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ABSTRACT: Methods of interpolation, whether based on regressions or on kriging, are global methods in which all the

available data for a given study area are used. But the quality of results is affected when the study area is spatially very

heterogeneous. To overcome this difficulty, a method of local interpolation is proposed and tested here with temperature

in France. Starting from a set of weather stations spread across the country and digitized as 250 m-sided cells, the method

consists in modelling local spatial variations in temperature by considering each point of the grid and the n weather stations

that are its nearest neighbours. The procedure entails a series of steps: recognition of the n stations closest to the cell to be

evaluated and subdivision of the study area into polygons defined by a neighbourhood rule, elaboration of a local model by

multiple regression for each polygon, and application of the parameter estimate from the regression to obtain a predicted

value of temperature at each point of the polygon under consideration.

These results are compared with results from three global interpolation methods: (1) regression, (2) ordinary kriging, and 
(3) regression with kriging of residuals. We then develop the original results from local interpolation such as mapping of the 
coefficients of determination and of the parameter estimate related to altitude and to distance to the sea. These developments 
highlight the processes that dictate the spatial variation of climate.

KEY WORDS interpolation; temperature; France

1. Introduction

Interpolation is a way of reconstructing continuous fields

from variables measured at point locations. This is no

straightforward operation and one of the main difficul-

ties is to select the method that provides the best esti-

mates. Two families of methods have come to stand out

for the quality of their results: the methods of kriging

and regression. Given the statistical constraints associated

with them, these methods are not interchangeable and do

not yield optimal results in all cases. Kriging is better

suited when variables are strongly spatially autocorre-

lated, where, for temperatures, say, a gentle topography

engenders regular thermal gradients. Conversely, regres-

sion yields better results where, again for the example of

temperatures, their spatial variation is dictated by promi-

nent relief. The two methods may be concatenated and

results are often improved by kriging the residuals of a

regression. The criteria for choosing from among these

possibilities are not always obvious even when the geo-

graphical sectors in question appear homogeneous.

* Correspondence to: Daniel Joly, ThéMA, CNRS, Université de
Franche-Comté, Besançon, France. E-mail: daniel.joly@univ-fcomte.fr

Matters are further complicated where plains and

mountains lie side by side over areas of some size

(Joly et al., 2010). This is the case in a multidisciplinary

research project to estimate the ‘price of climate’ across

France. Continuous climatic information across the entire

country was required so that economic and climatic

data could be matched. As climatic data are sporadic,

they had to be interpolated by relating the response

variables, those for climate, and the explanatory variables

(latitude, longitude, and environmental data on relief and

land cover). To investigate this issue, we tested three

global methods of interpolation: regression, kriging, and

regression followed by kriging of residuals. Then we

compared the findings with results from a fourth method

based on local interpolation. The results of the experiment

are presented here.

Section 2 describes the data used. Section 3 presents

the main features of the four methods. The principle

behind the local interpolation method is described in

detail from a set of data on sunshine duration; this

variable was chosen because it was recorded at just

111 weather stations, thus simplifying our exposition. In

Section 4, the entire approach is applied to temperature

measured at 651 stations to compare the findings from all

four methods. The standard deviation of residuals is used

1



Figure 1. (a) Location of the 651 weather stations in France recording temperatures. (b) Location of the 111 stations recording

duration-of-sunshine.

for this. Section 5 relates to the specific developments

of the local interpolation method, i.e. the mapping of

the coefficient of determination, the Pearson correlation

coefficient, and the parameter estimate for each of

the explanatory variables included in a geographical

information system (GIS). This additional information

is a fundamental contribution to climatology that is

specifically interested in the study of local climate.

This provides insight into the factors behind the spatial

distribution of climatic phenomena.

2. Study area and data

2.1. Climatic data

The temperature data were taken from Météo-France, the

national meteorological office in charge of the observa-

tion network countrywide. ‘Normal’ temperatures were

computed on the basis of records from 1971 to 2000.

The methodological tests presented here relate solely

to average monthly temperatures collected at 651 sta-

tions (Figure 1). The 111 stations of the network that

recorded duration-of-sunshine are used in Section 3 only

(for describing the local interpolation method).

2.2. Environmental data

2.2.1. Acquisition

Environmental data are used as explanatory variables

in modelling (Arnaud and Emery, 2000). The operation

requires the formation of a spatially referenced database.

To this end, two sources of information were mobilized

to produce the data required in the raster format at 250 m

resolution.

