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Three Brouwer fixed point theorems for homeomorphisms of the plane

Introduction

In 1910, Brouwer [START_REF] Brouwer | Continuous one-one transformations of surfaces in themselves[END_REF][START_REF] Brouwer | Continuous one-one transformations of surfaces in themselves.(4th communication.)[END_REF] proved the following three fixed point theorems (the first one is well known as the Cartwright-Littlewood theorem, see the historical remark below). In all three cases we consider an orientation preserving homeomorphism h of R 2 . A continuum is a non empty connected compact set.

Theorem 1.1. Let K be a non separating continuum in R 2 such that h(K) = K. Then h admits a fixed point in K.

Let us recall that a set X is compactly connected if given any two points in X, there exists a subcontinuum of X which contains the two given points.

Theorem 1.2. Let F be a closed, compactly connected, non separating subset of R 2 without interior such that h(F ) = F . Then h admits a fixed point in F . More precisely, we will prove that (if F is non compact) if h has no fixed point in F , given any neighborhood V of F , there is a simple closed curve with h-index +1 inside V .
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We now consider again a non degenerated and non separating continuum K in R 2 such that h(K) = K. We further suppose that the circle of prime ends of R 2 \ K splits into two non degenerated arcs a 1 and a 2 with the same endpoints such that ∪ p∈a i I(p) = K, i = 1, 2, where I(p) is the impression of the prime end p (and therefore intK = ∅). Equivalently, the end points of all accessible arcs in a i are dense in K, i = 1, 2 (see section 4).

Theorem 1.3. Suppose that the orientation preserving homeomorphism ĥ of the circle of prime ends naturally induced by h preserves a 1 and a 2 (that is fixes the common end points of a 1 and a 2 ). Then h admits two fixed points in K.

1. i(f, α) does not depend on the choice of the lift θ of the map

f • α -α |f • α -α| from [a, b] to S 1 .
2. α and α • φ, where φ is a map from [a, b] to itself fixing a and b give rise to the same index. More generally, if α, β : [a, b] → R 2 are two paths homotopic rel {a, b} such that f has no fixed point on the image of the homotopy, then i(f, α) = i(f, β).

3. If α is a closed curve (i.e. α(a) = α(b)), then i(f, α) is an integer.

4. If α -1 is defined by α -1 (t) = α(bt + a), a ≤ t ≤ b, then i(f, α -1 ) = -i(f, α)

5. If g is an orientation preserving homeomorphism of R 2 and α a closed curve, then i(gf g -1 , g(α)) = i(f, α) (for a proof of this fact, one can use that g is isotopic to id).

(Notice that the index along a non closed curve is not invariant by conjugation.)

One often thinks equivalently of the vector field without zero ξ on Imα defined by ξ(x) = f (α(t))-α(t) if x = α(t) and one defines i(ξ, α) as i(f, α). Lemma 2.2. i(f, α) = 0 if α is a simple closed curve and f extend without fixed point to intα.

As usual, we will denote by intα the bounded component of R 2 \ Imα when α is a simple closed curve, but if α is an arc (i.e. an injective path) from [a, b] to R 2 , intα will denote α(]a, b[). This should cause no confusion.

Proof. One can suppose that α is given as a map from the unit circle S 1 = {e 2iπt |0 ≤ t ≤ 1} and, using Schoenflies Theorem, that it extends to a map φ from the open unit disc D 2 to Intα. Then the map F : (t, u) → f (φ(ue 2iπt ))φ(ue 2iπt ) |f (φ(ue 2iπt ))φ(ue 2iπt )| , 0 ≤ u ≤ 1, is a well defined homotopy which lifts to a homotopy θ u with θ 0 a constant map; now θ u (1)θ u (0) is an integer (since F (0, u) = F (1, u)) depending continuously on u which is 0 if u = 0 and so it is 0 also when u = 1.

Lemma 2.3. Suppose that α is an arc and that we are given two maps f and g without fixed point on Imα such that f (α(a)) = g(α(a)), f (α(b)) = g(α(b)). Then 1. i(f, α)i(g, α) = 0 if the images of f and g lie inside R 2 \ (L Imα) where L is a proper half-line from one endpoint of α towards infinity such that L Imα is reduced to that endpoint.

2. i(f, α)i(g, α) = 1 if the images of f and g make up a Jordan curve C, Imα ⊂ intC and the orientation of C induced by that of f (from f (α(a)) to f (α(b))) is positive.

Proof. 1) Since R 2 \ (L Imα) is simply connected, there exists a homotopy F between f and g relative to the endpoints inside R 2 \(L Imα). The

homotopy (t, u) → F (t, u) -α(t) |F (t, u) -α(t)|
lifts to a homotopy θ u which gives the re-

sult since θ u (b) and θ u (a) lift constantly f (α(b)) -α(b) |f (α(b)) -α(b)| and f (α(a)) -α(a) |f (α(a)) -α(a)| as u varies.
2) Let f denote the parametrization of C given by the path composition of f and g -1 (where g -1 (α(t)) = g(α(bt + a))). Applying Schoenflies theorem, we can suppose that C is the circle S 1 . The homotopy F (u, t) = f (α(t))uα(t), for 0 ≤ u ≤ 1 gives the conclusion given our orientation hypothesis.

Lemma 2.4. If C is a simple closed curve and f a map of C into R 2 without fixed point such that f (C) ⊂ intC C, then i(f, C) = 1.
Proof. Once again we apply Schoenflies theorem to reduce the proof to the case C = S 1 and consider the homotopy F (u, t) = uf (e 2iπt )e 2iπt .

The next Lemma is the key to the ingenious index computation of Brouwer giving the proof of Theorem 1.1. A variant of this computation was rediscovered (but unpublished !) in the eighties by Bell, see [Aki99, BFM + 10].

We deal with the following situation: h is an orientation preserving homeomorphism of R 2 , C is a simple closed curve in R 2 positively oriented (intC lies on the left of C) and K is a h-invariant continuum inside C.

We suppose there exist successive points p 0 , p 1 , . . . p n ∈ C with p 0 = p n and disjoint (except perhaps for their endpoints in K) irreducible arcs ρ 0 , ρ 1 , . . . , ρ n from

p i to K, 0 ≤ i ≤ n, ρ 0 = ρ n , such that h(ρ i p i p i+1 ρ i+1 ) ρ i p i p i+1 ρ i+1 = ∅. Let Ω i be the bounded region determined by K ρ i p i p i+1 ρ i+1 . C K p i ρ i p i+1 ρ i+1 Ω i
Let ξ be the vector field ξ(x) = h(x)x which is supposed to be without zero on C. We have: Lemma 2.5. There exist a non zero vector field

ξ ′ on C with endpoints in intC C such that i(ξ, C) -i(ξ ′ , C) = k ∈ N. And so i(ξ, C) = 1 + k. That integer k is given by the number of i such that Ω i ⊂ h(Ω i ).
Proof. The second sentence of the Lemma follows from the fact that i(ξ ′ , C) = 1 since the endpoint of ξ ′ ∈ intC C (see Lemma 2.3).

On ρ i described from p i towards K define q i as p i if h -1 (C) ρ i = ∅ or the last point of h -1 (C) ρ i if this set is not empty. Let φ i be an orientation preserving homeomorphism from p i p i+1 to q i p i p i+1 q i+1 and let ξ be the vector field along C defined by ξ

(x) = h(φ i (x)) -x for x ∈ p i p i+1 (this is non zero since h(ρ i p i p i+1 ρ i+1 ) p i p i+1 = ∅).

