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Congestion Games with Capacitated Resources⋆

Laurent Gourvès1, Jérôme Monnot1, Stefano Moretti1, and Nguyen Kim
Thang2

1 LAMSADE, CNRS UMR 7243, Université Paris Dauphine, France
2 IBISC, Université d’Evry Val d’Essonne, France

Abstract. We extend congestion games to the setting where every re-
source is endowed with a capacity which possibly limits its number of
users. From the negative side, we show that a pure Nash equilibrium is
not guaranteed to exist in any case and we prove that deciding whether
a game possesses a pure Nash equilibrium is NP-complete. Our positive
results state that congestion games with capacities are potential games
in the well studied singleton case. Polynomial algorithms that compute
these equilibria are also provided.

1 Introduction

The players of a congestion game interact by allocating bundles of resources from
a common pool [18]. This type of games leads to well studied models for analyzing
strategic situations including routing [9], network design [3] and load balancing
[8]. They are a prominent model for resource sharing among uncoordinated selfish
users.

Significant interest has been addressed over the last years to the analysis of
practical congestion problems in the Internet. Data delays and losses due to data
congestions, or the network collapse as a consequence of exceeding the data flow
capacity of some links or nodes, has long been a real problem for the Internet [4].
Several policies have been proposed to control congestion, in order to regulate
and improve the availability of broadband access to the Internet. Priority rules,
for instance, have been adopted to regulate the users who enter into the network,
with the objective to prevent congestion and to obtain a Quality of Service (QoS)
that otherwise would not be available to users [5]. A classical example of priorities
of users is provided by the access categories of the IEEE 802.11e standard, that
was developed in order to offer QoS capabilities to Wireless Local Area Networks
(WLANs) [15].

Congestion games [18] can only partially model the practical situation de-
scribed above. In order to catch other realistic factors like capacities of resources
and the different priority of users on the network, a more sophisticated model is
required.

For this purpose, we introduce the class of congestion games with capaci-
tated resources, where each resource is associated both with a capacity level,
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representing the maximum number of users that such a resource may simultane-
ously accommodate, and with an ordering on the users, prescribing the priority
of accommodation of the users. Given a certain profile of players’ strategies,
the cost of utilization of a resource for the players which have that resource in
their strategy and which are accommodated on it, is a function of the number
of players using it in that profile (as in the case of classical congestion games),
whereas the cost of players having that resource in their strategy, but which are
not accommodated, is prohibitive (supposed infinite).

In this paper we investigate the following questions: Do congestion games
with capacitated resources always admit a pure strategy Nash equilibrium (NE
in short) in any case as it holds for classical congestion games? If not, is it difficult
to decide if an instance possesses a pure NE? Can we identify natural classes
of instances admitting a pure NE? Are there polynomial (or more efficient)
algorithms that build a pure NE for classes containing such an equilibrium?

2 Models and Notations

A strategic (cost) game is a tuple 〈N , (Σi)i∈N , (ci)i∈N 〉, where N = {1, · · · , n}
is a finite set of players; Σi is a non-empty set of pure strategies for each player
i ∈ N ; ci : Σ1 × · · · × Σn → R is an individual cost function specifying players
i’s cost ci(σ) ∈ R for each strategy profile σ = (σi)i∈N ∈ Σ1×· · ·×Σn and each
i ∈ N .

Using conventional notations, we denote by Σ = Σ1 × · · · × Σn the set of
strategy profiles or strategy space and we denote a strategy profile σ by (σi, σ−i) if
the choice of player i needs stressing. The strategy space Σ is symmetric-strategy
if Σ1 = Σ2 = . . . = Σn.

A pure strategy Nash equilibrium (or simply pure Nash equilibrium, NE in
short) is a pure strategy profile σ ∈ Σ such that, for all players i ∈ N , and all
pure strategies si ∈ Σi, it holds that ci(σ) ≤ ci(si, σ−i). We only deal with pure
strategies in this article so we often omit the word “pure”.