Land cover information was taken from the European

Corine Land Cover database whose initial vectorial data

were rasterized. Additional information was derived from

this source. First, a vegetation index was constructed

from land cover types to which a standard index value

was attributed (5 for densely built, city centres, airports,

etc.; 250 for compact forest). This index provided an

approximation for the abundance of biomass in the

vicinity of the points in question (Joly, 2007). Next,

distances to the main types of land cover (distance to

forest, distance to nearest ocean or sea in a logarithm

form) were calculated.

Topographic information was taken from the digi-

tal elevation model (DEM) distributed by the Institut

Géographique National (IGN). New variables can be

derived from this source by procedures based on carto-

graphic algebra and trigonometry. In addition to altitude

(Figure 2), these included slope angle, slope orientation,

topographic ruggedness indicative of irregular relief (it

may be zero for flat land or slopes that form perfect

straight lines), enclosure or exposure index (a narrow val-

ley bottom takes a negative value, whereas a high point

has a positive value), and theoretical solar radiation cal-

culated for the equinox with allowance for topographic

masks up to 5 km around each point.

All told, the base was made up of three layers derived

from Corine Land Cover and six from the DEM, all of

these variables being candidates to explain the spatial

variation of temperature. The whole of the area analysed

contained 8 704 283 cells.

2.2.2. Collinearity processing

Some explanatory variables displayed marked covaria-

tion. The plainest examples were the Pearson correlation

coefficients between altitude and ruggedness (0.62), alti-

tude and slope angle (0.69), altitude and vegetation index

(0.38), and, to a lesser extent, altitude and distance to

the sea (0.23). This would not have mattered had our

objective been solely to estimate temperatures so as to
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Figure 2. Study area.

interpolate them. However, the occurrence of collinearity

may affect estimations of the model’s parameters (Gunst,

1983). When multicollinearity exists, the variances of

some of the estimated regression coefficients may become

very large, leading to unstable and potentially misleading

estimates of the regression equation.

Statistical collinearity therefore possesses serious diffi-

culties for interpreting results. For example, the fact that

collinearity may change the sign of a regression coeffi-

cient is troublesome when studying the eigen-effect of a

variable Xj on Y . Insofar as we were looking to compare

the respective influences of several variables on monthly

temperatures through Pearson correlation coefficients, it

seemed preferable to eliminate the influence of altitude on

the foregoing variables. There are several ways to limit

the collinearity of explanatory variables:

� Partial least squares (PLS) regression: a series of

estimators is obtained by considering residuals to be

a new dependent variable (Wold et al., 1984; Helland,

1990).

� Stepwise regressions (Hocking, 1976): by limiting

the number of explanatory variables depending on

their partial correlation coefficients with the response

variable, any collinearities are reduced.

We chose the first way to eliminate collinearity

between altitude and most of the other explanatory vari-

ables. Note that the new latent variables obtained with

the PLS procedure are linear combinations of the ini-

tial variables. Consequently, one can easily write the

coefficients of regression in terms of the original vari-

ables that have been selected in the PLS procedure

(Gunst, 1983). After applying the resulting transforma-

tion, one final collinearity remained between slope angle

and ruggedness (r = 0.49). This should be kept in mind

when interpreting results later. All these factors may gen-

erate bias that is hard to control for. The stepwise method

for selecting significant explanatory variables included in

the regression model also tends to reduce collinearity.

3. Interpolation methods

Remember that climatic observation data are collected

by weather stations and by regions. They are plotted in

a two-dimensional space (altitude is considered as an

attribute of the pixels and not as a dimension). When

integrated in a GIS, these data are characterized by

geographical attributes known for the whole territory and

stored as layers of data (Mitas and Mitasova, 1999).

3.1. Global regression and kriging

By global we mean that the calculations pertain to all

available stations. The first two interpolation methods

we use are a statistical method based on regressions

(Cressie, 1993; Joly et al., 2003), and a probabilistic

method, ordinary kriging (Matheron, 1970; Courault and
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Monestiez, 1999; Baillargeon, 2005). It is worth going

over their respective advantages and drawbacks.

3.1.1. Regression

In short, the linear model mathematically expresses the

relation between a statistical variable, called the response

or dependent variable Y (each of the 12 monthly temper-

ature values), and p explanatory or independent variables

X1, . . . , Xp (the environmental variables recorded in the

GIS: altitude, slope angle, etc.). We denote n as the num-

ber of data samples considered, yi the ith observation of

variable Y , and x
j

i as that of variable Xj . To simplify,

we assume that these variables are centred and reduced:

n
∑

i=1

yi = 0 = n

∀j = 1, . . . , p

n
∑

i=1

x
j

i = 0

n
∑

i=1

(

x
j

i

)2

= n(1)

The linear model is defined by the equation:

Y = Xβ + ε (2)

in which

• Y is the vector (y1, y2, . . . , yn) of the n observed

values of the response variable Y .

