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Non-asymptotic approach to varying coefficient model

In the present paper we consider the varying coefficient model which represents a useful tool for exploring dynamic patterns in many applications. Existing methods typically provide asymptotic evaluation of precision of estimation procedures under the assumption that the number of observations tends to infinity. In practical applications, however, only a finite number of measurements are available. In the present paper we focus on a non-asymptotic approach to the problem. We propose a novel estimation procedure which is based on recent developments in matrix estimation. In particular, for our estimator, we obtain upper bounds for the mean squared and the pointwise estimation errors. The obtained oracle inequalities are non-asymptotic and hold for finite sample size.

Introduction

In the present paper we consider the varying coefficient model which represents a useful tool for exploring dynamic patterns in economics, epidemiology, ecology, etc. This model can be viewed as a natural extension of the classical linear regression model and allows parameters that are constant in regression model to evolve with certain characteristics of the system such as time or age in epidemiological studies.

The varying coefficient models were introduced by Cleveland, Grosse and Shyu [START_REF] Cleveland | Local regression models[END_REF] and Hastie and Tibshirani [START_REF] Hastie | Varying-coefficient models[END_REF] and have been extensively studied in the past 15 years. The estimation procedures for varying coefficient model are e.g. based on the kernel-local polynomial smoothing (see e.g. [START_REF] Wu | Asymptotic confidence regions for kernel smoothing of a varying-coefficient model with longitudinal data[END_REF][START_REF] Hoover | Nonparametric smoothing estimates of time-varying coefficient models with longitudinal data[END_REF][START_REF] Fan | Statistical estimation in varying coefficient models[END_REF][START_REF] Kauermann | On model diagnostics using varying coefficient models[END_REF]), the polynomial spline (see e.g. [START_REF] Huang | Varying-coefficient models and basis function approximations for the analysis of repeated measurements[END_REF][START_REF] Huang | Polynomial spline estimation and inference for varying coefficient models with longitudinal data[END_REF][START_REF] Huang | Functional coefficient regression models for nonlinear time series: A polynomial spline approach[END_REF]), the smoothing spline (see e.g. [START_REF] Hastie | Varying-coefficient models[END_REF][START_REF] Hoover | Nonparametric smoothing estimates of time-varying coefficient models with longitudinal data[END_REF][START_REF] Chiang | Smoothing spline estimation for varying coefficient models with repeatedly measured dependent variables[END_REF]). More recently e.g. Wang et al [START_REF] Wang | Local Rank Inference for Varying Coefficient Models[END_REF] proposed a new procedure based on a local rank estimator; Kai et al [START_REF] Kai | New efficient estimation and variable selection methods for semiparametric varying-coefficient partially linear models[END_REF] introduced a semi-parametric quantile regression procedure and studied an effective variable selection procedure; Lian [START_REF] Lian | Spline Estimator for Simultaneous Variable Selection and Constant Coefficient Identification in High-dimensional Generalized Varying-Coefficient Models[END_REF] developed a penalization based approach for both variable selection and constant coefficient identification in a consistent framework. For more detailed 1 discussions of the existing methods and possible applications, we refer to the very interesting survey of Fan and Zhang [START_REF] Fan | Statistical methods with varying coefficient models[END_REF].

Existing methods typically provide asymptotic evaluation of precision of estimation procedures under the assumption that the number of observations tends to infinity. In practical applications, however, only a finite number of measurements are available. In the present paper, we focus on a non-asymptotic approach to the problem. We propose a novel estimation procedure which is based on recent developments in matrix estimation, in particular, matrix completion. In the matrix completion problem, one observes a small set of entries of a matrix and needs to estimate the remaining entries using these data. A standard assumption that allows such completion to be successful is that the unknown matrix has low rank or has approximately low rank. The matrix completion problem has attracted a considerable attention in the past few years (see, e.g., [START_REF] Candès | Exact matrix completion via convex optimization[END_REF][START_REF] Keshavan | Matrix completion from a few entries[END_REF][START_REF] Koltchinskii | Nuclear norm penalization and optimal rates for noisy low rank matrix completion[END_REF][START_REF] Negahban | Restricted strong convexity and weighted matrix completion: Optimal bounds with noise[END_REF][START_REF] Klopp | Noisy low-rank matrix completion with general sampling distribution[END_REF]). The most popular methods for matrix completion are based on nuclear-norm minimization which we adapt in the present paper.

Formulation of the problem

Let (W i , t i , Y i ), i = 1, . . . , n be sampled independently from the varying coefficient model

Y = W T f (t) + σξ. (1) 
Here, W ∈ R p are random vectors of predictors, f (•) = (f 1 (•), . . . , f p (•))

T is an unknown vector-valued function of regression coefficients and t ∈ [0, 1] is a random variable independent of W . Let µ denote its distribution. The noise variable ξ is independent of W and t and is such that E(ξ) = 0 and E(ξ 2 ) = 1, σ > 0 denotes the noise level.

The goal is to estimate the vector function f (•) on the basis of observations (W i , t i , Y i ), i = 1, . . . , n. Our estimation method is based on the approximation of the unknown functions f i (t) using a basis expansion. This approximation generates the coordinate matrix A 0 . In the above model, some of the components of vector function f are constant. The larger the part of the constant regression coefficients, the smaller the rank of the coordinate matrix A 0 (the rank of matrix A 0 does not exceed the number of time-varying components of vector f (•) by more than one). We suppose that the first element of this basis is just a constant function on [0, 1] (indeed, this is true for vast majority of bases on a finite interval). In this case, if the component f i (•) is constant, then, it has only one non-zero coefficient in its expansion over the basis. This suggest the idea to take into account the number of constant regression coefficients using the rank of the coordinate matrix A 0 .