One has obviously

i(ξ, C) = n-1 i=0 i(ξ, p i p i+1 ) and also i(ξ, C) = n-1 i=0 i( ξ, p i p i+1
). Indeed, the path composition of the maps φ i and φ i+1 from p i p i+1 p i+2 to q i p i p i+1 q i+1 p i+1 p i+2 q i+2 is homotopic rel endpoints to a map onto the arc q i p i p i+1 p i+2 q i+2 . Combining all the φ i we get that n-1 i=0 i( ξ, p i p i+1 ) = i( ξ, C) where ξ = h(φ(x))x and φ is an orientation preserving homeomorphism of C fixing p 0 and therefore homotopic to the identity rel p 0 , so that i( ξ, C) = i(ξ, C).

We now distinguish three cases.

1) h(Ω i ) Ω i = ∅. L. Guillou Ω i h(Ω i ) C K p i p i+1 β i h(q i+1 ) h(q i ) h(p i+1 ) h(p i ) q i q i+1
Choose any arc β i from h(q i ) to h(q i+1 ) inside C except for its endpoints. Let λ and µ be parametrisations by [0, 1] of the arcs p i p i+1 and β i respectively and define ξ ′ on p i p i+1 by ξ ′ (λ(t)) = µ(t)λ(t). One has i( ξ, p i p i+1 ) = i(ξ ′ , p i p i+1 ) by Lemma 2.3(1) since the arc p i p i+1 lies outside the Jordan curve made of β i and h(q i p i p i+1 q i+1 ).

2)

h(Ω i ) ⊂ Ω i . C K p i = q i p i+1 = q i+1 h
In that case q i = p i and q i+1 = p i+1 and we let ξ ′ = ξ along p i p i+1 . Obviously, i( ξ,

p i p i+1 ) = i(ξ ′ , p i p i+1 ) 3) Ω i ⊂ h(Ω i ). β i C K p i h(q i ) h(q i+1 ) p i+1 h(p i+1 ) h(p i )
We define ξ ′ as in case 1). We have i( ξ, p i p i+1 )-i(ξ ′ , p i p i+1 ) = 1 since the arc p i p i+1 is contained inside the Jordan curve made of β i and h(q i p i p i+1 q i+1 ) and h is orientation preserving so that h(q i p i p i+1 q i+1 ) is oriented from h(q i ) to h(q i+1 ), see Lemma 2.3.

Since h(ρ i p i p i+1 ρ i+1 ) ρ i p i p i+1 ρ i+1 = ∅ these three cases exhaust all possibilities and this concludes the proof of the Lemma.

Proof of Theorem 1.1

The next Lemma is very classical [START_REF] Schoenflies | Beiträge zur Theorie der Punktmengen[END_REF] and is a key step to show that R 2 \ K is homeomorphic to R 2 \{0} if and only if K is a non separating continuum in R 2 (which is not really needed or used here but explain the Brouwer terminology "circular continum": R 2 \ K looks like a circular region).

We will follow a presentation of Sieklucki [START_REF] Sieklucki | On a class of plane acyclic continua with the fixed point property[END_REF].

Lemma 3.1. Let K ⊂ R 2 a non empty non separating continuum. Then there exists a sequence B n ,n ≥ 0, of topological closed discs such that 

1. K = B n 2. B n+1 ⊂ B n
)} ⊂ IntB n \ K, diam(ρ(b)) < √ 2.2 -n and ρ(b) ρ(b ′ ) is empty or reduced to x(b) = x(b ′ ) (b = b ′ ).
Proof. For n ≥ 1, we consider the tiling C n of the plane by the closed squares

centered at ( k 2 n , l 2 n ) of side length 1 2 n (k, l ∈ Z). Let Q n be the union of all squares of C n which meet K and B n be the union of Q n and all bounded components of R 2 \ Q n . Then B n is a topological disc and B n+1 ⊂ B n (since FrQ n+1 ⊂ Q n ).
To show that K = n>0 B n , let x ∈ R 2 \ K and use that K is non separating to find a half line l from x to ∞ such that l K = ∅. Then d(l, K) > 0 and if √ 2 2 n < d(l, K) then x / ∈ B n (otherwise there exists y ∈ l FrB n and d(y, K) < √ 2 2 n < d(l, K) which is absurd). As for 3), given b ∈ FrB n , then b belongs to a side of some square Q of C n . Let x(b) be some nearest point of K in Q and ρ(b) be the rectilinear 

|b -c| + |c -x(b)| = |b -x(b)| ≤ |b -x(b ′ )| ≤ |b -c| + |c -x(b ′ )| give |c -x(b)| ≤ |c -x(b ′ )| and by symmetry |c -x(b)| = |c -x(b ′ )|. Therefore |b -x(b ′ )| ≥ |c -b| + |c -x(b)| = |c -b| + |c -x(b ′ )| so that |b-x(b ′ )| = |b-c|+|c-x(b ′ )| and, by symmetry, |b ′ -x(b)| = |b ′ -c|+|c-x(b)|. This implies, if b = b ′ , that c = x(b) = x(b ′ ).
We can now complete the proof of Theorem 1.1. We have an orientation preserving homeomorphism h of R 2 and a non separating continuum K in R 2 such that h(K) = K. We have to prove that h admits a fixed point in K.

Proof. Let us suppose that h has no fixed point in K. Then we can find a neighborhood V of K and an ǫ > 0 such that dist(h(x), x) > 3ǫ on V . According to Lemma 3.1, one can find a Jordan curve C contained in V and the ǫ-neighborhood of K such that K ⊂ intC, successive points p 0 , p 1 , . . . , p n = p 0 on C and disjoint arcs (except perhaps for their extremities on K) ρ 0 , . . . , ρ n-1 from p i to K such that diamp i p i+1 and diamρ i are less than ǫ and consequentely h(ρ i p i p i+1 ρ i+1 ) ρ i p i p i+1 ρ i+1 = ∅. We are then in position to apply Lemma 2.5 which implies that i(ξ, C) > 0 in contradiction to Lemma 2.2. Remark 3.3. Another fixed point theorem of Brouwer [START_REF] Brouwer | Beweis des ebenen Translationssatzes[END_REF] is as follows.

Theorem 3.4. Let h be an orientation preserving homeomorphism of R 2 and let K be a non empty compact subset of R 2 such that h(K) = K then h admits a fixed point (in R 2 ). This result follows quickly (using a perturbation argument for example) from the fact that an orientation preserving homeomorphism of R 2 without fixed point has no periodic point which can also be proved by an index computation [START_REF] Brouwer | Beweis des ebenen Translationssatzes[END_REF]Gui94].

Notice that the "short" proof of Theorem 1.1 by Hamilton [START_REF] Hamilton | A short proof of the Cartwright-Littlewood fixed point theorem[END_REF] and the "short short" proof by Brown [START_REF] Brown | A short short proof of the Cartwright-Littlewood theorem[END_REF] are indeed merely reduction of Theorem 1.1 to the above result. In fact, if h had no fixed point inside the non separating continuum K, these authors construct (by bare hands for Hamilton, by a simple covering argument for Brown) another extension h ′ to R 2 of the restriction of h to K which is orientation preserving and without any fixed point: this is a contradiction to Theorem 3.4.