For some given strategy profile, a better move of a player is a unilateral
deviation such that his cost decreases strictly. If such a better move exists, we say
that the corresponding player is unhappy, otherwise he is happy. In this setting a
NE is a strategy profile where all players are happy. The better-response dynamic
is the process of repeatedly choosing an arbitrary unhappy player and let him
make an arbitrary better move. A potential game is a game in which, for any
instance, the better-response dynamic always converges [17]. Such a property is
typically shown by a potential function argument.

2.1 Congestion Models and Games

Rosenthal [18] defines a congestion model as a tuple 〈N ,R, (Σi)i∈N , (dr)r∈R〉
where N = {1, . . . , n} is the set of players; R is a finite set of m resources; Σi ⊆
2R is the set of pure strategies of player i, for each i ∈ N ; dr : {0, 1, . . . , n} → R

+

is a delay function associated with resource r, for each r ∈ R. This function



depends on the number of players using resource r, denoted by nr(σ) or simply
nr when the context is clear. The interpretation is that every player of a resource
r incurs a cost of dr(nr) (with the convention that dr(0) = 0). Delay functions
are sometimes supposed monotone (e.g. [9]) but we do not make this restriction
in this paper.

Given a congestion model 〈N ,R, (Σi)i∈N , (dr)r∈R〉, an associated congestion
game is defined as a strategic cost game 〈N , (Σi)i∈N , (ci)i∈N 〉 where for each
σ ∈ Σ and i ∈ N , ci(σ) =

∑

r∈σi
dr(nr(σ)). Better-response dynamic always

converges in congestion games because every better move decreases Rosenthal’s
potential function

∑

r∈R

∑nr

i=1 dr(i) [18].
An important subclass of congestion games is the class of singleton conges-

tion games (also known as parallel-link games) in which every player’s strategy
consists of a single resource [1, 8, 10–12, 14, 16].

2.2 Congestion Games with Capacitated Resources

This section describes the model introduced and studied in this paper. Given a
congestion model 〈N ,R, (Σi)i∈N , (dr)r∈R〉, we also assume that every resource
r ∈ R has a capacity κr – an integer between 1 and n – which is the maximal
number of players that can use resource r. Moreover, every resource r is associ-
ated with a linear order posr : N → {1, . . . , n}, where posr(i) = t means that
player i is in the t-th position of r (pos is strict total). We say that a player i
has a higher priority than player j at resource r iff posr(i) < posr(j). Notice
that posr(i) is defined even if r does not appear in the strategy space of player
i.

Let Nr(σ) be the set of players using resource r in the strategy profile σ. A
player i ∈ Nr(σ) is accommodated by r iff the number of players in Nr(σ) having
a position lower than posr(i) is strictly smaller than the capacity of resource r,
i.e., |{j ∈ Nr(σ) : posr(j) < posr(i)}| < κr. The delay dr(σ) of a resource r in
profile σ is defined as dr(min{nr(σ), κr}). The delay di

r(σ) of player i ∈ Nr(σ)
on resource r is:

di
r(σ) =

{

dr(min{nr(σ), κr}) if i is accommodated,
+∞ otherwise.

(1)

A congestion game with capacitated resources (capacitated congestion game in
short) is a strategic cost game where the cost of a player i in profile σ is defined
as ci(σ) =

∑

r∈σi
di

r(σ).
Note that capacitated congestion games follow the original congestion model

of Rosenthal [18] when the resources are not overcrowded. When the capacity
of a resource is exceeded, the game shares similarities with the player-specific
model of Milchtaich [16] since we distinguish between accommodated and non
accommodated players. However congestion games with capacitated resources
are neither a refinement nor an extension of player-specific congestion games.

In congestion games with capacitated resources, a profile is a Nash equilibrium
if the following conditions hold:



– no player, accommodated by every resource in his current strategy, can uni-
laterally deviate and decrease his cost;

– no player, not accommodated by at least one resource in his current strategy,
can unilaterally deviate and incur a finite cost.

We say that a resource r is saturated if nr(σ) ≥ κr. We say that a player i is
displaced by another player j in the following situation: i is accommodated by a
resource r which is not used by j, j deviates so that r is in his new strategy and
i is not accommodated by r anymore whereas j is (of course posr(j) < posr(i)).