Our procedure involves estimating A 0 using nuclear-norm penalization which is now a well-established proxy for rank penalization in the compressed sensing literature. Subsequently, the estimator of the coordinate matrix is plugged into the expansion yielding the estimator f (•) = f1 (•), . . . , fp (•) T of the vector function f (t). For this estimator we obtain upper bounds on the mean squared error

1 p p Σ i=1 fi -f i 2 L2(dµ)
and on the pointwise estimation error

1 p p Σ i=1 | fi (t)-f i (t)|
for any t ∈ supp(µ) (Corollary 1). These oracle inequalities are non-asymptotic and hold for finite values of p and n. The results in this paper concern random measurements and random noise and so they hold with high probability.

Layout of the paper

The remainder of this paper is organized as follows. In Section 1.3 we introduce notations used throughout the paper. In Section 2, we describe in details our estimation method, give examples of the possible choices of the basis (Section 2.1) and introduce an estimator for the coordinate matrix A 0 (Section 2.2). Section 3 presents the main results of the paper. In particular, Theorems 1 and 2 in Section 3 establish upper bounds for estimation error of the coordinate matrix A 0 measured in Frobenius norm. Corollary 1 provides non-asymptotic upper bounds for the mean squared and pointwise risks of the estimator of the vector function f . Section 4 considers an important particular case of the orthogonal dictionary.

Notations

We provide a brief summary of the notation used throughout this paper. Let A, B be matrices in R p×l , µ be a probability distribution on (0, 1) and ψ(•) be a vector-valued function.

• For any vector η ∈ R p , we denote the standard l 1 and l 2 vector norms by η 1 and η 2 , respectively.

• • L2(dµ) and • , • L2(dµ) are the norm and the scalar product in the space L 2 ((0, 1), dµ).

• For ψ(•) = (ψ 1 (•), . . . , ψ p (•)) T , we set ψ(•) ∞ = max i=1,...,p sup t∈supp(µ) |ψ i (t)| and ψ(•) L2(dµ) = max 1≤i≤p ψ i L2(dµ)
• We define the scalar product of matrices A, B = tr(A T B) where tr(•) denotes the trace of a square matrix.

• Let

A * = min(p,l) Σ j=1 σ j (A) and A 2 = min(p,l) Σ j=1 σ 2 j (A) 1/2
be respectively the trace and Frobenius norms of the matrix A. Here (σ j (A)) j are the singular values of A ordered decreasingly.

• Let A = σ 1 (A).

• For any numbers, a and b, denote a ∨ b = max(a, b) and a ∧ b = min(a, b).

• Denote the k × k identity matrix by I k .

• Let (s -1) denote the number of non-constant f i (•).

• In what follows, we use the symbol C for a generic positive constant, which is independent of n, p, s and l, and may take different values at different places.

Estimation method

The first step of our estimation method is the approximation of the unknown functions f i (t) by expanding them over an appropriate basis. This approximation generates the coordinate matrix A 0 . Matrix A 0 is estimated using penalized risk minimization. The estimator of the coordinate matrix is plugged into the expansion yielding the estimator of the vector function f .

Basis expansion

Let (φ i (•)) i=1,...,∞ be an orthonormal basis in L 2 ((0, 1), dµ), l ∈ N and φ(•) = (φ 1 (•), . . . , φ l (•)) T . We assume that basis functions satisfy the following condition: there exists c φ < ∞ such that φ T (t)

2 2 = l j=1 |φ j (t)| 2 ≤ c 2 φ l, (2) 
for any l ≥ 1 and any t ∈ [0, 1]. Note that this condition is satisfied for most of the usual bases. We introduce the coordinate matrix A 0 ∈ R p×l with elements

a 0 kj = f k , φ j L2(dµ) , k = 1, • • • , p, j = 1, • • • , l.
For each k = 1, . . . , p, we have

f k (t) = l Σ j=1 a 0 kj φ j (t) + ρ (l) k (t). (3) 
Denote the remainder by ρ (l) (•) = (ρ

(l) 1 (•), . . . , ρ (l) 
p (•)) T . We assume that the basis (φ i (•)) i=1,...,∞ guarantees good approximation of f k by l Σ j=1 a 0 kj φ j (t), that is, Assumption 1. We assume that the basis satisfies condition [START_REF] Candès | Exact matrix completion via convex optimization[END_REF] and that there exists a positive constant b such that, for any l ≥ 1

ρ (l) (•) ∞ ≤ b l -γ , γ > 0. ( 4 
)
Often approximation in L 2 -norm gives better rates of convergence. In order to get upper bounds on the mean squared error we will use the following additional assumption: Assumption 2. There exist b 1 > 0 such that, for any l ≥ 1

ρ (l) (•) L2(dµ) ≤ b 1 l -(γ+1/2) , γ > 0.
Let us give few examples of possible choices of the basis.

Example 1. Assume that dµ = g(t) dt and function g is bounded away from zero and infinity, i.e. there exist absolute constants g 1 and g 2 such that for any t ∈ supp(µ)

g 1 ≤ g(t) ≤ g 2 , 0 < g 1 < g 2 < ∞. (5) 
Denote φ j (t) = e 2 i π j t , j ∈ Z, the standard Fourier basis of L 2 ((0, 1)). Then, it is easy to check that φ j (t) = φ j (t)/ g(t), j ∈ Z, is an orthonormal basis of L 2 ((0, 1), g). Moreover, condition (2) holds with

c 2 φ = g -1 1 . For γ > 0, consider the Sobolev space W γ (0, 1) of functions F ∈ L 2 (0, 1) with the norm F 2 Wγ = ∞ -∞ |ω| 2γ+1 | F (ω)| 2 dω where F (ω)
is the Fourier transform of F . Then, by Theorems 9.1 and 9.2 of [START_REF] Mallat | A Wavelet Tour of Signal Processing[END_REF], one has

∞ j=-∞ |j| 2γ+1 | F, φ j | 2 ≤ C γ F 2 Wγ , (6) 
where C γ is an absolute constant which depends on γ only. Assume that for some A < ∞ the functions f k belong to a Sobolev ball of radius A, i.e.

max k=1,••• ,p f k (•) g(•) Wγ ≤ A, γ > 0. (7) 
Let l = 2N + 1, so that

f k (t) = N j=-N a 0 kj φ j (t), ρ (l) 
k (t) = |j|>N a 0 kj φ j (t),
where a 0 kj = f k (t) g(t), φ j (t) . Then, it follows from equations ( 5), ( 6) and (7) that

ρ (l) (•) 2 ∞ ≤ g -1 1   |j|>N |j| -2γ-1     max k=1,••• ,p |j|>N |j| 2γ+1 |a 0 kj | 2   ≤ A 2 C γ g 1 |j|>N |j| -2γ-1 ≤ A 2 C γ 2 g 1 γ N 2γ
where N = (l -1)/2 and

ρ (l) (•) 2 L2(g) ≤ N -(2γ+1) A 2 C γ ,
so that Assumptions 1 and 2 hold.