Prime ends

We give only a brief sketch of the theory of prime ends in a pre-Caratheodory style, based on the notion of accessible arc and the cyclic order that can be given to equivalence classes of such arcs and as used by Brouwer. See [START_REF] Milnor | Dynamics in one complex variable[END_REF] or [START_REF] Pommerenke | Boundary behaviour of conformal maps[END_REF] for modern and more complete expositions.

We consider a non empty continuum K ⊂ S 2 = R 2 {∞} such that U = S 2 \ K is non empty and connected. We define an equivalence relation on the set of access arcs from x 0 to FrU by γ ∼ γ ′ if γ and γ ′ have the same endpoint x ∈ FrU and γ is isotopic to γ ′ in U {x} rel {x}. Notice that the end point of the class p = [γ] is well defined. Some basic facts are: -The set of accessible points is dense in FrU = FrK.

-Given a finite number of distinct equivalence classes of access arcs p 1 , p 2 , . . . , p n , one can find disjoint access arcs γ 1 , . . . , γ n where γ i ∈ p i .

-Using a circle surrounding K and meeting γ 1 , . . . , γ n (see Lemma 3.1) we can transfer a cyclic order on this circle to the set {p 1 , p 2 , . . . , p n } and thus define a cyclic order on the set of equivalence classes of access arcs (given coherent choices of orientation for the circles surrounding K; we will assume that K is to the left of each such circle). We can therefore talk of the closed interval [p, p ′ ] given two equivalence classes p and p ′ .

L. Guillou

-Given two distinct equivalence classes p and p ′ , there exists a third one p ′′ such that p < p ′′ < p ′ .

-Given an equivalence class p, there exist sequences of equivalence classes

(p n ) n≥0 and (p ′ n ) n≥0 such that n≥0 [p n , p ′ n ] = {p}.
Definition 4.2. We now consider sequences of decreasing intervals [p n , p ′ n ] such that n≥0 [p n , p ′ n ] is empty or reduced to one point, where p n and p ′ n are sequences of equivalence classes of access arcs. Two such sequences [p n , p ′ n ] and [q n , q ′ n ] are considered equivalent if for each n there exist r such that

[p n , p ′ n ] ⊃ [q r , q ′ r ] and s such that [q n , q ′ n ] ⊃ [p s , p ′ s ].
Equivalence classes of such sequences of intervals define the prime ends.

Given the last fact above, equivalence classes of access arcs are naturally seen as prime ends.

The cyclic order on the equivalence classes of access arcs can be extended to the set of all prime ends and a classical result of the theory of ordered sets gives a cyclic order preserving bijection of the set of prime ends to the circle. If we give the order topology to the set of prime ends such a bijection becomes a homeomophism. Also, any homeomorphism h of U extend to the set of equivalence classes of access arcs (by h([γ]) = [h(γ)]) and so to the circle of prime ends. Definition 4.3. A prime end p being defined by a sequence [p n , p ′ n ], we define its impression as the set of all points of FrU which are limits of a sequence of end points of access arcs

β k such that [β k ] ∈ [p n k , p ′
n k ] for some increasing subsequence n k of the integers. This impression, denoted I(p), does not depend on the choice of the sequences p n and p ′ n and can be shown to be a subcontinuum of FrU ⊂ S 2 . The union over all prime ends of these impressions form a covering of FrU but notice that different prime ends may have the same impression and it is even possible that some impressions are equal to FrU (see the indecomposable continuum of Brouwer [START_REF] Brouwer | Zur Analysis Situs[END_REF][START_REF] Rutt | Prime ends and indecomposability[END_REF][START_REF] Rogers | Indecomposable continua, prime ends, and Julia sets[END_REF]).

Definition 4.4. A cut c of U is an arc c : [a, b] → U \ {x 0 } such that c(a), c(b) ∈ FrU and c(a, b) ⊂ U.
As is well known, a cut separate U into exactly two regions and we will call the region not containing ∞ the bounded region determined by c (and FrU).

Proof of Theorem 1.2

We begin with some preliminary lemmas.

Lemma 5.1. Let a simple closed curve C be composed of three consecutive arcs α, β, γ : [0, 1] → R 2 with disjoint interiors and h : C → R 2 a map without fixed point. Suppose that

1. h(α) ⊂ intC C and that h(α(0)) ∈ intα. 2. h(β(0)) = β(1) and h(β) β = β(1). 3. β \ β(1) lies in the unbounded region of R 2 \ h(C). 4. h(γ) γ = ∅. Then i(h, C) = 1. O h(O) h(γ) β h(β) α γ h(α)
Proof. Let ⋆ denote the path composition and O be α(0). By hypothesis, β \ β(1) lies in the unbounded complementary region of the closed curves h(C) and h(α

) ⋆ γ ⋆ Oh(O) (where Oh(O) is a subarc of α). Inside R 2 \ (β \ β(1)), we have h(β) homotopic rel endpoints to h(α) -1 ⋆ h(γ) -1 and h(α) -1
homotopic rel endpoints to γ ⋆ Oh(O). Therefore, according to Lemma 2.3, we can replace the field ξ = h(x)x on C by a field ξ ′ = h ′ (x)x, (where h ′ : C → R 2 is without fixed point and equal to h on γ), with the same index as ξ and whose endpoint describes γ ⋆ Oh(O) ⋆ h(γ) -1 ⋆ h(γ) as its origin describes β ⋆ γ. The natural homotopy of h(γ) -1 ⋆ h(γ) (supported by Im(h • γ)) to the constant map on h(O) does not meet fixed points of h ′ since β ⋆ γ does not meet h ′ (γ) = h(γ). Finally we get a new field on C with the same index as ξ whose endpoint describes h(α) ⋆ γ ⋆ Oh(O), that is a curve inside intC C and we conclude with Lemma 2.4.

We will need a variation on Lemma 2.5. We consider the following situation: C is a simple closed curve positively oriented, K a closed connected set such that K intC = ∅ and h(K) = K, and ξ is a vector field without zero along C . Suppose there is an arc α ⊂ C with intα K = ∅ and successive points p 0 , p 1 , • • • , p n ∈ α (where p 0 is the origin of α and p n the endpoint of α) such that h(p 0 ), h(p n ) ∈ intC C and arcs ρ 1 , ρ 2 , • • • , ρ n-1 where ρ i joins p i to K irreductibly which are disjoint except perhaps for their endpoint in K. Let Ω i be the bounded region determined by ρ i p i p i+1 ρ i+1 and K (1 ≤ i ≤ n -1).

Lemma 5.2. If the preceding data satisfy

1. ρ i ⊂ intC {p i }. 2. h(ρ i p i p i+1 ρ i+1 ) ρ i p i p i+1 ρ i+1 = ∅, 1 ≤ i ≤ n -2. 3. h(ρ i ) intC = ∅.
4. Either p 0 and h(p 0 ) belong to C and h(p 0 p 1 ) h(ρ 1 ) does not separate p 0 p 1 from infinity in R 2 \ intC or p 0 (and h(p 0 )) belong to K and the bounded region Ω 0 determined by p 0 p 1 ρ 1 and K satisfies Ω 0 h(Ω 0 ) = ∅. And similarly for p n .

Then there exists another vector field without zero ξ ′ along C equal to ξ outside α such that the endpoints of ξ ′ belong to intC C along α and which satisfies i(ξ, α)i(ξ ′ , α) = k where k ≥ 0 is given by the number of i such that

Ω i ⊂ h(Ω i ) (1 ≤ i ≤ n -1). K C h(p 0 ) p 0 p 1 h(p n ) h(ρ 1 ) h(p 1 ) h(ρ n-1 ) ρ n-1 p n K h(p n ) p n-1 ρ n-1 p n h(p n-1 )
this is forbidden by hypothesis 4.

