Max-Plus algebra as follows:

���� �
���

�	� � ��� ����
� � ������� (1)

where the components of vector ���� are the firing times of the � tran-

sitions ��, the components of ���� are the firing times of source transi-

tions ��	 . Matrix 	� belongs to dioid ���
��� , its entry 	� equals to

��� if there exists a place ��� containing ��� tokens, otherwise 	�

equals to �. Similarly, the entries of matrices 
� � ���
��� correspond

to the delays of places following source transitions. It is worth replacing

(1) by the following explicit equation:

���� �
���

	
�
� �	� � �������	

�
� �
� � ������ (2)

where 	�� is the Kleene star of 	�, previously defined (see [5] for

more details). Entries of 	� are the delays associated to places without

any token, therefore for a live event graph, entries of 	�� are such that

�	����� � ��.

Analogously to the case of usual linear systems, the explicit (2) can

be brought into a state space form. In order to obtain a state space

model, one first expands all the places with a marking � �  into �

places with a marking equal to 1. Hence ��� � intermediate transi-

tions are added. Then the resulting extended state vector ��� � 
���

is obtained, � � � � �� � �� The dynamic behavior of the ex-

panded TEG is then described by an equation of the form, ��� �
�	� � ���� �	� � ��� �� �
 � ����, with �	�, �	� �

�
��� and

�
 � ��
��� which can be rewritten into the following explicit form, for

� 	 :

��� � 	� �� � ��
 � ���� (3)

where 	 � �	��� �	�, 
 � �	��� �
, and initial conditions for � �  to

� are ���� � �, the canonical initial conditions [5]. These formula-

tions permit to point out that the behavior of a controlled TEG is fully
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Fig. 2. Temporal constraint.

determined by the input ����, its state (3) and canonical initial condi-

tions. Hence, the following formulation should be used:

���� � �
�
� ��� � ���

���

� ��

�
�
�� � ��� � �

�� (4)

for each integer � � � � �. Let us assume that the input ���� is

actually a control input, which can be arbitrarily assigned.

III. PROBLEM OF TEMPORAL CONSTRAINTS

Strict time constraints are frequent in industry. We took inspiration

from the examples reported in [3] and [17], that respectively concern

rubber transformation for the automotive industry, and semiconductor

manufacturing. One can for instance consider the example of a pro-

duction process with a furnace for realizing a thermal treatment. The

duration of any treatment in the furnace is fixed, or defined by a time

interval. The aim is to control the system to meet this time constraint.

A TEG already takes into account a delay on each place that corre-

sponds to a minimal holding time. Nevertheless, in order to take into

account the maximal duration, one has to express an additional con-

straint that the system should meet. The sojourn time of tokens in place

��� may be greater or equal to ��� . In the presented work, a maximum

sojourn time, noted ������ must also be respected. Hence, an interval of

time ���� 	 �
���

�� � is associated to place ��� subject to a strict time con-

straint (see Fig. 2). This additional temporal constraint is expressed, for

� � 
�� , through the following inequality:

����� � �
���

�� � ���� �
���� (5)

IV. SINGLE CONTROL

In this section, TEGs with a single source transition �� are consid-

ered. Let us assume that the control law ���� applied to this transition

�� is given by a feedback ���� �  � ��� � ��, for � � � and

���� � �.  is a row vector with � entries which are either � � � or

� � �, they correspond to the delay associated to control places that

are to be determined to satisfy the constraints. � � � means the ab-

sence of control place between �� and �� . It also means that the control

� does not depend on �� .

A. Single Constraint

Let us consider a TEG modelled by the linear Max-Plus (3) and sub-

ject to a single temporal constraint (5) on place ��� . Let us assume that

transition �� is controllable, i.e., there exists a path � from �� to ��
where 
� is the cumulated marking along this path.

Theorem 2: Let be given the system (3), that defines the behavior

of a TEG subject to a single constraint of the form (5) on place ��� .