Example 2. Consider a wavelet ψ with a bounded support of length C ψ and with γ * vanishing moments and choose l = 2 H where H is a positive integer. Construct a periodic wavelet basis

ψ h,i (t), h = -1, • • • , J -1, i = 0, • • • , 2 h -1, with ψ -1,0 (t) = 1 and ψ h,i (t) = 2 h/2 ψ(2 h t -i) for h ≥ 0. As in Example 1, set φ j (t) = φ h,i (t) = ψ h,i (t)/ g(t) where j = 2 h + i + 1. Note that condition (2) holds in this case with c 2 φ = g -1 1 C ψ ψ 2 ∞ . Then, each function f k (t) can be expanded into a wavelet series f k (t) = H-1 h=-1 2 h -1 i=0 a 0 k,h,i φ h,i (t), ρ (l) 
k (t) = ∞ h=H 2 h -1 i=0 a 0 k,h,i φ h,i (t),
where [START_REF] Mallat | A Wavelet Tour of Signal Processing[END_REF] states that for F ∈ W γ (0, 1) one has

a 0 k,h,i = f k (•) g(•), ψ h,i (•) . Theorem 9.4 of
∞ h=-1 2 h(2γ+1) 2 h -1 i=0 | F, ψ h,i | 2 ≤ C γ F 2 Wγ ,
where C γ is an absolute constant which depends on γ only, provided γ < γ * . Then, under assumptions ( 5) and ( 7), as in Example 1, Assumption 1 holds. For example, recalling that H = log 2 l and that length of support of ψ is bounded by C ψ , obtain

ρ (l) (•) 2 L2(g) ≤ 2 -H(2γ+1) max k=1,••• ,p ∞ h=H 2 h(2γ+1) 2 h -1 i=0 |a 0 k,h,i | 2 ≤ A 2 C γ l -(2γ+1) , ρ (l) (•) 2 ∞ ≤ (2γg 1 ) -1 C ψ ψ 2 ∞ 2 -2Hγ max k=1,••• ,p ∞ h=-1 2 h(2γ+1) 2 h -1 i=0 |a 0 k,h,i | 2 ≤ A 2 (2γg 1 ) -1 C ψ ψ 2 ∞ l -2γ ,
where ψ ∞ = sup t |ψ(t)|.

Example 3. Suppose that f i (t) belong to a finite k-dimensional sub-space of L 2 ((0, 1), dµ). For example, f i (t) are polynomials of degree less than k. Then, choosing l = k and an orthonormal basis in this sub-space, we have trivially

ρ (l) (•) = 0.

Estimation of the coordinate matrix

Denoting X = W φ T (t), we can rewrite (1) in the following form

Y = tr A 0 X T + W T ρ (l) (t) + σξ. (8) 
We suppose that some of the functions f i (•) are constant and let (s -1) denote the number of non-constant f i (•). This parameter, s, plays an important role in what follows. Note that rank (A 0 ) ≤ s.

Using observations (Y i , X i ) we define the following estimator of A 0 :

 = arg min 1 n n i=1 (Y i -X i , A ) 2 + λ A * , (9) 
where λ is the regularization parameter. This penalization, using the tracenorm, is now quite standard in matrix completion problem and allows one to recover a matrix from under-sampled measurements. Using estimator (9) of the coordinate matrix A 0 , we recover f (t) as f (t) = Âφ(t).

Assumptions about the dictionary and the noise

We assume that the vectors W i are i.i.d copies of a random vector W having distribution Π on a given set of vectors X . Using rescaling, we can suppose that W 2 ≤ 1 almost surely. Let E W W T = Ω and ω max , ω min denote respectively its maximal and minimal singular values. We need the following assumption on the distribution of W .

Assumption 3. The matrix Ω = E W W T is positive definite. Let A 2 L2(Π⊗µ) = E X, A 2 .

An easy computation leads to

A 2 L2(Π⊗µ) = E W, A φ(t) 2 = E t E W W, A φ(t) 2
and

E W W, A φ(t) 2 = E W tr (A φ(t)) T W W T A φ(t) = E W tr W W T A φ(t) (A φ(t)) T = E W W T W , A φ(t) (A φ(t)) T = Ω, A φ(t) (A φ(t)) T .
By definition we obtain

Ω, A φ(t) (A φ(t)) T ≥ ω min A φ(t) 2 2 .
Finally we compute

A 2 L2(Π⊗µ) ≥ ω min E t A φ(t) 2 2 = ω min A 2 2 (10) 
where in the last display we used that (φ i (•)) i=1,...,∞ is an orthonormal basis in L 2 ((0, 1), dµ).

We consider the case of sub-exponential noise which satisfies the following condition Assumption 4. There exist a constant K > 0 such that max i=1,...,n

E exp (|ξ i |/K) ≤ e.
For instance, if ξ i are i.i.d. standard Gaussian we can take K = 1.

Main Results

Let

Σ R = 1 n n i=1 ǫ i X i and Σ = 1 n n i=1 W T i ρ (l) (t i ) + σ ξ i X i
where {ǫ i } n i=1 is an i.i.d. Rademacher sequence. These stochastic terms play an important role in the choice of the regularization parameter λ.