Proof. The proof is very similar to the proof of Lemma 2.5. We define again, on ρ i described from p i towards K, q i as p i if h -1 (C) ρ i = ∅ or the last point of h -1 (C) ρ i if this set is not empty. Let q 0 = p 0 and q n = p n and proceed now exactly as in the proof of Lemma 2.5, the arcs β i such that β i ⊂ intC C existing trivially using 3), intC C being arc connected. Given hypothesis 4., the contributions of ξ and ξ ′ to their index are equal on p 0 p 1 and p n-1 p n , whence the last formula.

We will also need the following slight extension of Lemma 3.1. We consider a non empty non separating continuum in the plane and a finite number of pairwise disjoints arcs

γ i : [-1, 0] → R 2 , 1 ≤ i ≤ k, such that γ i (0) ∈ K and γ i ([-1, 0)) lies in R 2 \ K. Lemma 5.3. There exists a sequence B n , n ≥ 0, of topological closed discs such that 1. K = B n 2. B n+1 ⊂ B n 3. For every b ∈ FrB n \ Imγ i there exists an arc ρ = ρ(b) from b to some point x(b) ∈ FrK such that ρ(b) \ {b, x(b)} ⊂ IntB n \ (K ( i Imγ i )), and ρ(b) ρ(b ′ ) is at most a point in K if b = b ′ . 4. diamρ(b) → 0 uniformly in b ∈ FrB n as n → +∞.
Proof. Schoenflies theorem gives us a homeomorphism φ of R 2 such that each φ -1 (γ i ) is a vertical segment with abscissa an integer. We now apply the proof of Lemma 3.1 to the continuum φ -1 (K), considering the tiling C n of the plane by the closed squares of center ( k 2 n , l 2 n ) and side length 1 2 n , k, l ∈ Z. Since the γ i are contained in the 1-skeleton of C n , we get the desired result for the continuum φ -1 (K) and the φ -1 (γ i ). We conclude using the uniform continuity of φ on any big ball containing the whole sequence of discs associated to φ -1 (K).

Lemma 5.4. A closed compactly connected subset of R 2 can be written as an increasing union of subcontinua.

Proof. If F ⊂ R 2 is closed and compactly connected, choose x 0 ∈ F and let K n be the connected component of x 0 in F B(O, n). We are left to show that F ⊂ n>0 K n : but if x ∈ F , there exist a continuum C such that x 0 , x ∈ C and therefore x ∈ K n as soon as C ⊂ B(O, n).

Lemma 5.5. Let F be a closed, compactly connected, non compact, non separating subset of R 2 , with intF = ∅, then any neighborhood of F contains a neighborhood of F homeomorphic to R 2 bounded by a proper line. Consequently, R 2 \ F is homeomorphic to R 2 .

Proof. Given any neighbohood W of F , write F as a union of compact, connected, non separating sets : F = n>0 K n , K n ⊂ intK n+1 and use Lemma 3.1 to find a ball B n such that K n ⊂ intB n ⊂ W . We choose B n as a subset a tiling of the plane by squares of side length decreasing with n. Then, the family (FrB n ) n>0 is locally finite and if V is the union of n>0 B n with all the components of R 2 \ n>0 B n which lie inside W , then FrV is a non compact connected (since F is non separating) one-manifold properly embedded in R 2 , that is a proper line. This implies that R 2 \ F is homeomorphic to an increasing sequence of half-planes and therefore homeomorphic to R 2 .

To prove Theorem 1.2, according to Theorem 1.1, we can suppose F non compact and in all the rest of this section, we consider F a closed, compactly connected subset of R 2 without interior such that R 2 \ F is homeomorphic to R 2 and a homeomorphism h of R 2 preserving F : h(F ) = F .

It follows from Lemma 5.5 that ∞ is an accessible point of F {∞} from S 2 \ F {∞}, and that if we let γ ∞ be an access arc to ∞, then h([γ ∞ ]) = [γ ∞ ]. Therefore the set of prime ends of S 2 \ F {∞} minus [γ ∞ ], which we call the prime ends of R 2 \ F , is linearly orderable, in fact homeomorphic to a line, and invariant under the homeomorphim induced by h. Given a cyclic order on the prime ends of S 2 \ F {∞}, the prime ends of R 2 \ F are given by equivalence classes of sequences (

[p n , p ′ n ]) n≥0 with p n < p ′ n < [γ ∞ ] or [γ ∞ ] < p n < p ′
n where p n and p ′ n can be represented by access arcs inside R 2 \ F except for their endpoint in F .

To prove Theorem 1.2, we will suppose, aiming to a contradiction, that h has no fixed point in F and therefore no fixed point on a neighborhood V of F . Lemma 5.6. On the line of prime ends h has no fixed point and therefore, for any interval

[a, b], neither [h(a), h(b)] or [h -1 (a), h -1 (b)] is contained in [a, b]. Proof. Suppose q, defined by [[γ n ], [γ ′ n ]]
, is a fixed prime end and let c be a cut obtained by joining irreductibely γ 0 to γ ′ 0 by an arc inside R 2 \ F . The endpoints of c are both in some compact connected subset D of F since F is compactly connected and therefore, the region cut out by c in R 2 \ F and containing the endpoints of access arcs

β such that [β] ∈ [[γ 0 ], [γ ′ 0 ]
] is bounded. This implies that the impression associated to q = h(q) is a non separating compact connected set invariant under h. Theorem 1.1 would then give a fixed point of h in this impression and therefore in F : a contradiction.

Let γ an access arc to some point p 0 ∈ F short enough so that h -1 (γ), γ, h(γ), h 2 (γ) are all disjoint (except perhaps in their endpoints) and let L be a proper line in V \ F , boundary of a neighborhood of F , close enough to F so that L meets h -1 (γ), γ, h(γ), h 2 (γ). There exists a subarc pp 0 of γ joining irreductibely L to F and the arc pp 0 separates the region R between L and F into two sub-regions A and B which are unbounded. Lemma 5.6 says that h(γ) R and h -1 (γ) R are not in the same region and we call A the one containing h(γ) R and B the one containing h -1 (γ) R. By definition γ is on the frontiers of A and B. Notice that A contains h k (γ) R, k ≥ 0 and B contains h -k (γ) R, k ≥ 1. Also, all regions cut out in R by h k (γ) and h k+1 (γ), as k varies in Z, are disjoint (assuming that h k (γ) and h k+1 (γ) meet L).

F A B L h(p 0 ) p 0 γ h(γ) Lemma 5.7. FrA FrB F is unbounded.
Proof. Let F A (resp. F B ) be the set of points of F which admit a neighborhood contained in A F (resp. B F ). The sets A F A and B F B are disjoint (since intF = ∅) and open, therefore their complement in R F \(γ \{p}) (which complement is the set of points of F for which every neighborhood meets A and B, that is FrA FrB F ) separates R F \ (γ \ {p}) and R F \ (γ \ {p}) can be written as the disjoint union (A F A ) (B F B ) (FrA FrB F ).

L. Guillou

On the other hand, if FrA FrB F was compact in R 2 or equivalently in R F (which is homeomorphic to R 2 ), thinking of L as a straight line and of γ as a segment orthogonal to L (as it is legitimate by Schoenflies theorem), one can find a large rectangle in R F with a side parallel to L , containing FrA FrB F and whose boundary cuts γ transversaly in a single point. The boundary of this rectangle joins a point of A near γ to a point of B near γ in contradiction to the above decomposition of R F \ (γ \ {p}).