3 Related Works

Various aspects of congestion games were investigated. The existence of pure
NE, the convergence of better-response dynamic and the computation of equi-
libria are interleaved questions studied in [9, 14, 6, 2]. Computing a pure NE of a
congestion game is a PLS-complete problem, even if strategies are symmetric.
Nevertheless there are important subclasses for which a NE can be built in poly-
nomial time, by the use of dedicated algorithms or simply via better response
dynamic (see [19] for a survey).

Many extensions of the congestion model introduced in Rosenthal [18] have
been studied in the literature of strategic games. Player-specific congestion games,
have been introduced in [16] with the objective to model congestion situations
where the delay of each resource in R depends not only on the number of players
using that resource but also on the player’s identity itself. The delay of a player
i ∈ N on resource r ∈ R is a function di

r : N → R
+.

A generalization of this model are (player-specific) congestion games with pri-
orities, which have been introduced in [1] with the objective to model situations
where each resource can assign priorities to the players, and players with a higher
priority can displace all players with a lower priority. Every resource r ∈ R is
associated with a map (not necessarily a bijection) πr : N → {1, . . . , |N |}. Sev-
eral players can allocate a resource r (those players form a set Nr(σ)) but only
those with highest priority πr are assigned to r. This latter subset of assigned
players is denoted by N̂r(σ).

Formally, for each strategy profile σ ∈ Σ and each r ∈ R such that Nr(σ) 6= ∅,
let N̂r(σ) = argmaxi∈Nr(σ) πr(i) be the set of players assigned to resource r.

The delay incurred by an assigned player i ∈ N̂r(σ) is di
r(|N̂r(σ)|). Players in

Nr(σ) \ N̂r(σ), who are not assigned to resource r, incur an infinite delay.

Although there are some similarities between the congestion model with ca-
pacities introduced in this paper and the one with priorities introduced by [1]
(e.g., the possibility to displace players with lower priority on a certain resource),
in general, these two models generate well distinct strategic cost games.. Con-
trasting with the model discussed in this paper, Ackermann et al [1] suppose
that there is no capacity on the resources, two players may have the same pri-
ority with respect to a given resource and two players with distinct priorities on
a resource r can not be both assigned to r.



Finally, the notion of capacity in systems with congested resources has been
considered in [7] (see also references therein). Nevertheless, capacitated conges-
tion games and the model in [7] are different. In our setting, we consider a finite
number of atomic players and resources have an order on the users, whereas in
[7], players are non-atomic and resources are not endowed with an order.

4 Contribution and Organization

Our goal is two-fold: (i) characterize the existence of a NE in capacitated con-
gestion games; and (ii) efficiently compute an equilibrium if it exists.

First, we consider capacitated congestion games in general. We prove that a
capacitated congestion game always admits a NE if it consists of two resources;
moreover, this equilibrium can be computed in linear time. Besides, a game with
three resources (and more) does not necessarily possess a NE. This negative
result holds even if the game is symmetric-strategy and all players’ strategies
except one are singleton. From a computational aspect, deciding whether a game,
even symmetric-strategy and consisting of two players, has a NE is shown to be
NP-complete. The results are presented in Section 5.

Next, we consider singleton capacitated congestion games. We show that
the game is a potential game so it always admits a NE. The proof is based on
a new geometrical approach of potential argument, which could be seen as a
generalization of a dominant potential function in higher dimension. We believe
that the approach would be useful in proving the existence of NE in other games
and is of independent interest. In computational aspect, the better-response
dynamic converges to a NE in at most O(n4m) strategy changes (recall that n
and m are the number of players and resources, respectively). Additionally, we
give a more efficient algorithm to compute a NE when the game is symmetric-
strategy. The results are presented in Section 6.

5 General Strategies

We begin with a simple symmetric-strategy game which does not admit a NE.
There are two players, three resources x, y and z, and the priorities are the
same for the three resources (priority is always given to the first player). The
strategy space of the players is {{x}, {y, z}}. Resource x has capacity 1 and
dx(1) = 2. Resource y has capacity 2 and dy(1) = 3 while dy(2) = 0. Resource z
has capacity 1 and dz(1) = 0. The game is illustrated in Figures 1 and 2.