We assume that the cumulated marking along the path from the control

input to place ��� is zero, 
� � �, as well as the initial marking in the

constrained place, 
�� � �. Then, the temporal constraint is satisfied

applying a feedback of the form ���� �  �������, if the following

condition is satisfied:

�� � �
���

�� ��� �

In addition, the following set of inequalities defines a suitable feedback,

that guarantees that the temporal constraint is satisfied:

� ��� � �
���

�� � ���	 	
� � � � �
��

Proof: First remark that, by assumption, there exists a path from

the control transition �� to transition �� , then �� �� �. Hence, a finite

feedback  will always exist under the conditions of Theorem 2. Ac-

cording to (4), the �th component of the vector ���� is given by the

following explicit expression:

����� �

�

���

�
�
�����������

���

� ��

���
���� � ��� � �

�� (6)

for every integer � � �. Then, considering only the contribution of the

control input, e.g., the relation between transitions �� and �� , we obtain

that the �th state vector component ����� satisfies (7)

��	
���� � ����
�� � ������ (7)

Taking (6) into account, we obtain that the constraint (5) is satisfied if

the two following inequalities hold:

�

���

�
�
�� � ���� � �� � �

���

�� � ���� �
���	 (8)

���

� ��

���
���� � ���� �

�� � �
���

�� � ���� �
���� (9)

Further, taking (7) into account, we obtain that inequalities (8) and (9)

are satisfied if the following inequalities hold:

�

���

�
�
�� � ���� � �� � �

���

�� � ��	
����

� ��� �
� �
���	 (10)
���

� ��

���
���� � ��� � �

�� � �
���

�� � ��	
����

� ��� �
� �
���� (11)

Inequality (10) is satisfied if one can determine a feedback  such

that ���� � �

���
�
�
�� � ��	 ���� � ������ � ���� � �� with

� � 
��  
�  �. The former expression defines suitable causal

control laws ���� with the form ���� �  � ��� � �� if condition

(12) holds for � � � to �

� � ��	
���� � �

���

�� � �
�
��� (12)

Condition (11) holds true if inequalities (13) and (14) are satisfied for

�� � � to � � �

���
���� � �

���

�� � ��	
���� 	 (13)

���� �
�� �����
� �
���� (14)

As the function ���� is non-decreasing, the inequality (14) is satisfied

if the inequality �� � 
� 
�� is satisfied for �� � � to � � �. By

assumption 
� � 
�� � � this inequality is always true. Again with


� � 
�� � �, we have � � � and hence condition (12) reduces to

� � �� � ������ � ��� , for � � � to � , condition (13) reduces to

�� � ������ ��� .

Remark 1: The hypotheses that 
� � 
�� � �, are met in general

for production plants. It means that at initial state, there is no product

in process in the plant, which is not restrictive in practice.
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Remark 2: A suitable feedback � is found choosing �� � � for

��� � � and �� � ������ ��� ��� � ������ � for ��� �� �.

B. Multiple Constraints

We consider now the case of a TEG having one source transition,

which is controllable, with � constrained places. These places are de-

noted �� , for 	 � � to � . For each constrained place �� , let 
� , �� and

����� respectively denote the initial marking, the minimal and maximal

delays. Further, let �� and �� respectively denote the input and output

transitions of place �� , let ���� and �� �� denote the corresponding

firing dates, and let 
� denotes the cumulated marking along path ��
going from source transition �� to �� . The temporal constraints are now

expressed by the inequalities

�� �� � �
���

� � ��� �
�� (15)

for 	 � � to� . We denote by ���� the control law calculated as in the

previous section to satisfy the 	th temporal constraint. The following

theorem defines a causal feedback, which ensures that all � temporal

constraints are satisfied.

Theorem 3: Let be given the system (3), subject to � time con-

straints of the form (15), where 
� � 
� � �, for 	 � � to� . Then,

there exists a causal control law of the form ��� � �

���
����, with

���� � ��������, that ensures the satisfaction of the � temporal

constraints, if the following condition is satisfied:

�� � �
���

� ���

A suitable feedback has to satisfy the following inequality:

��� ��� � �
���

� � �� �� 	
� � � � �
��

Proof: From Theorem 2, one observes that the conditions of The-

orem 3 are sufficient for the feedback ���� to satisfy the 	th temporal

constraint. Since the inequality
�

���
���� � ����, is true for 	 � �

to� , it is clear that ��� � �

���
���� fulfills all the� temporal con-

straints, which ends the proof.