• X is the data matrix with n rows and p columns (from

1 to p) being defined by the vectors j (x
j

1 , x
j

2 , . . . , x
j
n ).

• β = (β1, . . . , βp) is the vector of regression coeffi-

cients.

• εis the vector of residuals (ε1, ε2, . . . , εn) defined by

an independent sample of residual variable ε of variance

σ 2.

The regressions disregard distance between stations.

This is why they are effective above all in heterogeneous

sectors where large deviations may occur over short dis-

tances. Now, in homogeneous sectors, distance has great

explanatory power because both dependant and explana-

tory variables are characterized by regular gradients. In

this case, it is kriging that should be preferred.

3.1.2. Kriging

Interpolation by kriging is underpinned by

semi-variogram analysis. This is an unbiased, optimal

linear estimation method using the structural properties

of the semi-variogram to determine whether the distri-

bution of the parameter(s) under study is regionalized

(i.e. has a spatial structure), random, or periodic. The

semi-variogram theoretical model involves semi-variance

γ (h), which is a function of the sampling interval (h);

the equation for the n (h) points ai and aj , which are

h = |ai − aj | apart, is given by:

γ (h) =
1

2n(h)

n(h)
∑

i=1

(ai − aj )
2 (3)

The use of the semi-variogram is supported by the

hypothesis stating that mathematical expectation exists

and takes the same value at all points a, that the

covariance function is finite, and that it is a function

solely of distance h between observations (second-order

stationarity). We used a linear function to adjust the

semi-variogram.

3.1.3. Limits of regression and kriging

The two methods being complementary, it is a worth-

while solution to associate them in a single procedure:

regression of climatic variables on environmental vari-

ables and then kriging of the residuals thus obtained.

The process is analogous to kriging with external drift

(Goovaerts, 1997; Wackernagel, 2003).

When applied globally, regression and kriging yield

good results when the analysis is confined to a clima-

tologically consistent area. However, results are poorer

when interpolation is over far larger and heterogeneous

zones like the whole of France. The technique works

but the statistics are disrupted by discordant constraints.

Apart from the contrast between plains and mountains,

the space is subjected to separate climatic systems. Now,

these systems operate, if not autonomously, at least

largely independent of each other, with the result that

the processes causing spatial variations of climate do not

function in the same way everywhere. This is why, as

the explanatory spatial factors differ from one system

to another, the ‘global’ statistic produces a ‘scrambled’

general model that is not really satisfactory anywhere.

3.2. Local regression

One way to overcome this difficulty is to address inter-

polation locally as in the ‘local regression’ method

(Cleveland and Devlin, 1988), also known as ‘kernel

regression’ (Wand and Jones, 1995). Local regression

consists in modelling the variable of interest using poly-

nomials whose explanatory variables are the station coor-

dinates (Baillargeon, 2005). This is much like calculating

local trend surfaces together with data weighting by dis-

tance; accordingly, Fotheringham et al. (2002) named the

method ‘geographically weighted regression’ (Loader,

2004).

From local regression, our method (Joly et al., 2008)

uses the principle of processing by proximity of data but

it differs in the choice of explanatory variables because

these pertain to the geographical setting (altitude, slope

angle, vegetation, etc.). Therefore, weighting by distance

is not required. Given its aim and to differentiate it from

‘local regression’, the method proposed is termed ‘local

interpolation’. It involves the following three stages:

� Identification of the n stations closest to the estimation

point and division of the territory into polygons

bounded by a neighbourhood rule

� Analysis by multiple regression for each polygon

� Application of coefficients to the cells (or pixels)

making up each polygon (interpolation)
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Figure 3. Number of polygons p by parameter n for 111 duration-of-sunshine recording stations.

There are two possible ways to define the neighbour-

hood. The first is based on the criterion of distance: all the

stations within a fixed perimeter (10, 50, 100 km, etc.)

are clustered around the point to be interpolated. In such

cases, the number of stations varies with the density of

the network. This becomes troublesome for further sta-

tistical analyses when, the set distance being too small

and the network being too loose-knit, there are too few

stations within the relevant area. This is what happens in

our application where, even with a 50-km radius, there are

instances where only four stations are taken into account.