Notice that the example possesses some minimal characteristics for the exis-
tence of a NE: a game with one player obviously admits a NE and Theorem 1
states that capacitated congestion games defined on two resources always admit
a NE. Moreover the instance falls into restricted cases which often make the ex-
istence of a NE likely: strategies are symmetric source-target paths of a directed
network, delays are monotone and priorities on the resources are identical.

Theorem 1. Every capacitated congestion game defined on two resources pos-
sesses a pure Nash equilibrium. Moreover, a NE can be computed in linear time.
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Fig. 1. A 3-resource 2-player symmetric-
strategy capacitated congestion game with-
out any pure Nash equilibrium.

x y

z

Fig. 2. The corresponding network
where each arc is a resource.

Proof (Sketch of proof). We prove that Algorithm 1 outputs an equilibrium
σ. Denote by r and s the resources. Observe that players with strategy space
{{r}, {r, s}}, {{s}, {r, s}} and {{r}, {s}, {r, s}} cannot prefer to play {r, s} over
{r} or {s}, in any profile, as the delay of every resource is non-negative. Hence, we
can reduce the strategy space of those players to be {{r}}, {{s}} and {{r}, {s}},
respectively. The action of the players having only one strategy in their (reduced)
strategy space is obviously known. Denote by N̂ the players whose (reduced)
strategy space is {{r}, {s}}.

Algorithm 1 2-resource

Input: a set N of players, two resources r, s

Output: A pure Nash equilibrium σ

1: N̂ ← ∅
2: If a player i has only one strategy in his reduced strategy space then assign him to

that strategy, else let σi ← r and N̂ ← N̂ ∪ {i}
3: Rename players in N̂ such that poss(1) < poss(2) < · · · < poss(n̂) where n̂ = |N̂ |

4: Let N̂∞ and N̂f be the set of players in N̂ with infinite cost and finite cost under
the current profile σ, respectively

5: for i = 1 to n̂ do

6: If i ∈ N̂∞ and ci(s, σ−i) < ci(σ) then σi ← s

7: end for

8: for i = 1 to n̂ do

9: if i ∈ N̂f and ci(s, σ−i) < ci(σ) then

10: σi ← s

11: if i displaces a player j ∈ N̂ then

12: σj ← r

13: end if

14: end if

15: end for

16: return profile σ

First, we show an invariant that at anytime, the algorithm maintains the
property that no player of N̂ placed on s can or wants to move to r.

The property is clearly true before the first for loop. During the first for loop,
no player who has moved from r to s has incentive to return back to r because



he would get an infinite cost. For the second for loop, we prove the invariant
by induction. The base case (before entering to the loop) is straightforward. We
analyze a step by considering three subcases:

– Resource s is saturated before i moves and the deviation implies that a
player j′ /∈ N̂ is displaced. In this case, the deviation does not incentivize a
player j ∈ N̂ placed on resource s to move. Indeed j’s cost is ds(κs) before
and after i’s deviation. After his deviation, i’s cost is ds(κs) which is strictly
smaller than his previous cost. Moving to r is not profitable to j.

– Resource s is saturated before i moves and the deviation implies that a player
j ∈ N̂ is displaced. Observe that j cannot belong to N̂f because the loop
follows the total order of priorities on s. The algorithm assigns j to r so that
his cost is either equal to +∞ or equal to the cost previously incurred by
i. Then, the number of players on s remains unchanged. No player from N̂
placed on resource s has incentive to move, since otherwise the player can do
it before the exchange of i and j, contradiction to the induction hypothesis.

– Resource s is not saturated before i moves and the deviation implies that
at least one player j ∈ N̂ wants to unilaterally move to r. Players i and j
have the same finite cost. By moving to r, player j would get either +∞ or
exactly the cost incurred by i before his deviation, contradiction.

The property holds at the end of the two phases. Now observe that a player
i ∈ N̂ placed on r either has been displaced from s at some step or has had the
opportunity to switch to s during the second loop but did not (could not) do so.
Hence, those players are happy on resource r. The profile σ is then a pure Nash
equilibrium. The algorithm is clearly linear in n.