Given the fact that F is compactly connected, there exist a connected compact K in F containing p 0 , h(p 0 ) and h -1 (p 0 ). The preceding Lemma gives x ∈ FrA FrB F outside of K and we let U be an euclidean disc inside R F containing x such that h(U) U = ∅. We can assume that U does not meet K, γ, h(γ) and h -1 (γ).

F K x γ h -1 (γ) h(γ) γ -1 γ 1 A
Choose any arc joining the boundary of U to itself in the region R between L and F so that, united to an arc of ∂U it gives a simple closed curve A containing K and x (to get such an arc, we can consider the boundary of a neighborhood of a continuum in F containing K {x}). Choose then ǫ > 0 so that dist(h(u), v) > ǫ for all u, v inside the curve A with dist(u, v) < 3ǫ. In particular, if diamX < 3ǫ, then h(X) X = ∅. We also ask that ǫ

< dist(γ R, h(γ) R). Choose also δ, ǫ > δ > 0, such that dist(u, v) < δ implies dist(h(u), h(v)) < ǫ and dist(h -1 (u), h -1 (v)) < ǫ for u, v ∈ intA.
Let p -1 a point of U F accessible from B, p 1 a point of U F accessible from A with corresponding access arcs γ -1 and γ 1 such that dist(p -1 , p 1 ) < ǫ. We order the line of prime ends so that [γ -1 ] < [γ] < [γ 1 ]. By Lemma 5.6, exchanging h and h -1 if necessary, we can (and we will) suppose that h(p) > p > h -1 (p) for every prime end p. We can assume that γ -1 , h(γ -1 ), γ, h -1 (γ 1 ), γ 1 , h(γ 1 ) are all disjoint and meet L (choosing, if necessary, a new L closer to F ). By construction γ separates h(γ -1 ) and h -1 (γ 1 ) (inside R) and we have the order

[γ -1 ] < [h(γ -1 )] < [γ] < [h -1 (γ 1 )] < [γ 1 ].

A simple closed curve

We consider the rectilinear segment p 1 p -1 and u -1 the infimum on the line of prime ends of classes of access arcs between [γ] and [γ -1 ] which do not cut p 1 p -1 and u 1 the supremum of classes of access arcs between [γ] and [γ 1 ] which do not cut p 1 p -1 . Choose a disc B in the ǫ-neighborhood of F as given by Lemma 5.3 applied to a subcontinuum M of F containing F intA, p 1 and p -1 , and to the arcs γ 1 , γ -1 . We choose B close enough to M so that FrB meets γ 1 and γ -1 . Let c be a cut inside A made of three arcs : two end parts ρ -, ρ + of access arcs such that

[ρ -] < u -1 < [ρ + ], ρ -γ -1 = ∅ = ρ + γ -1
and an arc of FrB. We can suppose that c and h(c) do not meet γ and that diamc < 3ǫ so that c h(c) = ∅. Similarly, we define a cut d inside A made of (end parts) of access arcs µ -and µ + , [µ -] < u 1 < [µ + ] and an arc of FrB such that

d γ = ∅ = h -1 (d) γ and d h -1 (d) = ∅. F γ ρ - ρ + FrB c µ + µ - FrB d h(c) h -1 (d)
Now, choose a sequence of discs (B n ) n≥1 inside B as given by Lemma 5.3 relative to M and the arcs ρ

+ , h(ρ -), h(ρ + ), h -1 (µ -). If u 1 > [γ 1 ], that is, if between [ρ -] and [ρ + ]
on the line of prime ends there exist prime ends of the form [δ] such that δ cuts the segment p 1 p -1 for every representative δ, then we choose n 1 large enough so that FrB n 1 cuts p 1 p -1 inside the bounded region determined by c and M and we call r the last point of intersection on p 1 p -1 of p 1 p -1 with FrB n 1 .

L. Guillou

p -1 F FrB n 1 q -1 r FrB ρ - ρ + F p 1 q 1 t FrB n 2 FrB µ + µ -
In the opposite case (that is u -1 = [γ -1 ]) we let r be the last point on γ -1 (from x 0 to F ) of γ -1 FrB n 1 where n 1 is choosen large enough so that the diameter of the subarc rp -1 of γ -1 is less than ǫ.

F FrB n 1 γ -1 ρ - ρ + r p -1 = q -1 F FrB n 2 γ 1 t p 1 = q 1 µ + µ -
Similarly, if between [µ -] and [µ + ] on the line of prime ends there exist prime ends of the form [δ] such that δ cuts the segment p 1 p -1 for every representative δ, then we choose n 2 large enough so that FrB n 2 cuts p 1 p -1 inside the bounded region determined by d and M and we call t the first point of intersection on p 1 p -1 of p 1 p -1 with FrB n 2 .

In the opposite case (that is u 1 = [γ 1 ]) we let t be the last point on γ 1 (from x 0 to F ) of γ 1 FrB n 2 where n 2 is choosen large enough so that the diameter of the subarc tp 1 of γ 1 is less than ǫ.

On the arc rt (which is a subarc of γ -1 p -1 p 1 γ 1 ), let q -1 and q 1 be the first and last point on M. We now consider the cut c ′ made of the arc q -1 r, the subarc of FrB n 1 from r to ρ + and the subarc of ρ + from this last point to F , and we join irreductibly the part of ρ + in c ′ to h(q -1 r) by an arc of FrB m 1 for some m 1 > n 1 large enough so that FrB m 1 cuts the part of ρ + in c ′ and h(q -1 r).

F FrB FrB n 1 r q -1 ρ - ρ + c ′ FrB FrB n 2 µ + µ - t q 1 d ′ h -1 (µ -) h -1 (t) h -1 (d ′ ) h(ρ + ) h(r) h(c ′ ) FrB m 1 FrB l FrB m 2
Similarly, we now consider the cut d ′ made of the arc q 1 t, the subarc of FrB n 2 from t to µ -and the subarc of µ -from this last point to F , and we join irreductibly the part of µ -in d ′ to h -1 (q 1 t) by an arc of FrB m 2 for some m 2 > n 2 large enough so that FrB m 2 cuts the part of µ -in c ′ and h -1 (q 1 t).

F r q -1 γ -1 h(r) q 1 t γ 1 h -1 (t) h(γ 1 ) h(t) h(β) α β γ h(γ)
Finally, we join irreductibly h(ρ + ) and h -1 (µ -) by a subarc of FrB l , l > m 1 , m 2 , and we consider the simple closed curve from r to h(r) to h -1 (t), to t to r composed of subarcs of the cuts c ′ , h(c ′ ), h -1 (d ′ ), d ′ , of subarcs of FrB m 1 , FrB l , FrB m 2 and of the arc tr.

In every case, we have constructed a simple closed curve C in the ǫneighborhood of F composed of three consecutive arcs α (from r to h -1 (t)), β (from h -1 (t) to t), γ (from t to r) with disjoints interiors such that, if O denotes the origin of α, h(O) ∈ α, the endpoint of β is the origin of h(β) and h(β) β is reduced to the endpoint of β, h(β) α = ∅ and h(γ) γ = ∅. Furthermore, according to Lemma 5.3, we can find a sequence of points r 0 = r, r 1 , r 2 , . . . , r n = h -1 (t) on α and for each i, 1 ≤ i ≤ n -1 an arc ρ i inside C, in the region determined by γ -1 , h -1 (γ 1 ) and F , irreducible from r i to F such that ρ i ρ i+1 is at most a point in F . We can make these choices (choosing n 1 , m 1 , l large enough) so that diamρ i r i r i+1 ρ i+1 is less than 3ǫ so that ρ i r i r i+1 ρ i+1 is disjoint from its image under h.