An alternative approach is to set the number of stations

and look for 20, 30, 100, n stations around the cell to be

interpolated. In this case, it is the surface area within

which the n stations are located that varies with the

density of the network. In our application, an extreme

case shows one must go up to 88 km to enclose 20

stations and up to 178 km to enclose 100 stations. Despite

this drawback, it is this alternative approach that was

chosen because it ensures a sufficient statistical basis for

calculation in all cases.

3.2.1. Choice of parameter n and grid spacing

Parameter n determines the area over which information

is to be collected to solve the regressions:

� Where n is low (say, n = 20), the area over which sta-

tions are recruited is small. The advantage is that the

20 stations being close to each other, they are climato-

logically highly consistent. The downside, though, is

that the statistic is unreliable. The significance levels

are quite low and correlatively the number of explana-

tory variables picked out in the regression equation

may well be low.

� Where n is high (say, 100), the statistic is reinforced

but the area over which stations are recruited becomes

very broad. This means there is a greater likelihood of

it including different climatic zones, which may be a

problem for the coherence of the models.

3.2.2. Definition of polygons

In the procedure for defining neighbourhoods and in

view of the density of stations, it is very likely that

two neighbouring cells are associated with the same n

stations. It follows that the clustering within the same

spatial unit (a polygon) of all cells connected to the

same n stations is an advantage. Rather than needlessly

repeating the same regression calculations for all the cells

making up a polygon, they may be performed once per

polygon, the associated coefficients and constants being

valid for all the cells belonging to the same spatial unit.

To address this issue, we take the example of the

network that records duration-of-sunshine, as there are

fewer stations (111) than for temperature records and the

demonstration is easier to follow. With n = 1, each of

the 111 polygons (1 per station) covers a mean area of

4900 km2 (within a circle of radius 40 km). But when n

increases, the outline of the polygons changes and their

number, p, increases. With n = 2, p shifts to 290, then

to 1273 for n = 10, and so on, as depicted in Figure 3.

The number of polygons p peaks at n = 41 (p = 2545),

and then tails off to the end of the process with n = 111

(p = 1).

3.2.3. Polygon pattern

Figure 4 shows that the division of the territory is akin

to Thiessen polygons (De Berg et al., 2000) when n = 1.

Each polygon has four to six faces. Even if they are

of similar sizes, differences arise locally because of

deviations in regional density and the uneven location

of weather stations throughout France. With n = 20, the

position changes. The peripheral polygons expand while

the central ones shrink. This contrast is even starker with

n = 41 and continues when n = 100. A hundred or so

very small central polygons stand against 150 sometimes

enormous ones covering the remainder of the country.

This transformation of polygons can be explained by an

edge effect. The search for nearby stations is in one

direction only when on the periphery of the space, as

available stations are all located towards the interior.

3.2.4. Variation of the number of polygons

with the measurement network density

Table I shows how the number of polygons varies with n

and with the number of stations making up the network

in question (duration-of-sunshine and temperatures, with
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Figure 4. Grid patterns obtained for four values of n.

Table I. Comparison of the number of polygons calculated for

four different n values and applied to the network of stations

recording duration-of-sunshine and temperature.

n = 1 n = 20 n = 30 n = 50 n = 100

Sunshine

network

111 2025 2407 2428 264

Temperature

network

651 18 225 25 618 38 121 60 513

111 and 651 stations, respectively). As the number of

polygons affects computation time, n should be adjusted

carefully. For this reason, we now turn to temperatures for

which the measurement network is denser and engenders

a much larger number of polygons for processing.

3.2.5. Regression analyses

The choice of n is constrained by statistical consider-

ations. Insofar as the climatic variable (temperature in

our case) is explained by a potential of nine explanatory

variables (three from Corine Land Cover and six from

the DEM), n should not fall below a certain value that

would make the results of the regressions non-significant.

Even if significance testing can evaluate the relevance

of the variables used in the case of small samples, it

is accepted that one should avoid having too few indi-

viduals in regression calculations. Considering all of the

constraints on implementing the procedure (grid spac-

ing, computation time, proportion of stations common to

two adjoining polygons), we were careful not to take n

below 20 or to set it too high, even if this is favourable

from a strictly statistical viewpoint (Loader, 2004). This

is why, in the tests presented, we make n vary between

20 and 100.

The analysis procedure, carried out once for a global

procedure but reiterated for each polygon in the case of

a local analysis, involves two phases:

� A simple linear regression between the mean monthly

temperature (response variable) and the nine explana-

tory variables recorded in the GIS (Section 2.2.1) can

be used to calculate the Pearson coefficient of corre-

lation (r) associated with each explanatory variable.