When the number of resources is unbounded, the problem becomes much harder.

Proposition 1. Deciding whether a symmetric-strategy capacitated congestion
game has a NE is NP-complete, even with two players.

Proof (Sketch of proof). We reduce Partition — a NP-complete problem [13]
— to the symmetric-strategy capacitated congestion game. In Partition, given
n integers {a1, . . . , an} such that

∑n
j=1 aj = 2B > 6 and 0 < aj < B, one has

to decide whether a subset J ⊆ {1, . . . , n} such that
∑

j∈J aj = B =
∑

j /∈J aj

exists.
Given an instance of Partition, we construct a capacitated congestion game

with two players where the resources are the arcs of a network G and the players’
strategies are all paths from a common source s to a common target t, see Figure
3. For arc e0, κe0

= 2, de0
(1) = B + 2 and de0

(2) = 0. For arcs ej and e′j where
1 ≤ j ≤ n, κej

= κe′

j
= 2, dej

(1) = aj , dej
(2) = B + 2, and de′

j
(1) = 0, de′

j
(2) =

B + 2. For arc e′n+2, κe′

n+2
= 2 and de′

n+2
(1) = 2, de′

n+2
(2) = 0. For arcs en+1

and e′n+1, their capacities are κen+1
= κe′

n+1
= 1 and player 1 has higher priority

than player 2 in both arcs. Moreover, the delay functions are den+1
(1) = B,

de′

n+1
(1) = B − 1.

One can show that the instance of Partition has a feasible solution iff the
game defined on G admits a NE. ⊓⊔
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Fig. 3. The network associated with an instance of Partition.

6 Singleton Strategies

In this section, we are interested in studying the existence of NE and efficient
algorithms to compute a NE in singleton capacitated congestion games. First,
we present intuitively our approach in proving the existence of a NE.

Starting point Consider the following dominant order ≺′. Let A = {a1 ≤
. . . ≤ ak} and B = {b1 ≤ . . . ≤ bk} be two sets of k real-value elements that
are named in increasing order. We say that A ≺′ B if there exists an index
1 ≤ ℓ ≤ k such that ai = bi for all 1 ≤ i < ℓ and aℓ < bℓ. This order is
well-defined and has been used in proving the existence of Nash equilibria (for
example [8]). We interpret this order in a geometrical view. For each set A and
B, map all elements to points on a real line where the coordinate of a point
equals the value of its corresponding element. For u ∈ R, let Au and Bu be the
number of points corresponding to elements in A and B with coordinate smaller
than or equal to u, respectively. Then, the order ≺′ could be equivalently defined
as follows: A ≺′ B if for the smallest u ∈ R such that Au 6= Bu, it holds that
Au < Bu. In fact, the smallest u ∈ R such that Au 6= Bu is aℓ where ℓ is the
index in the former definition.

As we have seen, the dominant order could be geometrically interpreted as a
one-dimension order. Taking this geometrical approach, we prove the existence
of NE by designing a two-dimension order. Intuitively, the two dimensions are
due to the nature of the game where the cost of a player depends on the resource
delay and the priority of the player on the resource.

Theorem 2. Singleton capacitated congestion games are potential games. More-
over, the better-response dynamic necessarily converges in O(n4m) strategy changes.

Proof. First, we give some definitions which are useful in the proof.

For each profile σ, a function rankσ : R → N is defined as follows. If resource
r is saturated3 then rankσ(r) = max{posr(j) : σj = r, j is accommodated}.
Otherwise, rankσ(r) := n + 1.

3 A resource r is saturated if nr(σ) ≥ κr.



We define a function f that maps each profile σ to a multiset of points in R
+×

N. Each resource r in profile σ is associated with the multiset f(r, σ) of points
(dr(1), n + 1); (dr(2), n + 1); . . . ; (dr(tr(σ) − 1), n + 1) and (dr(tr(σ)), rankσ(r))
where tr(σ) := min{nr(σ), κr}. The multiset f(σ) := ∪r∈Rf(r, σ). An illustra-
tion of f(σ) is given in Figure 4.