We introduce the following notations:

M = tr(Ω) ∨ (l ω max ) and n * * = C c 2 φ l log(d) ω 2 min [(M s) ∨ 1] .
The following theorem gives a general upper bound on the prediction error for the estimator  given by ( 9). Its proof is given in Appendix A.

Theorem 1. Let λ ≥ 3 Σ and suppose that Assumption 3 holds. Then, with probability at least 1 -2/d,

(i) Â -A 0 2 2 ≤ C max s ω 2 min λ 2 + A 0 2 * c 2 φ l M log(d) n , c φ A 0 2 * ω min log(d) l n .
(ii) If, in addition n ≥ n * * , then

 -A 0 2 2 ≤ C s λ 2 ω 2 min where d = l + p.
In order to obtain upper bounds in Theorem 1 in a closed form, it is necessary to obtain a suitable upper bound for Σ . The following lemma, proved in Section E, gives such bound.

Lemma 1. Under Assumptions 1 -4, there exists a numerical constant c * , that depends only on K, such that, for all t > 0 with probability at least 1 -2e -t

Σ ≤ σ c * + 2 b √ s -1 l γ max M (t + log(d)) n , c φ √ l (t + log(d)) K log K c φ ω max ∨ 1 n        (11) 
where d = p + l.

The optimal choice of the parameter t in Lemma 1 is t = log(d). Larger t leads to a slower rate of convergence and a smaller t does not improve the rate but makes the concentration probability smaller. With this choice of t, the second terms in the maximum in [START_REF] Huang | Polynomial spline estimation and inference for varying coefficient models with longitudinal data[END_REF] is negligibly small for n ≥ n * where

n * = 2 c 2 φ l K log K c φ ω max ∨ 1 2 log(d) M .
In order to satisfy condition λ ≥ 3 Σ in Theorem 1 we can choose

λ = 4.25 c * σ + 2 b √ s -1 l γ M log(d) n . ( 12 
)
If ξ i are N (0, 1), then we can take c * = 6.5 (see Lemma 4 in [START_REF] Klopp | Matrix completion with unknown variance of the noise[END_REF]). With these choices of λ, we obtain the following theorem.

Theorem 2. Let Assumptions 1 -4 hold. Consider regularization parameters λ satisfying [START_REF] Kauermann | On model diagnostics using varying coefficient models[END_REF] and n ≥ n * . Then, with probability greater than 1 -4/d

(i) Â -A 0 2 2 ≤ C max σ 2 + b 2 (s -1) l 2γ + l A 0 2 * M s log(d) n ω 2 min , c φ A 0 2 * ω min log(d) l n .
(ii) If, in addition n ≥ n * * , then

 -A 0 2 2 ≤ C σ 2 + b 2 (s -1) l 2γ M s log(d) n ω 2 min .
Using  we define the estimator of f (t) as

f (t) = f1 (t), . . . , fp (t) T = Â φ(t). (13) 
Theorem 2 allows to obtain the following upper bounds on the prediction error of f (t).

Corollary 1. Suppose that the assumptions of Theorem 2 hold. With probability greater than 1 -4/d, one has (a) ∀t ∈ supp(µ)

1 p p Σ i=1 | fi (t) -f i (t)| ≤ C φ(t) 2 2 β n + 2 b 2 s p l 2γ , (b) If, in addition, Assumption 2 holds 1 p p Σ i=1 fi -f i 2 L2(dµ) ≤ C β n + 2 b 2 1 s p l (2γ+1) , where β =              σ 2 + b 2 (s -1) l 2γ M s log(d) p ω 2 min , if n ≥ n * * max σ 2 + b 2 (s -1) l 2γ + l A 0 2 * M s log(d) p ω 2 min , c φ A 0 2 * log(d) l n ω min p , if not.
Proof. We shall prove the second statement of the corollary, the first one can be proved in a similar way. Let A i denote the i-th row of a matrix A. We compute

f i (t) -Âi φ(t) L2(dµ) ≤ f i (t) -A i 0 φ(t) L2(dµ) + A i 0 -Âi φ(t) L2(dµ) = ρ (l) i (t) L2(dµ) + A i 0 -Âi 2 (14) 
where in the last display we used that (φ i (•)) i=1,...,∞ is an orthonormal basis. Using ( 14) and Assumption 2 we derive

p Σ i=1 fi -f i 2 L2(dµ) ≤ 2 b 2 1 s l (2γ+1) + 2 Â -A 0 2 2
. Now Theorem 2 implies the statement of the corollary.

Orthonormal dictionary

As an important particular case, let us consider the orthonormal dictionary. Let (e j ) j be the canonical basis of R p . Assume that the vectors W i are i.i.d copies of a random vector W which has the uniform distribution Π on the set

X = {e j , 1 ≤ j ≤ p} .
Note that this is an unfavorable case of very "sparse observations", that is, each observation provides some information on only one of the coefficients of f (t).

In this case, Ω = 1 p I p , ω max = ω min = 1 p and we obtain the following values of parameters

M = l ∨ p p , n * = 2 K 2 log 2 (K p) c 2 φ log(d) (l ∧ p), λ = 4.25 C * σ + 2 b √ s -1 l γ (l ∨ p) log(d) p n , n * * = C c 2 φ l s p (l ∨ p) log(d). (15) 
Plugging these values into Corollary 1, we derive the following result.