Then r can be used to identify the predictors that are

significant at the 5% level.

� These candidate predictors are then systematically

integrated into multiple regressions by ascending step-

wise selection, two by two, then three by three, and

so on, until the combination that groups all of them

is reached. The combination yielding the greatest R2

value is selected. The parameters of the multiple

regression are stored for the validation process and

for the interpolation to come.

3.3. Validation

The quality of the estimations is evaluated by the so-

called ‘leave-one-out cross-validation’, the principle of

which is to calculate the parameters of the regression

model using all the dataset except for one weather station

and to reiterate for each station (Plutowski et al., 1994).

Multiple regressions (whose explanatory variables are

those of the combination just identified) are conducted as
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Table II. The Pearson correlation coefficient (×100) of variables used in multiple regressions of monthly temperatures.

January February March April May June July August September October November December

Altitude −72 −73 −80 −79 −75 −67 −56 −59 −66 −71 −72 −72

Ruggedness – 19 – – – – – 24 – 18 21 –

Slope angle 20 – 18 16 18 13 – 18 – – – 20

Distance to sea −50 −44 −32 −21 – – −15 −19 −31 −40 −49 −50

Distance to forest – – – 21 – 11 – – – – – –

Vegetation index – – – – – – 12 – – – – –

Figure 5. Standard deviation of residuals from the four approaches by month.

many times as there are stations. In the case of global

regression, for each iteration, one station is rejected;

thus, it is not involved in determining the parameters,

and its predicted value is computed from the estimated

equation. The difference between the predicted and the

observed temperature for this station is computed. For

local regression, the same process is applied. Each of the

641 stations is related to the polygon of which the gravity

centre is the nearest. The parameters are estimated using

n − 1 stations and the cross-validation test is repeated

651 times as for global regression.

The interpolation itself is then performed for each of

the 8 704 283 × 250 m-sided cells in France. Obviously

there are as many analyses as there are monthly temper-

atures to estimate.

4. Comparison of the four interpolation methods

Global interpolation requires just a single regression,

whereas local interpolation requires as many regressions

as there are polygons (p = 25 618 for n = 30). The

coefficients from the analysis/analyses are then applied

to each of the 8 704 283 × 250 m-sided cells in France

to reconstruct the continuous temperature field.

4.1. Quality of estimations

The quality of interpolation is evaluated from the value

of residuals given by cross-validation: extreme values,

frequency of high values, and standard deviation values

which have been calculated for each of the four types

of analysis. All of these indications and measurements

of dispersion exhibit wide deviations from one method

to another. These deviations, which move in the same

direction, are coherent and can be used to classify the

types of analysis in terms of the quality of estimations

produced.

4.1.1. Regression method

Stepwise selection of predictors in the spatial variation

model of each of the 12 mean monthly temperatures

leads to combining three to four among the nine available

explanatory variables (Table II). Altitude is invariably

selected; depending on the month in question, the Pear-

son correlation coefficient r varies from −0.80 (March)

to −0.56 (July). Mean winter temperatures are therefore

more sensitive to altitude than mean summer temper-

atures. Distance to the sea (reduced by its covariation

with altitude) follows an analogous pattern; it is not an

explanatory factor in summer time. The influence of the

other variables is less marked. Vegetation influences tem-

perature between April and July at the time of most

intense growth. Ruggedness and slope angle are comple-

mentary. They invariably (except for July and September)

occur alternately (the two being associated in August

alone) in the temperature estimation function.

The value of residuals is not the same throughout

the year. Figure 5 shows that the value of the standard

deviation is lowest in winter (1 °C) and that it rises to

1.6 °C in summer. Sporadically, some stations display

very high estimation errors (Figure 6(a)). For negative

residuals, the maximum (in absolute values) is −4.7 °C;

the highest positive residual is 4.9 °C. Lastly, 1.9% of

residuals exceed 3 °C in absolute value, whereas low

residuals (<1 °C) make up 60% of the population.

4.1.2. Kriging

Kriging provides better results with standard deviations

close to 0.9 °C (0.8 °C in December, 1 C in April).
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Figure 6. Scatter diagram between the observed and the predicted values resulting from a cross-validation applied to the four methods (July).

Sporadically (Figure 6(b)), large deviations appear also

with kriging. The extreme residuals lie at −6.9 and

+4.9 °C. The frequency of residuals greater than 3 °C in

absolute value is 1.4%; the frequency of low residuals

(<1 °C) is 83%.