For a value u ∈ R
+, to every profile σ we define the multiset σu := {(a, b) ∈

f(σ) : a ≤ u}. Moreover, denote by |σu| the cardinal of σu and ‖σu‖ :=
∑

(a,b)∈σu
b. By the definition, |σu| is the number of points corresponding to

profile σ which are on the left of the line x = u and intuitively ‖σu‖ is the total
height of these points.

y

n + 1

u x

Fig. 4. An illustration of f(σ), black filled dots if in σu.

Now we define a partial order ≺ on profiles. Formally, two profiles ν and σ
satisfy ν ≺ σ if for the smallest u > 0 such that (|σu|, ‖σu‖) 6= (|νu|, ‖νu‖) we
have |σu| < |νu|, or |σu| = |νu| but ‖σu‖ > ‖νu‖. Intuitively, we can interpret
this order as follows. Two profiles ν and σ satisfy ν ≺ σ if for the smallest u > 0
such that (|σu|, ‖σu‖) 6= (|νu|, ‖νu‖), either (1) the half-space on the left of the
line x = u contains more points of ν than those of σ; or (2) if they are equal,
the total height of such points in ν is smaller than that of σ.

Now we can prove that after a better move of some player i from resource r
in profile σ to a resource s, resulting in profile ν, we get that ν ≺ σ. Note that
f(σ) and f(ν) only differ on some points corresponding to resources r and s. In
the following, we consider only these points. Let u be the cost of player i after
the move, which equals ds(ts(ν)) — the delay of resource s in profile ν. (Note
that player i is accommodated by resource s in profile ν as he has taken a better
move.)

Consider the set of points corresponding to resource r in f(σ) and f(ν). If
i has unbounded cost in profile σ (meaning that i is not accommodated), then
f(r, σ) = f(r, ν). If i is accommodated in profile σ then either f(r, σ) = f(r, ν)∪
(dr(σ), rankσ(r)) in case nr(σ) ≤ κr, or f(r, σ) = f(r, ν) \ (dr(κr), rankσ(r)) ∪
(dr(κr), rankν(r)) in case nr(σ) > κr. However, as i has taken a better move,



di
r(σ) = dr(σ) > u. Hence, restricting to points with first coordinate smaller

than or equal to u, f(r, σ) = f(r, ν).

Consider the set of point corresponding to resource s in f(σ) and f(ν). If
s is unsaturated before the move of i then f(s, ν) = f(s, σ) ∪ (ds(ν), rankν(s))
= f(s, σ) ∪ (u, rankν(s)). If s is saturated before the move of i then f(s, ν) =
f(s, σ) ∪ (u, rankν(s)) \ (u, rankσ(s)).

Therefore, for any u′ < u, (|σu′ |, ‖σu′‖) = (|νu′ |, ‖νu′‖). Moreover, if s is
unsaturated before the move of i, |σu| < |νu|. Otherwise, |σu| = |νu| but
rankν(s) < rankσ(s), so ‖νu‖ < ‖σu‖. Hence, ν ≺ σ, i.e., after each better
move, a new profile is ≺-smaller than the previous one. In conclusion, the game
is a potential game.

Now we bound the number of strategy changes to reach an NE from arbitrary
profile in the better-response dynamic. Let σ be an arbitrary profile. By the
definition of order ≺, there are at most nm values of u that we have to consider.
Moreover, for each u, 0 ≤ |σu| ≤ n and 0 ≤ ‖σu‖ ≤ n(n+1). Hence, there are at
most O(n4m) couples (|σu|, ‖σu‖) (where σ is a profile) which are ≺-different.
Thus, from an arbitrary profile, the better-response dynamic converges to a NE
in at most O(n4m) strategy changes. ⊓⊔

In the following, we consider singleton capacitated congestion games with
additional property of symmetry on players’ strategy sets. We give an algorithm
to compute a NE that is more efficient than the better-response dynamic by
exploiting that property.

Theorem 3. A NE in a symmetric-strategy, singleton capacitated congestion
game can be computed in min{n, κ} strategy changes and the overall time com-
plexity of the algorithm is O(min{n2m, κ2}), where κ =

∑

r∈R
κr.