Corollary 2. Let Assumptions 1 and 4 hold. Consider regularization parameter λ satisfying [START_REF] Klopp | Matrix completion with unknown variance of the noise[END_REF], and n ≥ n * . Then, with probability greater than 1 -4/d, one has (a) ∀t ∈ supp(µ)

1 p p Σ i=1 | fi (t) -f i (t)| ≤ C φ(t) 2 2 β n + 2 b 2 s p l 2γ , (16) 
(b) If, in addition, Assumption 2 holds

1 p p Σ i=1 fi -f i 2 L2(dµ) ≤ C β n + 2 b 2 1 s p l (2γ+1) , (17) 
where

β =            σ 2 + b 2 (s -1) l 2γ (l ∨ p) s log(d), if n ≥ n * * σ 2 + b 2 (s -1) l 2γ + l A 0 2 * (l ∨ p) s log(d), if not.
Remarks. Optimal choice of parameter l: The upper bounds given in Corollary 2 indicate the optimal choice of parameter l. From (15) we compute the following values of l:

l * 1 = n C c 2 φ s p 2 log(d) if l ≤ p and l * 2 = n C c 2 φ s p log(d) if l > p. Let F 1 (l) = C σ 2 + b 2 (s -1) l 2γ p s log(d) n + 2 b 2 1 s p l (2γ+1) , F 2 (l) = F 1 (l) + l A 0 2 * p s log(d) n , F 3 (l) = C σ 2 + b 2 (s -1) l 2γ l s log(d) n + 2 b 2 1 s p l (2γ+1) , F 4 (l) = F 3 (l) + l 2 A 0 2 * s log(d) n .
Let γ ≥ 1/2 and consider first the case s p 3 log(d) n s p 2 log(d) (the symbol means that the inequality holds up to a multiplicative numerical constant). Then, Corollary 2 implies that

1 p p Σ i=1 fi -f i 2 L2(dµ) ≤    F 1 (l), if 1 ≤ l ≤ l * 1 F 2 (l), if l * 1 < l ≤ p F 4 (l), if l > p. On [1, l * 1 ], F 1 (l) achieves its minimum at l * 1 . Note that F 1 (l * 1 ) ≤ F 2 (l) for any l ∈ [l *
1 , p] and F 1 (l * 1 ) ≤ F 4 (l) for any l > p. Then, for s p 3 log(d) n s p 2 log(d) the optimal value of l minimizing ( 17) is

l1 = n C c 2 φ s p 2 log(d)
.

When n s p 3 log(d), the Corollary 2 implies that 

1 p p Σ i=1 fi -f i 2 L2(dµ) ≤    F 1 (l), if 1 ≤ l ≤ p F 3 (l), if p < l ≤ l * 2 F 4 (l), if l > l * 2 . Let l * 3 = C n σ 2 p log(d) 1 2γ + 2 . On [p, l * 2 ], F 3 (l)
= C n σ 2 p log(d) 1 2γ + 2 .
Minimax rate of convergence: For p = 1 the optimal choice of l in ( 17) is

l = 2 (2 γ + 1) b 2 n σ 2 log(d) 1 2γ + 2 .
With this choice of l, the rate of convergence given by Corollary 2 is n

- 2γ + 1 2γ + 2 .
Note that for f ∈ W γ (0, 1) we recover the minimax rate of convergence as given in e.g. [START_REF] Tsybakov | Introduction to Nonparametric Estimation[END_REF].

By definition, for any matrix B, the singular vectors of P ⊥ A0 (B) are orthogonal to the space spanned by the singular vectors of A 0 . This implies that

A 0 + P ⊥ A0 (H) 1 = A 0 * + P ⊥ A0 (H) * . Then we compute  * = A 0 + H * = A 0 + P ⊥ A0 (H) + P A0 (H) * ≥ A 0 + P ⊥ A0 (H) * -P A0 (H) * = A 0 * + P ⊥ A0 (H) * -P A0 (H) * . (20) 
From ( 20) we obtain

A 0 * -Â * ≤ P A0 (H) * -P ⊥ A0 (H) * . (21) 
From ( 19), using ( 21) and λ ≥ 3 Σ we obtain

1 n n i=1 X i , H 2 ≤ 2 Σ P A0 (H) * + λ P A0 (H) * ≤ 5 3 λ P A0 (H) * . (22) 
Since P A (B) = P S ⊥ 1 (A) BP S2(A) + P S1(A) B and rank (P Si(A) B) ≤ rank (A) we derive that rank (P A (B)) ≤ 2 rank (A). From [START_REF] Mallat | A Wavelet Tour of Signal Processing[END_REF] we compute

1 n n i=1 X i , H 2 ≤ 5 3 λ √ 2 R H 2 ( 23 
)
where we set R = rank (A 0 ). For 0 < r ≤ m = min (p, l) we consider the following constraint set

C(r) = A 2 ≤ 1, A 2 L2(Π⊗µ) ≥ c φ 64 log(d) l log (6/5) n , A * ≤ √ r A 2 (24) 
where

A 2 L2(Π⊗µ) = E X, A 2 . Note that the condition A * ≤ √ r A 2 is satisfied if rank(A) ≤ r.
The following lemma shows that for matrices A ∈ C(r) we have some approximative restricted isometry. Its proof is given in Appendix B.

Lemma 2. For all

A ∈ C(r) 1 n n i=1 X i , A 2 ≥ 1 2 A 2 L2(Π⊗µ) - 44 c 2 φ l r ω min (E ( Σ R ))
2 with probability at least 1 -2 d .

We need the following auxiliary lemma which is proved in Appendix D.

Lemma 3. If λ 1 > 3 Σ P ⊥ A0 (H) * ≤ 5 P A0 (H) * .
Lemma 3 implies that

H * ≤ 6 P A0 (H) * ≤ √ 72 R H 2 . ( 25 
)
If

H 2 L2(Π⊗µ) ≥ c φ H 2 2
64 log(d) l log (6/5) n , [START_REF] Tropp | User-friendly tail bounds for sums of random matrices[END_REF] implies that

H H 2 ∈ C (72 R)
and we can apply Lemma 2. From Lemma 2 and ( 23) we obtain that with probability at least 1 -

2 d one has 1 2 H 2 L2(Π⊗µ) ≤ 5 3 λ √ 2 R H 2 + 3168 c 2 φ l R ω min H 2 2 (E ( Σ R )) 2 . ( 26 
)
The following Lemma, proved in Section E.2, gives a suitable bound on E Σ R : Using Lemma 4, ( 10) and ( 26) we obtain

ω min H 2 2 ≤ 10 3 λ √ 2 R H 2 + C c 2 φ l R M log(d) ω min n H 2 2 . ( 27 
)
On the other hand, equation [START_REF] Koltchinskii | Nuclear norm penalization and optimal rates for noisy low rank matrix completion[END_REF] and the triangle inequality imply that