4.1.3. Regression then kriging

The approach concatenating regressions than kriging fur-

ther improves results. The Moran index of residuals from

the regression stage (0.88) indicates strong residual auto-

correlation. Moran’s spatial autocorrelation coefficient is

an indicator relating local covariance, calculated between

neighbouring points, to overall variance (Anselin, 1988).

After kriging, the standard deviation of residuals falls

to 0.72 °C with, here again, a better estimation of

winter temperatures (0.5 °C) than summer temperatures

(0.75 °C). The extreme values lie at −3.7 and 3.5 °C.

Lastly, the frequency of high residuals (>3 °C in abso-

lute value) becomes insignificant (0.1%), whereas the

frequency of low residuals (<1 °C) exceeds 90%.

4.1.4. Local regression

It is the local regression method (tested here with n =

30 which generates 25 618 successive regressions) that

proves best. The standard deviation of residuals is less

than 0.3 °C for all months (except May and August) and

sometimes verges on 0.3 °C (April, October, November).

Residuals are never less than −2 °C or more than 1.9 °C.

The frequency of values between −1 and 1 °C is now

98%, while R2 reaches 0.96 (Figure 6(d)).

4.2. Influence of n on the standard deviation

of residuals

The previous operation allowed us to measure the stan-

dard deviation of residuals from four methods. The local

regression method was parametered with n = 30, but

other values are possible. To assess the influence of this

parameter on the quality of estimations, we conducted

a series of six analyses modifying n from n = 20 to

n = 100.

The best results are with the lowest value of n (20). In

this case, standard deviations range from 0.25 (Novem-

ber) to 0.39 °C (August). With n = 30, the standard

deviations are consistently greater than about 0.05 °C.

Thereafter, this trend continues so that the standard devi-

ations obtained with n = 100 are almost 0.17 °C higher

than with n = 20. There is nothing to indicate that this

trend might reverse. As standard deviation values tend to

increase with n, it is conceivable that when this parameter

becomes very high, the standard deviations are very close

to those given by the global method (regression + krig-

ing). In this case, when n = 651, the technique becomes

identical to the global regression method because the

number p of polygon is 1 (= one regression analysis)

for the whole of study area.

This assessment is logical in spatial terms. With n =

20, the 20 stations included in the regressions are spread

over a limited area with consistent environmental and

climatic characteristics, so the estimations are excellent.

But as n increases, the regressions include stations that

are ever further from the initial core of 20, which tends

to diversify the dataset, making it increasingly like that

of France as a whole. The quality of correlations is

affected and the standard deviations increase. Although

these comments plead for a low n value, it should be

stated that the level of significance diminishes with n

(there are fewer degrees of freedom). Even if the accuracy

of the estimates increases as n decreases, we did not

apply a value for n lower than 20, even if that would be

technically possible. It is not obvious at which value of

n we would expect the skill to be highest, but it seems

unlikely that it would be for very small n. This needs

further investigation.

4.3. Interpolations

Given the constraints listed in Section 3.2, the local

regression method was developed for interpolations that,
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Figure 7. July temperatures predicted by the four methods.

with n = 30, follow a middle road between low values

that are statistically unreliable and higher values that are

ill-suited to the problem at hand (geographically too large

an area over which to recruit weather stations, lengthy

computation times).

4.3.1. Interpolation of July temperature

The results from each of the four methods are mapped

(Figure 7). The regression function from the tests in-

volves these parameters:

July temperature = f (altitude, distance to the sea,

vegetation index) (4)

The resulting equation is:

Temp (July) = 20.32 + (−0.0033 × alt.) + (0.0007 ×

dist. sea) + (0.0049 × veg. index) (5)

The map (Figure 7(a)) brings out the structuring effect

of altitude: the cold mountain ranges contrast with the

remainder of the country that is composed of plain and

plateau. The temperature falls by 0.33 °C per 100 m.

Distance to the sea is also a differentiating factor.

Besançon, a semi-continental town in eastern France,

contrasts with Brest, at the western tip of the country,

where temperatures are 2.6 °C higher. Lastly, the vegeta-

tion index reveals that barren zones (city centres, rock)

are 1.2 °C warmer than vegetation-covered areas (forests).