Proof. We show that Algorithm 2 computes a NE.

First consider the case n ≥
∑

r∈R
κr. By the algorithm, at the end of the

while loop, all resources become saturated with delays dr1
(κ1) ≤ . . . ≤ drm

(κm).
Next, κr1

first players according to posr1
are assigned to resource r1, then κr2

first players according to posr2
among the remaining players are assigned to

resource r2 then so on. Finally, assign all remaining players to resource rm. The
outcome is a NE because: (1) a player assigned to a resource rj cannot displace
other player assigned to a resource rj′ where j′ < j; (2) a player assigned to
a resource rj cannot decrease his cost by moving to other resource rj′ where
j′ > j.

Now, consider the case n <
∑

r∈R κr. In this case, every player is accommo-
dated to some resource. Suppose a player i, assigned to resource r in profile σ,
has incentive to deviate to resource s resulting in profile σ′.

If i’s deviation displaces some player i′ then we get a contradiction. Indeed,
dr(nr(σ)) = ci(σ) > ci(σ

′) = ci′(σ) = ds(ns(σ)) and poss(i) < poss(i
′) hold.

However, the algorithm fills resource s before resource r (steps 8 to 12 of the
algorithm) and player i should have been assigned to s instead of player i′.



Algorithm 2 Symmetric-strategy, singleton capacitated congestion games.

Input: Set N of n players, posr and κr for all r ∈ R
Output: An equilibrium σ

1: nr ← 0 for all r ∈ R
2: n̂← min{n, κ} where κ =

∑

r∈R
κr.

3: while n̂ > 0 do

4: Find r∗ and kr∗ such that dr∗(kr∗) = min{dr(kr) : nr < kr ≤ min{nr +
n̂, κr}, r ∈ R}.

5: n̂← n̂− (kr∗ − nr∗)
6: nr∗ ← kr∗

7: end while

8: Rename resources so that dr1
(n1) ≤ dr2

(n2) ≤ . . . ≤ drm(nm)
9: for j = 1 to m do

10: Assign to resource rj the first nj players S ⊂ N according to posrj

11: N ← N \ S

12: end for

13: Assign all remaining players in N to an arbitrary resource, for example resource
rm.

14: output the current assignment σ.

Assume i does not displace anyone when deviating. We have indeed dr(nr(σ)) =
ci(σ) > ci(σ

′) = ds(ns(σ)+1). Consider the moment at which nr is modified for
the last time (line 6 of the algorithm). Let kr and ks be the number of players
already assigned to resource r and s at that time, respectively. By the algorithm,
nr is modified because dr(kr) = dr(nr(σ)) is minimum among other choices. Be-
sides, observe that at that time, n̂ ≥ (ns(σ) − ks) + 1 since later, the algorithm
will set ns(σ) as the number of players (who are different to i) on resource s.
Therefore, resource s and ns(σ)+1 is a candidate for the choice of the algorithm
in line 4. Thus, dr(nr(σ)) ≤ ds(ns(σ) + 1) — contradiction. Hence, every player
in σ is happy, meaning that it is a NE. By the algorithm, the number of strategy
changes is obviously min{n, κ} and the time complexity is dominated by the
while loop which needs at most O(min{n2m, κ2}) operations. ⊓⊔

7 Conclusion

In the paper, we have assumed that each capacitated resource r is endowed with
a linear order posr, indicating which players are accommodated when the re-
source is overcrowded. We believe that different and equally relevant ways to
determine who is accommodated exist, and the existence of a NE should be
investigated. For instance, an interesting open question is to know the compu-
tational complexity of symmetric-strategy capacitated congestion games with
increasing delay functions. On a dynamic perspective, for instance, it would be
interesting to study a model where the priorities of users depend on their timing
of using resources (for routing problems, this could represent the arrival time
to the starting node of an edge). On the other hand, in this perspective, drop-



ping the assumption of priorities represented by linear orders could generate the
technical problem of coordinating users asking for the same resource at the same
time (on this issue, see the discussion about timestamp games in [10]).
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fied approach to congestion games and two-sided markets. Internet Mathematics,
5(4):439–457, 2008.
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