An index computation

Our aim is now to compute the index of the non vanishing vector field ζ(u) = h(u)u along C: if it is non zero, we will have reached the desired final contradiction.

We observe that an arc ρ from α ⊂ C towards F in intC preceding h -1 (γ 1 ) (on the line of prime ends) verifies that h(ρ), from h(α) to F , precedes γ 1 and so must meet intC. Therefore, hypothesis 3) of Lemma 5.2 is satisfied. Lemma 5.6 justifies hypothesis 4) and also says that in fact h(ρ i r i r i+1 ρ i+1 ) lies outside the bounded region Ω i cut out from R 2 \ F by ρ i r i r i+1 ρ i+1 . Therefore, we can find a new non vanishing vector field which points inward the curve C or on C as its origin describes the arc α and which has the same index as ζ on C.

Since h(γ) γ = ∅, the distance between h(γ) and the endpoint of β (which is also the origin of γ) is positive and we can find an isotopy supported in a small neighborhood, disjoint of γ, of a closed subarc of β \ endpoint(β) which moves h(γ) outside of β. This gives a new non zero vector field, which we write as f (x)x, on C with the same index as ζ. Since the origin of β can be joined to ∞ using h -1 (γ 1 ), we see that β lies in the unbounded region of R 2 \ f (C) except for its endpoint and we can apply Lemma 5.1 to conclude that our original vector field has index 1, which concludes the proof by contradiction of Theorem 1.2.

Example 5.8. Simple examples show the necessity of the hypothesis. For intF = ∅, consider a translation and an invariant half-plane, for R 2 \ F connected, consider a translation and an invariant line. For F compactly connected, consider the translation τ given by τ (x, y) = (x + 2, y) and for F the set n∈Z τ n (G) where G is the union of the half-lines {(0, y), y ≥ 0}, {(1, y), y ≥ 0}, {(2, y), y ≥ 0} and of all the segments from (1,

n) to ( 1 n , 0) and to (2 - 1 n , 0), n ≥ 2.
Remark 5.9. In [Gui11], Theorem 1.2 is proved under the further assumption that h is fixed point free on R 2 \ F using some Brouwer theory related to the plane translation theorem [START_REF] Brouwer | Beweis des ebenen Translationssatzes[END_REF] (compare to Remark 3.2). One can reduce the present Theorem 1.2 to the one in [START_REF] Guillou | On the structure of homeomorphisms of the open annulus[END_REF] using a covering argument as in [START_REF] Brown | A short short proof of the Cartwright-Littlewood theorem[END_REF].

6 Proof of Theorem 1.3

We will need some more elementary index computations.

since the orientation preserving homeomorphim of the circle of prime ends induced by h has no periodic point (only fixed points), we can suppose that [γ], [h(γ]), ..., [h k (γ)] are represented by disjoint arcs γ 0 , γ 1 , ..., γ k except that γ 0 γ k = {p}. We can find Jordan curve J by joining irreductibely γ and γ k inside R 2 \ K, such that intJ contains h(p), ..., h k-1 (p), so that intJ K = ∅ but no point of intJ K is endpoint of an access arc δ with [δ] ∈ a 2 : a contradiction.

Lemma 6.3. There exist access arcs γ with [γ] ∈ a 1 and δ with [δ] ∈ a 2 with endpoints p and q and an arc α from p to q such that γ α δ is a arc

in R 2 , h(α) α = ∅ = h 2 (α) α and h(γ) α = ∅ = h -1 (γ) α.
(Possibly p = q and α is reduced to a point).

Proof. Choose some access arc γ with [γ] ∈ a 1 and with endpoint p = p 0 in K. Using Schoenflies theorem one can think of γ as a straight segment. Let then B be an euclidean disc such that p ∈ intB,

p 0 / ∈ B, B h(γ) = ∅ = B h -1 (γ), B h -1 (B) = ∅ = B h(B) and B h 2 (B) = ∅.
Let δ be an access arc with [ δ] ∈ a 2 and with endpoint q ∈ B K. Inside B the segment α from p to q satisfies α γ = {p}. We can suppose δ short enough so that δ ⊂ B and therefore δ h( α) = ∅. We now follow δ from its origin to q until we meet α. We then follow α towards p until we reach an accessible point q on K α; the path followed is an access arc δ for q and we define α as the part of α between p and q. Surely [δ] ∈ a 2 for otherwise, between [δ] and [ δ] there would be an endpoint of a 1 which is a fixed prime end in contradiction to B h(B) = ∅.

For the rest of this section we suppose, without loss of generality, that g = h. We will also assume that γ and δ are short enough so that the eight arcs h -1 (γ), γ, h(γ), h 2 (γ) and h -1 (δ), δ, h(δ), h 2 (δ) are all disjoints.

Let A be a simple closed curve such that K + = K α h(α) h 2 (α) ⊂ intA close enough to K + so that A cuts h -1 (γ), γ, h(γ), h 2 (γ) and h -1 (δ), δ, h(δ), h 2 (δ) . That curve is split by an irreductible subarc of γ α δ from A to itself, containing α, into two arcs A 1 and A 2 with the same endpoints. These arcs, joined with the preceding irreducible subarc of γ α δ, give rise to two simple closed curves Ã1 and Ã2 with disjoint interiors such that one of them, say Ã1 , does not contain the fixed point p 0 . Denote by D1 the closure of the interior of Ã1 and let L = K ( D1 h( D1 ) h 2 ( D1 )). Notice that p 0 / ∈ L. We orient A by going from γ to δ on Ã1 without meeting α (equivalently, if α is non degenerated, we orient α from q to p).

Given our hypothesis that there is only p 0 as fixed point in K, we can now find a neighborhood U of L α h(α) h 2 (α) such that p 0 / ∈ U and ǫ > 0 such that dist(h(x), x) > 3ǫ and dist(h -1 (x), x) > 3ǫ on U. Furthermore, we ask that 2ǫ < dist(γ U, h(γ) U), dist(δ U, h(δ) U), 2ǫ < dist(α, h(α)), dist(h(α), h 2 (α)) and dist(h 2 (α), h 3 (α)). Finally, let ǫ > 3ǫ ′ > 0 be such that if dist(x, y) < 3ǫ ′ then dist(h(x), h(y)) < ǫ and dist(h -1 (x), h -1 (y)) < ǫ.

Our aim is now to find a closed curve C such that L ⊂ intC ⊂ U and to compute the index of the vector field ζ(x) = h(x)x on C (or the one of

ζ ′ (x) = h -1 (x) -x).
If it is non zero, we will have reached a contradiction proving the theorem.