Kriging yields a map (Figure 7(b)) where mountains

and highlands exhibit temperatures of less than 16 °C. By

contrast, the Mediterranean rim and its northward exten-

sion along the Rhône Valley between Marseille and Lyon

have values exceeding 22 °C. The map generated by com-

bined regression and kriging of residuals (Figure 7(c))

clearly shows the separate effects of each model. Kriging

tends to smooth distributions, whereas regression indi-

cates the effect of topography in the fine contrasts where

local variability is expressed. Lastly, Figure 7(d) is the

result of local interpolation on the basis of 25 618 multi-

ple regressions. Other factors such as land cover are also

perceptible (e.g. the pocket of heat due to the influence of

the Paris urban area on temperatures). Local topographic

effects stand out clearly here. It should be specified that

kriging of residuals was omitted for the reasons that will

be given in Section 4.3.3.
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Figure 8. Residuals from the four methods (July temperatures).

4.3.2. Mapping residuals

The residuals obtained by cross-validation are interpo-

lated by kriging so as to provide a continuous field of

estimation errors for the four models.

The map for the global regression method (Figure 8(a))

shows that the extreme values are at the north (negative

residuals) and south (positive residuals) of France. Krig-

ing (Figure 8(b)) yields better results as the mid greys

(residuals between −0.5 and +0.5 °C) occupy a much

larger part of the map. The contrast values are denser

in the Centre and south-east, leaving just a scattering of

spots over the remainder of the territory, revealing nugget

effects. The residuals from the last two methods are even

smaller and, above all, are less and less concentrated in

coherent zones. The local regression method gives the

impression of a background made up of very weak resid-

uals overall, dotted with small spots where values exhibit

large variations (Figure 8(d)).

4.3.3. Autocorrelation of residuals

At the end of the phase of local analysis by regression,

the question arises as to whether there is still any autocor-

relation of residuals that could be kriged. Figure 9 shows

above all that the autocorrelation is not evenly distributed

across the territory. Such a situation is troublesome as

kriging theory stipulates that it cannot be used properly

unless the same spatial distribution model is observed

everywhere; but this is not the case. Accordingly, kriging

calculated globally from such a heterogeneous situation

makes very little improvement on local regression and

sometimes even entails an increase in the value of resid-

uals. In July, kriging deteriorates the results obtained at

the end of the regression stage. The standard deviation

of residuals shifts from 0.35 to 0.41 °C.

5. Mapping coefficients

The local regression method leads to segmentation of the

space into a large number of polygons of various sizes.

For each polygon, applying simple regressions between

temperature and the nine explanatory variables first yields

the Pearson correlation coefficient and the parameter esti-

mate related to each of them; then a multiple regression

is performed yielding R2. Each of these coefficients pro-

vides specific information about the local climate char-

acteristics. Mapping them provides insight into climatic

processes at local scale. We illustrate this with January

and July temperatures.
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Figure 9. Spatial variation of the Moran’s coefficient of residuals.

As it was just said, there is only one coefficient for each

polygon. These values have been plotted at the centre of

each polygon and then interpolated by kriging to produce

the maps.

5.1. Spatial variation of the coefficient

of determination related to altitude

The coefficient of determination R2 is a measure of the

level of explanation of variance. Altitude is a power-

ful explanatory factor for spatial variation in tempera-

ture and probably plays a key role in this distribution

(Figure. 10(a)). The case of the low-altitude Paris region

can be explained here primarily by the influence of the

pocket of urban heartland, one further factor behind the

spatial variation in temperature (Joly, 2007); the density

of weather stations around Paris is probably also instru-

mental in raising the value of R2.

Many parts of the east and south of the Paris Basin,

the Atlantic coast, the Aquitaine Basin, and the Camargue

and Marseille area exhibit R2 values less than 0.5. These

are low-lying regions with only slight changes in altitude.

Under these circumstances, topography has a marginal

effect. And yet other factors, such as distance to the sea,

could supersede altitude as an explanatory factor and so

cause an increased R2; but this is not so. For example,

the flatland Camargue area confirms this hypothesis in

that the influence of the sea is less marked because the

prevailing mistral is a continental wind.

5.2. Spatial variation of the parameter estimate related

to altitude

The value of the parameter estimate provides information

about the vertical temperature gradient. The global value

for July (−0.0033) corresponds to a drop in temperature

of 0.33 °C per 100 m. The sectors with constants between

−0.002 and −0.005 °C, the range of values centred on

the global value for July, cover more than 75% of the

territory (Figure 10(b)). They are all superimposed on

zones characterized by high r values (especially mountain

areas).

The zones with values less than −0.006 °C are subject

to very high altitudinal thermal gradients (0.7, 0.8 °C

per 100 m). They are spread over many spots in the

Paris Basin and Brittany in particular. These marked

gradients may be explained by exaggerated thermal

variations between overheated low zones and much

cooler, windier, (even moderately) higher zones. This

hypothesis is probably valid for high gradients located

slightly inland from the Atlantic coast.