V. MULTIVARIABLE CONTROL

Let us consider in this section a TEG with � source transitions, � �
�. The behavior of such a graph is again represented by a linear Max-

Plus system (3), the control law being a vector � of � components. Let

us first suppose that a single place ��� is subject to a temporal constraint

of the form (5). The problem is to design a control law ��� � 	
���,

with � � �, to satisfy the constraint (5). The components of ��� are

denoted by ���� for � � � to �. We denote by 
� the cumulated

markings along path �� from a controllable transition ��� to transition

�� .

Lemma 2: Let a TEG with � source transitions �� � �� be subject

to a single temporal constraint of the form (5) on place ��� . Then, there

exits a feedback of the form ��� � � � �� � �� to guarantee the

satisfaction of the temporal constraint (5) if there exists an index � such

that ������ � ��� � ���, with 
� � �.

A suitable feedback is obtained with

�
���

�� �

	

���

���� � ���� � ��� �

	

���

���� � ����

for � � � to � .

Proof: If all ��� � �, no solution can be found. This means that

no path exists from any controllable transition ��� to transition �� . If

there exist � controllable transitions, then the �th state vector compo-

nent ���� satisfies the inequality

	


��

��� ����� � ����
� � � ����� (16)

According to (4), the �th component of vector ��� is given by the

following explicit expression:

���� �

�

���

�

�� � ��� � ��

�

	

���

��

� ��

��� ����� � ���� 
�� (17)

for every integer � � �. Taking (17) into account, we obtain that the

constraint (5) is satisfied if the two following inequalities hold:

�

���

�

�� � ��� � �� � �

���

��

� ��� �
���� (18)
	

���

��

� ��

��� ����� � ���� 
�� � �

���

��

� ��� �
���� (19)

Further, taking (16) into account, inequalities (18) and (19) are satisfied

if the following inequalities hold:

�

���

�

�� � ��� � �� �

	

���

�
���

�� � ��� �����

� ����
� �
���� (20)
	

���

��

� ��

��� ���������� 
���

	

���

�
���

�� � ��� �����

� ����
� �
���� (21)

By assumption,� � ������� and
�� � �. If there exists a path��
with 
� � �, then with � � 
�� 
�  �, one can always satisfy

inequality (20) by choosing a feedback � such that ���� � ���� �
������ � ��� , for � � � to � . On the other hand, inequality (21) is

satisfied if
	

���
��� � ��� � ���� �

	

���
������ ���� � ��� �

���� for � � � to� , hence if
	

���
������� �

	

���
������ ���
�

��� for � � � to � . As stated by Lemma 1, if �� � � 	 ������ ���� �
���, then there exists a solution vector �� for each column �.

Let us now consider a TEG with � temporal constraints. If there

exists a path from a controllable transition ��� to transition �� for each

� constraints, with 
� � 
� � �, then one can synthesize a control

law that satisfies all � temporal constraints using Theorem 4.

Theorem 4: Let a TEG with � source transitions �� � �� be the

subject to � additive temporal constraints of the form (15). If there

exists a non trivial solution � to the following inequality:

��


 
 


��

� � �

����� �


 
 


� �����

��


 
 


��

� � (22)

then the � constraints are met using the causal control law ��� �
�

���
����, where ���� is the control law given by Lemma 2, that

guarantees that the 	th constraint is satisfied.

Proof: A control law ���� satisfies the 	th constraint if and only

if Lemma 2 holds. Thus, in order to satisfy condition of Lemma 2 for

each 	 � � to � constraints, one has to determine a feedback � that

satisfy
	

���
�� � � ��� � 	

���
����� � �� 
 � ��� for � � �

to � , and for all � � � to � . These � conditions are summarized in

inequality (22). The set of solutions to such an inequality is given by an
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Fig. 3. TEG with temporal constraints on � and � .

Fig. 4. TEG of Fig. 3 with additional transition � .

iterative procedure, as in Theorem 1. If the set is empty, no solution can

be found to satisfy all � constraints together. When a solution exists,

a suitable feedback � should also be a solution of inequality (22).

Notice that if � � �, inequality (22) reduces to the condition of

Lemma 2, which can be verified using Lemma 1.

VI. EXAMPLE

Let us consider the TEG of Fig. 3. This graph contains two source

transitions modelling respectively ����� and ����� controls, � � �.