Let L be L + = L α h(α) h 2 (α) plus all the bounded components of R 2 \ L + . We now apply Lemma 5.3 to L and the arcs h -1 (γ), γ , h(γ), h 2 (γ) and h -1 (δ), δ , h(δ), h 2 (δ) to get an arc η from h(γ) to h(δ) in U \ L which is ǫ ′ -close to L. Adding subarcs of h(γ) and h(δ) to η h(α) we get an oriented simple closed curve C. By construction the fixed point p 0 does not belong to intC. The arc η comes equiped with a sequence of successive points, r 0 ∈ h(γ), r 1 , . . . , r n ∈ h(δ) such that diamr i r i+1 < ǫ ′ for each i, 0 ≤ i ≤ n -1, and for each i, 1 ≤ i ≤ n -1, an arc ρ i inside C, disjoint from all the arcs h -1 (γ), γ , h(γ), h 2 (γ) and h -1 (δ), δ , h(δ), h 2 (δ), irreducible from r i to L, such that diamρ i < ǫ ′ and therefore so that each one of the cuts ρ i r i r i+1 ρ i+1 of R 2 \ K is disjoint from its image under h or h -1 .

We forget the ρ i with endpoint on α, h(α) or h 2 (α) (recall that these three arcs are disjoint). By choice of ǫ ′ , we still have cuts disjoint from their images under hor h -1 . Indeed, if c is a cut of R 2 \ K subarc of α, h(α) or h 2 (α), ρ k+1 , . . . , ρ l-1 the ρ i with endpoint on c and d is the cut ρ k r k r l ρ l obtained by forgetting ρ k+1 , • • • , ρ l-1 , then every point of d has distance less than 3ǫ ′ to c, therefore every point of h(d) has distance less than ǫ to h(c) and h(d) d = ∅ since dist(c, h(c)) > 2ǫ.

We will distinguish four cases according to the order of the pairs of prime ends ([γ], h([γ])) ∈ a 1 and([δ], h([δ])) ∈ a 2 on the circle of prime ends.

First case h([γ]) precedes [γ] and h([δ]) precedes [δ].

First remark that γ α δ separates intA into two regions and by hypothesis in this case the parts of h(γ) and h(δ) close to A do not belong to the same region. Therefore h(δ) has to meet α before ending in h(q) and p L. Guillou and q are separated by h(δ) h(α) h(γ). Therefore p ∈ intC and q ∈ extC (even δ ⊂ extC).

Let l be the last point of intersection of η r n h(q) and h -1 (η) (on r 0 h(q) ⊂ C oriented from r 0 to h(q)), and m be the first point of intersection of α and h(δ) on α (oriented from q to p). Notice that l precedes m on C and that the arc lm on h -1 (C) lies outside C. Also if l ∈ h(δ), then, since h(l) ∈ η, h(l) precedes l on η r n h(q).

Notice that the intersections α η, h -1 (η) h(α) and h(α) α are empty.

h(q) h(m) h(p) r 0 l r n m p q h(γ)) γ α η δ h(δ) h -1 (η)
We will compute the index of h -1 along C as the sum of three contributions: the index of h -1 along the subarc h(p)h(l) on C, then along the subarc h(l)h(m) and finally along the subarc h(m)h(p) ⊂ h(α) which we denote by i 1 , i 2 and i 3 respectively.

We will distinguish two subcases according to the position of h(l) which lies before or after l on η r n h(q) ⊂ C.

Subcase 1

h(l) lies after l on η r n h(q) ⊂ C (then, since h(l) ∈ η, l and h(l) ∈ η):

Let k be the index such that h(l) lies between r k and r k+1 . Using Lemma 5.2 on K and the arc h(p)h(l) ⊂ C subdivided by the points h(p), r 1 , . . . , r k , h(l) with the arcs ρ 1 , . . . , ρ k we get i 1 = j 1 + n, n ≥ 0 where j 1 is the index of a vector field whose origin describes h(p)h(l) while its extremity describes an arc from p to l inside C. Indeed, hypothesis 3) of this Lemma is verified, for if an arc ρ goes from h(p)h(l) towards K then h -1 (ρ), which is issued from h -1 (η) before l must step into C since K does not meet the components of inth -1 (C) extC except perhaps the one which contains lm in its frontier. Hypothesis 4) too is verified at h(p) since ρ 1 lies in the region determined by γ, h(γ) and L by choice of ǫ and therefore the region Ω 0 determined by h(p)r 0 r 0 r 1 ρ 1 and L is disjoint from its image by h -1 . It is verified also at h(l) ∈ η since by choice of ǫ and ǫ ′ , l lies before r k on η, h -1 (r k ) precedes l on h -1 (η) and h -1 (ρ k ) lie inside h -1 (C). Lemma 6.1 imply that i 2 = j 2 where j 2 is the index of a vector field whose origin describes h(l)h(m) while its extremity describes an arc from l to m inside C and Lemma 2.4 that i 3 = j 3 where j 3 is the index of a vector field whose origin describes h(m)h(p) while its extremity describes an arc from m to p inside C.

The sum j 1 + j 2 + j 3 is equal to 1 since it computes the index of a vector field whose origin describes C while its end point stays inside C. Therefore we get that the index of h -1 along C, which is i 1 +i 2 +i 3 , is equal to 1+n ≥ 1 in contradiction to the hypothesis that there is no fixed point for h -1 inside C.

Subcase 2

h(l) lies before l on η r n h(q): For the computation of i 1 , we can repeat everything said in subcase 1, except for the verification of hypothesis 4 of Lemma 5.2 at h(l). But now we want to get i 1 = j 1 + n for some n ≥ 1 and we need a more detailed study of the curves C and h -1 (C) near h(l) and l.

Notice first that since a cut c subarc of α separates h(q) from ∞, the cut h(c) separates h 2 (q) from ∞ and there is a special cut (that is one of the form ρ i r i r i+1 ρ i+1 ) which contains h(c) in the bounded region it determines with K and which separates h 2 (q) from ∞. If we call h(d) this special cut, then the cut d separates h(q) from ∞ and contains c in its associated bounded region. Since d h(d) = ∅ there are apriori three possibilities for the relative position of d and h(d). But d cannot be contained in the bounded region associated to h(d) since h(δ) h(α) = {h(q)} and h(d) cannot be contained in the bounded region determined by d since in that case we would have l before h(l) on η r n h(q). K

h(δ) h(q) h 2 (δ) h 2 (q) η r n l d h(d) h(l) h(c) c h -1 (η) K h(δ) h(q) h(d) c h(c)
Therefore the bounded regions associated to d and h(d) are disjoint and l is the last point on d (starting from the endpoint of d before h(δ) on the circle of prime ends) of η r n h(q) : between l and m, η h(α) and h -1 (η) α are disjoint.

K h 2 (q) h(d) h(δ) h(q) r n h(l) l h -1 (η) d η
Therefore, between h(γ) and h 2 (δ), there exists a special cut c which contains an end point of a 1 (invariant subarc of the circle of prime ends) that is a fixed point on the circle of prime ends. Let Ω be the bounded region determined by c and K. If Ω ⊂ h -1 ( Ω) we get n ≥ 1 (see Lemma 5.2). If h -1 ( Ω) ⊂ Ω, then that endpoint of a 1 is a repulsor for the map ĥ induced by h on the circle of prime ends and the position of δ and h(δ) (or γ and h(γ)) on that circle imply that there is another fixed point between [h(γ)] and [h 2 (δ)] which is an attractor for ĥ. This gives a special cut ĉ with Ω ⊂ h -1 ( Ω) so that in any case, n ≥ 1. Also i 2 = j 2 -1 by Lemma 6.1, i 3 = j 3 by Lemma 2.4 and j 1 +j 2 +j 3 = 1. We conclude again that i 1 + i 2 + i 3 is equal to 1 + n -1 ≥ 1 to get the same contradiction.