The parameter estimate values less than 0.002 indicate

that altitudinal gradients are almost nonexistent locally

(<0.2 °C per 100 m). Most of the areas concerned are

sectors where the R2 value is low too. These are probably

sectors where altitude variations are too low to engender

any significant variations in temperature.

Figure 10. Spatial variation of two coefficients related to altitude (July); (a) R2 values (simple regression); (b) Parameter estimate.

11



Figure 11. Spatial variation of the Pearson coefficient of correlation related to distance to the sea; only the polygons having selected ‘distance

to the sea’ in the multiple regression are represented. (a) January and (b) July.

5.3. Spatial variation of the Pearson correlation

coefficient related to distance to the sea

The spatial variation of the Pearson correlation coefficient

related to distance to the sea shows how far inland

the influence of the sea extends. The highest values

(r < −0.70) for January (Figure 11(a)) occur along the

North Sea and the Atlantic Ocean (especially in Brittany)

and along the Mediterranean Sea east of Marseille. There,

the warming up of the air is the maximum close to the

sea and then decreases. Beyond a distance of 150 km,

the influence of the sea is no more discernible. Along the

Rhône Valley and especially in Camargue, the coefficient

is greater than −0.19 because of the Mistral, a strong

continental wind blowing from North to South. West of

the Rhône Valley, the coefficient is greater than −0.70

because of another local wind blowing from West to East.

There, the air from the land is blown down to the sea so

that its influence is reduced.

In July (Figure 11(b)), the spatial pattern of the Pear-

son coefficient of correlation related to distance to the

sea is different from the previous one except east of the

Rhône valley (Côte d’Azur). Maybe, some collinearity

with altitude remains there. The coefficient is positive

along the coast of North Sea. There, the sea has a cooler

effect on temperature which increases towards inland.

6. Conclusion

Many interpolation methods are used in climatology but

all have their limits so that the quality of estimations pro-

duced varies greatly with context. The choice of a single

option is generally insufficient and the combined imple-

mentation of complementary methods such as regression

and kriging improves results. This study also shows the

value of a local interpolation approach which is based

on an analysis of the n stations closest to each cell to

be estimated. The n parameter is important as it deter-

mines the speed of execution of the computation and

the quality of the interpolations. For a given n value,

the cells depending on the same ‘nearest neighbours’ are

part of the same polygon. Several thousand polygons are

defined on this basis. A statistical correlation analysis

is conducted for each polygon: identification of signif-

icant estimators, choice of multiple regression formula,

and evaluation of the residual of the estimation by cross-

validation.

The example used for this demonstration pertains to

the mean monthly temperatures. The results are plain: the

standard deviation of residuals from the local regression

method (0.4 °C) is 0.2 °C lower than that from the

method combining both global multiple regression and

kriging of residuals, which in turn is 0.2 °C lower than

that from kriging alone. This rank order is maintained

whichever month is considered. The highest residuals

from kriging are found mostly in the zones where

topography is contrasted (mountain ranges and contact

between mountains and piedmont), whereas with the

local regression method they have been greatly reduced

with no preferential distribution. As with global methods,

this method also allows other variables than the one of

interest to be mapped. Several values are available for

each regression performed (one per polygon) and may

be mapped as shown in the three examples: mapping

of R2, of r , and of the parameter estimate related to

temperature and altitude. We could likewise have mapped

the estimated parameters of the other nine explanatory

variables available in the GIS. In the same way, the

results of analyses for temperature for all the other

months of the year can be analysed and mapped. It would

then be possible to monitor the changes over time in R2,

in the coefficient of regression, etc., all year round.

Many other variables, if recorded at a large number of

stations, could also be processed by local analyses: num-

ber of days when certain temperatures (<−5 °C, +30 °C)

are exceeded, levels and number of days of precipita-

tion for each month of the year (Joly et al., 2009), etc.
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Tests of monthly rainfall show that local interpolations

also yield better results than global methods. Similarly,

it would be interesting to monitor daily the deformation

of spatial heterogeneity of regressions as a function of

changes in synoptical situations.

In this way, it becomes possible to study climate and its

behaviour and variations thereof at higher spatio-temporal

resolutions. This approach may provide a diagnosis of

factors behind spatio-temporal variations in climate. Such

results could be material for a climate atlas: an atlas of

means and frequencies, but also and above all an atlas of

the spatial workings of climate.
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