λ  * ≤ 2 Σ Â * + 2 Σ A 0 * + λ A 0 * and λ ≥ 3 Σ gets  2 ≤  * ≤ 5 A 0 * . (28) 
Putting ( 28) into ( 27) and using rank(A 0 ) ≤ s we compute

H 2 2 ≤ C s ω 2 min λ 2 + c 2 φ l M log(d) A 0 2 * n which implies the statement (i) of Theorem 1 in the case when H 2 L2(Π⊗µ) ≥ c φ H 2 2 64 log(d) l log (6/5) n . If H 2 L2(Π⊗µ) ≤ c φ H 2 2
64 log(d) l log (6/5) n , using [START_REF] Huang | Functional coefficient regression models for nonlinear time series: A polynomial spline approach[END_REF], we derive

ω min H 2 2 ≤ c φ H 2 2 64 log(d) l log (6/5) n . (29) 
Then ( 28) implies

H 2 2 < C c φ A 0 2 * ω min log(d) l n .
This completes the proof of part (i) of Theorem 1.

If, in addition n > 2 C c 2 φ l s M log(d) ω 2 min
, from ( 27) we obtain

ω min H 2 2 ≤ 10 3 λ √ 2 R H 2 + ω min 2 H 2 2
and

H 2 2 ≤ C s λ 2 ω 2 min .
On the other hand, for n > n * * (29) does not hold. This completes the proof of Theorem 1.

B Proof of Lemma 2

Set E = 44 c 2 φ l r (E ( Σ R ))

2 ω min . We will show that the probability of the following bad event is small

B = ∃ A ∈ C(r) such that 1 n n i=1 X i , A 2 -A 2 L2(Π⊗µ) > 1 2 A 2 L2(Π⊗µ) + E .
Note that B contains the complement of the event that we are interested in.

In order to estimate the probability of B we use a standard peeling argument.

Let ν = c φ 64 log(d) l log (6/5) n and α = 6 5 . For k ∈ N set

S k = A ∈ C(r) : α k-1 ν ≤ A 2 L2(Π⊗µ) ≤ α k ν .
If the event B holds for some matrix A ∈ C(r), then A belongs to some S k and

1 n n i=1 X i , A 2 -A 2 L2(Π⊗µ) > 1 2 A 2 L2(Π⊗µ) + E > 1 2 α k-1 ν + E = 5 12 α k ν + E. (30) 
For each T > ν consider the following set of matrices

C(r, T ) = A ∈ C(r) : A 2 L2(Π⊗µ) ≤ T
and the following event

B k = ∃ A ∈ C(r, α k ν) : 1 n n i=1 X i , A 2 -A 2 L2(Π⊗µ) > 5 12 α k ν + E .
Note that A ∈ S k implies that A ∈ C(r, α k ν). Then (30) implies that B k holds and we obtain B ⊂ ∪ B k . Thus, it is enough to estimate the probability of the simpler event B k and then to apply the union bound. Such an estimation is given by the following lemma. Its proof is given in Appendix C. Let

Z T = sup A∈C(r,T ) 1 n n i=1 X i , A 2 -A 2 L2(Π⊗µ) .
Lemma 5.

P Z T > 5 12 T + 44 c 2 φ l r ω min (E Σ R ) 2 ≤ exp - c 3 nT 2 c 2 φ l
where c 3 = 1 128 .

Lemma 5 implies that

P (B k ) ≤ exp - c 3 n α 2k ν 2 c 2 φ l
. Using the union bound we obtain

P (B) ≤ ∞ Σ k=1 P (B k ) ≤ ∞ Σ k=1 exp - c 3 n α 2k ν 2 c 2 φ l ≤ ∞ Σ k=1 exp - 2 c 3 n log(α) ν 2 k c 2 φ l
where we used e x ≥ x. We finally compute for ν = c φ 64 log(d) l log (6/5) n

P (B) ≤ exp - 2 c 3 n log(α) ν 2 c 2 φ l 1 -exp - 2 c 3 n log(α) ν 2 c 2 φ l = exp (-log(d)) 1 -exp (-log(d))
.

This completes the proof of Lemma 2.

C Proof of Lemma 5

Our approach is standard: first we show that Z T concentrates around its expectation and then we upper bound the expectation. By definition,

Z T = sup A∈C(r,T ) 1 n n i=1 X i , A 2 -E X, A 2 .
Note that

| X i , A | ≤ W 2 φ(t) 2 A 2 ≤ c φ √ l,
where we used W 2 ≤ 1 and condition (2). Massart's concentration inequality (see e.g. [1, Theorem 14.2]) implies that

P Z T ≥ E (Z T ) + 1 9 5 12 T ≤ exp - c 3 nT 2 c 2 φ l . ( 31 
)
where c 3 = 1 128 .

Next we bound the expectation E (Z T ). Using a standard symmetrization argument (see Ledoux and Talagrand [21]) we obtain

E (Z T ) = E sup A∈C(r,T ) 1 n n i=1 X i , A 2 -E X, A 2 ≤ 2E sup A∈C(r,T ) 1 n n i=1 ǫ i X i , A 2
where {ǫ i } n i=1 is an i.i.d. Rademacher sequence. Then, the contraction inequality (see Ledoux and Talagrand [21]) yields

E (Z T ) ≤ 8 c φ √ l E sup A∈C(r,T ) 1 n n i=1 ǫ i X i , A = 8 c φ √ l E sup A∈C(r,T ) | Σ R , A | where Σ R = 1 n n i=1 ǫ i X i . For A ∈ C(r, T ) we have that A * ≤ √ r A 2 ≤ √ r A L2(Π⊗µ) √ ω min ≤ r T ω min
where we have used [START_REF] Huang | Functional coefficient regression models for nonlinear time series: A polynomial spline approach[END_REF].