Two additional temporal constraints ������� � ������ � are as-

signed to places ��� and ��� of this graph, and they are ex-

pressed respectively by the inequalities 	���� � � � 	����, and

	���� � � � 	����. The problem consists in calculating a control

vector ���� � ������������
�, which satisfies both constraints. The

graph of Fig. 3 has been transformed into the graph of Fig. 4. To do so,

place ��� containing 2 tokens has been split into two places marked to

1 and the intermediate transition 
� has been added.

The state equation associated with this new TEG is

	��� �

� � � � �

� � � � �

� � � � �

� � � � �

� � � � �

� 	�� � ���

� �

� �

� �

� �

� �

� ����

where the components of 	��� are the firing times of transitions 
�, 
�,


�, 
� and 
�, and the vector ���� is the control law. The meeting of

constraints ������ � � and ������ � � is obtained applying Lemma 2

and Theorem 4.

The initial marking of place ��� is �� � �. There exists a path ��
from transition 
�� to transition 
� and its initial marking is � � �.

One can check that ������ ���� � ���, condition of Lemma 2, is sat-

isfied. The initial marking of place ��� is �� � �. There exists a path

�� from transition 
�� to transition 
� and its initial marking is� � �.

One can check that ������ � ��� � ���� � � ��� ��, i.e., condition of

Lemma 2 is again satisfied. Furthermore, choosing ��� � � 	�, � � �

except ��� � ��� � ��� � ��� � �, results in a suitable feedback

Fig. 5. Resulting controlled TEG: temporal constraints on � and � are sat-
isfied by places added between transitions � and � , � and � , and transitions
� and � .

that satisfy ������ � �

�	�
���� � ���� � ��� �

�

�	�
���� � ����,

for � � � to 5, and ������ � �

�	�
���������� ��� �

�

�	�
�����

����,for � � � to 5. Finally, according to Theorem 4, the control law

which guarantees the satisfaction of both temporal constraints is given

by ���� �
	��� � ��� 	��� � ��� 	��� � ��

	��� � ��
, that can be re-

duced to ���� �
	��� � ��� 	��� � ��

	��� � ��
. This feedback can be

interpreted by three control places connected to the TEG to guarantee

the respect of the temporal constraints. The controlled graph is given

in Fig. 5.

VII. CONCLUSION

We have proposed sufficient conditions for the existence of a con-

trol for TEGs subject to strict temporal constraints. The results include

the case multivariable control. This method is illustrated on a simple

example from manufacturing. The method is explicitely constructive,

provided that the conditions hold, leading to a simple control design.

The presented approach in the Max-Plus algebra resembles to the

one in the Min-Plus algebra already developed in [4]. We point out that

the conditions obtained in Max-Plus algebra are simpler than that ob-

tained in the Min-Plus case. Just one inequality has to be checked in

Theorem 2, which is a very simple test to the existence of a solution. In

addition, the Max-Plus control law is easier to compute, since there are

no need to compute matrix exponent as in the Min-Plus case. Further-

more, depending on the plant to be studied, it can be a great advantage

to deal with the Max-Plus approach, especially if the delays involved

in the model lay within a wide range of values: this could lead to a very

large state vector in the Min-Plus case.

One can note that both Min-Plus and Max-Plus approaches lead to a

supervisor that, if the conditions are fulfilled, guarantees that the time

constraints are satisfied. For a system with an empty path �� � ��
from the control transition 
� to the input transition 
� of the con-

strained place, a trivial control law ���� � 	
, for � � guarantees

that the time constraints are satisfied. In a production plant context, this

trivial control is unacceptable, and one searches for a control law that

does not unnecessarily slow down the manufacturing plant throughput.

The proposed approach gives a minimal supervisor, which in general

is not infimal, since an infimal supervisor does not always exist. This

contrasts the work of [11], [14], [18]–[20], where supremal supervi-

sors are proposed, to solve various control problems, that do refer to

Just-In-Time optimality criteria.

It was noticed in the introduction that an alternative formulation for

this family of problems is in terms of �����-invariance. This fact was
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pointed out by Katz [16], and generated recent work, see for instance

[12]. The solution in this context would come from the computation

of a maximal �����-invariant semimodule, which is an open problem

in general (see [16]). The present material may help to construct new

examples toward a solution to this difficult and important problem.
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