Remark 6.4. In the situation of subcase 1, h(d) is in the bounded region determined by d and one gets also n ≥ 1 in that subcase (see the picture), but this information was not necessary there.

Second case h([γ]) follows [γ] and [h(δ)] precedes [δ].

We will compute the index of h along the curve h -1 (C). Since h(γ) γ α δ = ∅, one has h(p) ∈ inth -1 (C). Also h(q) ∈ inth -1 (C), otherwise, since h(α) (h -1 (η) α γ) = ∅, we would have that h(α) cuts δ and so h(δ) would cut δ.

Again, we will distinguish two subcases.

Subcase 1

h(δ) cuts α. And therefore h(α) δ = ∅ and h(α) ⊂ inth -1 (C).

q h(n) h(m) p m h(p) h(q) h -1 (η) δ h(δ) η K p γ h(p) h(γ) h -1 (r 0 ) r 0 η ρ 1 h -1 (ρ 1 )
Let h(m) (resp. h(n)) denote the first (resp. last) intersection point of h(δ) and α on α oriented from q to p.

We compute our index as the sum i 1 + i 2 where i 1 is the index of h along the subarc pm of h -1 (C) and i 2 the index of h along the subarc mp of h -1 (C).

The arc pm comes equipped with the points h -1 (r i ) and the arcs h -1 (ρ i ) which gives a sequence of special cuts on pm disjoint from their images under h. To apply Lemma 5.2, we first verify its third hypothesis. If an arc ρ L. Guillou goes from pm ⊂ h -1 (C) to K, then h(ρ) from h(p)h(m) towards K must go inside h -1 (C) since K does not meet the components of exth -1 (C) intC. As for the fourth hypothesis, note that since h -1 (ρ 1 ) h(γ) = ∅, the bounded region determined by ph -1 (r 0 )h -1 (r 1 )h -1 (ρ 1 ) is contained in the the region between γ and h(γ) and does not meet its image under h. At the other end of the arc pm, we have h -1 (ρ n-1 ) h(δ) = ∅ and so h -1 (ρ n-1 )h -1 (r n-1 )h -1 (r n )m is contained in the region bounded by δ and h(δ), whence hypothesis 4). Lemma 5.2, which can now be applied gives then i 1 = j 1 + n, n ≥ 0, where j 1 be the index along pm of a vector field whose origin describes pm while its endpoint describes a path inside h -1 (C) from h(p) to h(m).

Let j 2 be the index along mp of a vector field along mp whose origin describes mp while its endpoint follows the curve obtained by replacing in h(m)h(p) ⊂ C the subarc h(m)h(n) ⊂ C by the subarc of α with the same endpoints.

One has i 2 = j 2 since the subarcs from h(m) to h(n) on C and α are homotopic rel their endpoints in R 2 \ δ (and mn ⊂ δ)

Since j 1 +j 2 = 1 (Lemma 2.4), we get i 1 +i 2 = 1+n ≥ 1, a contradiction.

Subcase 2

h(δ) does not cut α p q δ h(p) h(q) h(δ) q h(q)

h -1 (η) h -1 (r n ) δ h -1 (ρ n-1 ) h(δ)
r n η ρ n-1 Let i 1 be the index of h along pq ⊂ h -1 (C). The arc pq is again equipped with the points h -1 (r i ) and the arcs h -1 (ρ i ) which gives a sequence of special cuts on pm disjoint from their images under h. Hypothesis 3. and 4. of Lemma 5.2 are verified as in subcase 1 above except for hypothesis 4. at q where we use that h -1 (ρ n-1 ) h(α) = ∅ to show that the region determined by h -1 (ρ n-1 )h -1 (r n )q is disjoint from its image. Therefore, there exists a vector field whose origin describes pq while its endpoint describes first an arc inside h -1 (C) from h(p) to h(q) and whose index j 1 satisfies i 1 = j 1 + n, n ≥ 0.

Since h(α) is homotopic rel endpoints in R 2 \ γ α to an arc inside h -1 (C), the index i 2 of h along qp is equal to the index j 2 of a vector field whose origin describes qp while its endpoint describes an arc inside h -1 (C).

Since, by Lemma 2.4 j 1 + j 2 = 1, we have again a contradiction.

Third case h([γ]) follows [γ] and h([δ]) follows [δ].

This case reduces to the first one by exchanging h and h -1 .

Fourth case h([γ]) precedes [γ] and h([δ]) follows [δ].

This case reduces to the second one by exchanging h and h -1 .

3.

  For every b ∈ FrB n there exists a rectilinear segment ρ = ρ(b) from b to some point x(b) ∈ FrK such that ρ(b) \ {b, x(b

  segment from b to x(b). Given b, b ′ ∈ FrB n , if ρ(b) and ρ(b ′ ) do not belong to the same square, clearly ρ(b) ρ(b ′ ) is empty or reduced to x(b) = x(b ′ ). If ρ(b) and ρ(b ′ ) belong to the same square Q, we conclude with the following elementary Lemma. Lemma 3.2. Let Q is a square and K a closed subset in Q. For b ∈ FrQ, let x(b) be a nearest point of K in Q and ρ(b) be the rectilinear segment from b to x(b). Then ρ(b) ρ(b ′ ) is empty or reduced to x(b) = x(b ′ ) if b = b ′ . Proof. Suppose there exists a point c in ρ(b) ρ(b ′ ). The inequalities

  Definition 4.1. A point x ∈ FrU = FrK is said accessible (from U) if there is an arc γ : [a, b] → U such that γ([a, b)) ⊂ U and γ(b) = x. The point x is the endpoint of γ and γ is an access arc to x.

Lemma 6.1. Let C be a simple closed curve positively oriented (intC is on the left) in the plane and α ⊂ C an arc from a to b. Let also f, g : α → R 2 be maps without fixed point such that f (α) ⊂ intC C and g(α) ⊂ extC C.

Idem if a and b lie inside the arc of C from f (a) = g(a) to f (b) = g(b). Proof. As for 1), using Schoenflies theorem, we can think of the arc ab as a vertical segment with C on the left of the line supporting this segment. In the first case, the vector

goes from (0, 1) to (0, -1) without ever pointing to the right so that i(f, α) = -1 2 and similarly i(g, α) = 1 2 .

The second case and point 2) are treated in the same way.

We consider now a non degenerated non separating compact connected set K ⊂ R 2 and an orientation preserving homeomorphism h : R 2 → R 2 preserving K: h(K) = K. According to Theorem 1.1, h admits a fixed point in K.

The simple case K = [-1, 1] × {0} ⊂ R 2 and h a π-rotation around (0, 0), shows that some extra hypothesis in Theorem 1.1 is needed in order to get two fixed points in K. What follows is a formal version of the idea of preserving the sides of [0, 1] × {0}.

We suppose further that the circle of prime ends of R 2 \ K splits into two (non degenerated) arcs a 1 and a 2 with the same endpoints such that p∈a i I(p) = K, i = 1, 2, where I(p) is the impression of the prime end p (and therefore intK = ∅).

Theorem 1.3 then states that if the orientation preserving homeomorphism of the circle of prime ends induced by h preserves a 1 and a 2 (that is fixes the common endpoints of a 1 and a 2 ), then h admits two fixed points in K

For the proof we will argue by contradiction and suppose that h has only one fixed point p 0 ∈ K. Lemma 6.2. There is no accessible periodic point of period k > 1 in K.

Proof. Suppose there exist an accessible periodic point p in K of period k > 1 and let γ be an access arc for p. We can suppose that [γ] ∈ a 1 and,