Then, by duality between nuclear and operator norms, we compute

E (Z T ) ≤ 8 c φ √ l E   sup A * ≤ √ r T /ωmin | Σ R , A |   ≤ 8 c φ l r T ω min E ( Σ R ) .
Finally, using 1 9

5 12 T + 8 c φ l r T ω min E ( Σ R ) ≤ 1 9 + 8 9 5 12 T + 44 c 2 φ l r ω min (E ( Σ R )) 2
and the concentration bound (31) we obtain that

P Z T > 5 12 T + 44 c 2 φ l r ω min (E ( Σ R )) 2 ≤ exp - c 3 nT 2 c 2 φ l
where c 3 = 1 128 as stated.

D Proof of Lemma 3

Using [START_REF] Koltchinskii | Nuclear norm penalization and optimal rates for noisy low rank matrix completion[END_REF] we compute

λ Â 1 -A 0 1 ≤ 2 Σ H 1 .
The condition λ ≥ 3 Σ , the triangle inequality and (21) yield

λ P ⊥ A0 (H) 1 -P A0 (H) 1 ≤ 2 3 λ P ⊥ A0 (H) 1 + P A0 (H) 1 .
This implies that

P ⊥ A0 (H) 1 ≤ 5 P A0 (H) 1 .
as stated.

E Bounds on the stochastic errors

In this section we will obtain upper bounds for the stochastic errors Σ , Σ R . Recall that

Σ R = 1 n n i=1 ǫ i X i and Σ = 1 n n i=1 W T i ρ (l) (t i ) + σ ξ i X i (32) 
where {ǫ i } n i=1 is an i.i.d. Rademacher sequence.

The following proposition is the matrix version of Bernstein's inequality in the bounded case (see Theorem 1.6 in [START_REF] Tropp | User-friendly tail bounds for sums of random matrices[END_REF]). Let Z 1 , . . . , Z n be independent random matrices with dimensions m 1 × m 2 . Define

σ Z = max    1 n n i=1 E Z i Z T i 1/2 , 1 n n i=1 E Z T i Z i 1/2    .
Proposition 1. Let Z 1 , . . . , Z n be independent random matrices with dimensions m 1 × m 2 that satisfy E(Z i ) = 0. Suppose that Z i ≤ U for some constant U and all i = 1, . . . , n. Then, for all t > 0, with probability at least 1 -e -t we have

1 n n i=1 Z i ≤ 2 max σ Z t + log(d) n , U t + log(d) n ,
where d = m 1 + m 2 .
It is possible to extend this result to the sub-exponential case. Set

U i = inf {K > 0 : E exp ( Z i /K) ≤ e} .
The following proposition is obtained by an extension of Theorem 4 in [START_REF] Koltchinskii | A remark on low rank matrix recovery and noncommutative Bernstein type inequalities[END_REF] to rectangular matrices via self-adjoint dilation (cf., for example 2.6 in [START_REF] Tropp | User-friendly tail bounds for sums of random matrices[END_REF]).

Proposition 2. Let Z 1 , . . . , Z n be independent random matrices with dimensions m 1 × m 2 that satisfy E(Z i ) = 0. Suppose that U i < U for some constant U and all i = 1, . . . , n. Then, there exists an absolute constant c * , such that, for all t > 0, with probability at least 1 -e -t we have

1 n n i=1 Z i ≤ c * max σ Z t + log(d) n , U log U σ Z t + log(d) n , where d = m 1 + m 2 .
We use Propositions 1 and 2 to prove Lemmas 1 and 4.

E.1 Proof of Lemma 1

Let

Σ 1 = 1 n n i=1 W T i ρ (l) (t i )X i and Σ 2 = 1 n n i=1 ξ i X i . Then, we obtain Σ = Σ 1 + σ Σ 2 .
In order to derive an upper bound for Σ 2 , we apply Proposition 2 to

Z i = ξ i X i = ξ i W i φ T (t i ).
We need to estimate σ Z and U . Note that Z i is a zero-mean random matrix such that

Z i ≤ |ξ i | W i φ T (t i ) 2 = |ξ i | W i φ T (t i ) 2 = |ξ i | W i 2 φ T (t i ) 2 ≤ |ξ i | φ T (t i ) 2 ≤ |ξ i | c φ √ l
where we used condition (2) and W 2 ≤ 1. Then, Assumption 4 implies that there exists a constant K such that U i ≤ K c φ √ l for all i = 1, . . . , n.

Let us estimate σ

Z for Z = ξ W φ T (t). First we compute 1 n n i=1 E Z i Z T i : 1 n n i=1 E Z i Z T i = 1 n n i=1 E ξ 2 i W i φ T (t i )φ(t i )W T i = E φ(t) 2 2 W W T = l Ω (33)
where we used E(ξ 2 ) = 1.

Now we compute

1

n n i=1 E Z T i Z i : 1 n n i=1 E Z T i Z i = 1 n n i=1 E ξ 2 i φ(t i )W T i W i φ T (t i ) = E φ(t)φ T (t) W 2 2 = tr (Ω) I l (34) 
where we used that (φ i (•)) i=1,...,∞ is an orthonormal basis in L 2 ((0, 1), dµ). Equations ( 33) and (34) imply that σ 2 Z ≤ (l ω max ) ∨ tr (Ω) and σ 2 Z ≥ l ω max .

Applying Proposition 2 we derive that for all t > 0 with probability at least 1 -e -t

Σ 2 ≤ c * max        M (t + log(d)) n , K c φ √ l (t + log(d)) log K c φ ω max n        (35) 
where M = tr(Ω) ∨ (lω max ). One can estimate Σ 1 in a similar way. We apply Proposition 1 to

Z i = W T i ρ (l) (t i )X i = W T i ρ (l) (t i )W i φ T (t i ).
We begin by proving that

E W T ρ (l) (t)W φ T (t) = 0. Let W = (w 1 , . . . , w p ). The (m, k)-th entry of W T ρ (l) (t)W φ T (t) is equal to p Σ j=1 w j ρ (l) j (t) w m φ k (t). By definition ρ (l) j (t) = f j (t)- l Σ i=1 a 0 ji φ i (t) and we compute E ρ (l) j (t)φ k (t) = E f j (t) - l Σ i=1 a 0 ji φ i (t) φ k (t) = E f j (t)φ k (t) - l Σ i=1 a 0 ji φ i (t)φ k (t) = a 0 jk -a 0 jk = 0 since (φ i (•)) i=1,...,∞ is an orthonormal basis. Therefore, E p Σ j=1 w j ρ (l) j (t) w m φ k (t) = p Σ j=1 E W w j w m E t ρ (l) j (t) φ k (t) = 0
Next we estimate U . Note that ρ (l) (t) has at most s-1 non-zero coefficients. Then, Assumption 1 and W 2 ≤ 1 imply that t-almost surely

W T ρ (l) (t)
2 ≤ b 2 (s -1) l 2γ and

Z i ≤ |W T i ρ (l) (t i )| W i φ T (t i ) ≤ b c φ l (s -1) l γ .
Let us estimate σ Z for Z = W T ρ (l) (t) W φ T (t). First we compute 1 n n i=1 E Z i Z T i :

1

n n i=1 E Z i Z T i = E W T ρ (l) (t) 2 W φ T (t)φ(t)W T = E t φ(t) 2 2 E W W T ρ (l) (t) 2 W W T .
We obtain

E W W T ρ (l) (t) 2 W W T ≤ b 2 (s -1) l 2γ E W W T
where we used W W T ≥ 0. Finally we obtain

1 n n i=1 E Z i Z T i ≤ b 2 (s -1) ω max l l 2γ . ( 36 
)
Now we compute 1 n 

n i=1 E Z T i Z i : 1 n n i=1 E Z T i Z i = E t W T ρ (l) (t) 2 φ(t)W T W φ T (t) = E t W T ρ (l) (t)

E.2 Proof of Lemma 4

The proof follows the lines of the proof of Lemma 7 in [START_REF] Klopp | Rank penalized estimators for high-dimensional matrices[END_REF]. We use Proposition 1 with Z i = ǫ i X i . As in the proof of Lemma 1, we obtain U = √ l and σ 2 Z = (tr(Ω) ∨ (lσ max (Ω))). Set M = (tr(Ω) ∨ (lσ max (Ω))), then Proposition 1 implies that for all t > 0 with probability at least 1 -e -t .

Inequalities (40) and (41) imply that .

E Σ R 2 
(42)

Recall that Gamma-function satisfies the following inequality Γ(x) ≤ x 2

x-1

for x ≥ 2, (43) 
(see e.g. [START_REF] Klopp | Rank penalized estimators for high-dimensional matrices[END_REF]). Plugging (43) into (42) we compute .

E Σ R ≤ √ e ( 
Observe that n ≥ n * implies ν 1 log(d) ≤ ν 2 2 and we obtain

E Σ R ≤ 2e log(d) ν 1 . (44) 
We conclude the proof by plugging ν 1 = n 4 M into (44).

Lemma 4 .

 4 Let (ǫ i ) n i=1 be an i.i.d. Rademacher sequence. Suppose that Assumption 3 holds. Then, E Σ R ≤ 4.6 M log(d) n where d = p + l and M = tr(Ω) ∨ (lω max ).

1 Γ

 1 1/ log(d) ν 1 }dt + d +∞ 0 exp{-t 1/(2 log(d) ν 2 }dt (log(d)) + 2 log(d) ν -2 log(d) 2 Γ(2 log(d)) 1/(2 log(d))

-

  log(d)) log(d) ν

  = tr(Ω) and E t φ(t)φ T (t) = I l we obtain ∨ (l ω max )] .Applying Proposition 1, we derive that for all t > 0 with probability at least 1 -e -t

	Using E W 2 2 1 n	n i=1	E Z T i Z i ≤	b 2 (s -1) l 2γ	tr(Ω).	(37)
	Equations (36) and (37) imply that
	σ 2 Z ≤ [tr(Ω) Σ 1 ≤ b 2 (s -1) l 2γ 2 b √ s -1 l γ max M (t + log(d)) n	,	c φ	√ l (t + log(d)) n	.	(38)
	The bounds (38) and (35) imply that for all t > 0 with probability at least
	1 -2e -t Σ ≤ σ c * +	2 b	√ s -1 l γ	max	M (t + log(d)) n	,
					c φ	√ l (t + log(d)) K log	K ω max	∨ 1	   
							n	  
	as stated.					
						22

2 W 2 2 φ(t)φ T (t) .

  is the value of t such that the two terms in (39) are equal. Note that (39) implies that

	We set ν 1 =	n 4 M	, ν 2 =	2	n √ l	. By Hölder's inequality we derive
					E Σ R ≤ E Σ R	2 log(d)	1/(2 log(d))
				Σ R ≤ 2 max	M (t + log(d)) n	,	√ l (t + log(d)) n	.	(39)
	Set t * =	n M l	-log(d) so that t P ( Σ R > t) ≤ d exp -	t 2 n 4 M	for	t ≤ t *	(40)
	and			P ( Σ R > t) ≤ d exp -	t n 2 √ l	for	t ≥ t * .	(41)
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Appendix A Proof of Theorem 1

This proof uses ideas developed in the proof of Theorem 3 in [START_REF] Klopp | Noisy low-rank matrix completion with general sampling distribution[END_REF]. The main difference is that here we have no restriction on the sup -norm of A 0 . This implies several modifications in the proof.

It follows from the definition of the estimator  that

Set

Then, we can write (18) in the following way

By duality between the nuclear and the operator norms, we obtain

Let P S denote the projector on the linear subspace S and let S ⊥ be the orthogonal complement of S. Let u j (A) and v j (A) denote respectively the left and the right orthonormal singular vectors of A, S 1 (A) is the linear span of {u j (A)}, S 2 (A) is the linear span of {v j (A)}. For A, B ∈ R p×l we set P ⊥ A (B) = P S ⊥ 1 (A) BP S ⊥ 2 (A) and P A (B) = B -P ⊥ A (B).