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Abstract. The recovery type error estimators introduced by Zienkiewicz and Zhu use a

recovered stress field evaluated from the Finite Element (FE) solution. Their accuracy

depends on the quality of the recovered field. In this sense, accurate results are obtained

using recovery procedures based on the Superconvergent Patch Recovery technique (SPR).

These error estimators can be easily implemented and provide accurate estimates. An-

other important feature is that the recovered solution is of a better quality than the FE

solution and can therefore be used as an enhanced solution.

We have developed an SPR-type recovery technique that considers equilibrium and dis-

placements constraints to obtain a very accurate recovered displacements field from which

a recovered stress field can also be evaluated. We propose the use of these recovered fields

as the standard output of the FE code instead of the raw FE solution. Techniques to

quantify the error of the recovered solution are therefore needed.

In this report we present an error estimation technique that accurately evaluates the

error of the recovered solution both at global and local levels in the FEM and XFEM
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1 Introduction

frameworks. We have also developed an h-adaptive mesh refinement strategy based on

the error of the recovered solution. As the converge rate of the error of the recovered

solution is higher than that of the FE one, the computational cost required to obtain a

solution with a prescribed accuracy is smaller than for traditional h-adaptive processes.

KEY WORDS: error estimation; recovery; SPR; XFEM; error control; mesh adaptivity

1 Introduction

Here we briefly discuss the possibility of estimating the error in the recovered solution σ∗

evaluated from the FE solution σh as part of the process of error estimation in energy

norm based on recovery-techniques. Recovery error estimation techniques are based on

the assumption that the recovered solution is more accurate than the FE solution. A

sufficiently accurate estimation of the error in energy norm of the recovered solution could

lead to refinement processes based on the accuracy of the recovered solution instead of

that of the FE solution. This could result in a considerable reduction of the computational

cost that would be particularly interesting, for example, in optimization processes whose

efficiency would be significantly increased as the required level of accuracy would be gained

with a considerable lower number of degrees of freedom.

In [1] and the Ph.D. thesis [2] we developed techniques whose objective was that of

obtaining upper bounds of the error in energy norm by means of the use of recovery-based

error estimators. This research yielded an expression of an error bounding technique

which includes two types of terms. The first term is the expression of the ZZ error

estimator. The second term is a correction term used to account for the lack of equilibrium

of the recovered stress field (both in the interior of the domain and along the domain

boundaries). Numerical experiments have shown that slightly manipulating the expression

of the correction term one can estimate the error of the recovered solution, not only at a

global level but also at element level.

In this report we will show the initial developments that finally led to an empirical ex-

pression based on this correction term that can be used to efficiently estimate the error
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2 Model problem

in energy norm of the recovered solution u∗, initially evaluated to estimate the error of

the FE solution uh. So, the report is structured following our developments along time.

Section 2 shows the model problem. Section 3 shows the technique used to evaluate up-

per bounds of the error based on nearly equilibrated recovered solutions that leads to

the correction term previously mentioned. Section 4 describes the technique to obtain

the recovered displacement and stress fields (u∗ and σ∗) that will be used to estimate the

discretization error in energy norm of the finite element solution uh. Section 5 will present

an expression that could be used to evaluate the error in energy norm of the recovered

solution and the empirical approximation to this expression that can be used in practice

to efficiently estimate this error. Finally, the numerical examples showing the potential

of the technique proposed for the estimation of the error in the recovered solution are

presented in Section 6.

2 Model problem

Let us consider the 2D linear elastic problem. The unknown displacement field u, taking

values in Ω ⊂ R2, is the solution of the boundary value problem given by

−∇ · σ (u) = b in Ω (1)

σ (u) · n = t on ΓN (2)

u = 0 on ΓD (3)

where ΓN and ΓD denote the Neumann and Dirichlet boundaries with ∂Ω = ΓN ∪ΓD and

ΓN ∩ΓD = ∅. The Dirichlet boundary condition in (3) is taken homogeneous for the sake

of simplicity.

The weak form of the problem reads: Find u ∈ V such that

a(u,v) = l(v) ∀v ∈ V, (4)
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3 Upper error bound of the FE solution from nearly equilibrated recovered solutions

where V is the standard test space for the elasticity problem such that V = {v | v ∈
H1(Ω),v|ΓD

(x) = 0}, and

a(u,v) :=

∫
Ω

σ(u) : ε(v)dΩ =

∫
Ω

σ(u) : S : σ(v)dΩ (5)

l(v) :=

∫
Ω

b · vdΩ +

∫
ΓN

t · vdΓ, (6)

where σ and ε denote the stresses and strains, and S is the compliance tensor.

The bilinear form a(·, ·) can also be expressed in terms of stresses by formally introducing

ā(·, ·) such that ā(σ, τ ) :=
∫

Ω
σ : D−1τdΩ. Note that a(u,v) = ā(σ, τ ).

Let uh be a finite element approximation to u. The solution lies in a functional space

V h ⊂ V associated with a mesh of finite elements of characteristic size h, and it is such

that

a(uh,v) = l(v) ∀v ∈ V h (7)

We focus on assessing the error e = u − uh. The error is measured in the energy norm,

induced by a(·, ·). The quantity to be assessed is ‖e‖2 = a(e, e).

3 Upper error bound of the FE solution from nearly

equilibrated recovered solutions

This section will explain with detail the basis of the proposed upper error bounding

method. The ideas were presented in [1] and the Ph.D. thesis [2].
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3 Upper error bound of the FE solution from nearly equilibrated recovered solutions

Proposition. Let σ∗ be a recovered field such that σ∗ ·n is continuous almost everywhere

along any interior curve Γ ⊂ Ω (being n the outward normal vector to Γ) and

−∇ · σ∗ = b + s a.e. in Ω (8a)

σ∗ · n = t + r a.e. on ΓN (8b)

Note that if s = 0 and r = 0, σ∗ is statically admissible. For small s and r (when

compared to b and t, respectively) σ∗ is said to be nearly statically admissible, up to the

equilibrium default terms.

Then, the following expression holds:

ā(σ∗,σ(v)) = l(v) +

∫
Ω

v · s dΩ +

∫
ΓN

v · r dΓ ∀v ∈ V, (9)

and, as a direct consequence assuming that the Dirichlet boundary conditions are homo-

geneous

‖u‖2 = ā(σ(u),σ(u)) ≤ ā(σ∗,σ∗)− 2

∫
Ω

u · s dΩ− 2

∫
ΓN

u · r dΓ (10)

Moreover, the error approximation σ∗e = σ∗ − σ(uh) could also lead to an upper bound

of the error norm:

‖e‖2 = a(e, e) = ā(σe,σe) ≤ ā(σ∗e,σ
∗
e)− 2

∫
Ω

e · s dΩ− 2

∫
ΓN

e · r dΓ (11)

and this latter property stands also for non-homogeneous Dirichlet boundary conditions,

up to oscillation terms.

Proof. The expression in (9) is derived from (8) using the standard weighted residuals

technique combined with integration by parts (and the fact that the test function v
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3 Upper error bound of the FE solution from nearly equilibrated recovered solutions

vanishes on ΓN)∫
Ω

v · (b + s) dΩ = −
∫

Ω

v · ∇ · σ∗ dΩ

= −
∫

Ω

∇ · (σ∗ · v) dΩ +

∫
Ω

∇v : σ∗ dΩ

= −
∫
∂Ω

n · (σ∗ · v) dΓ +

∫
Ω

1

2
(∇v +∇Tv) · σ∗ dΩ

= −
∫

ΓN

v · (σ∗ · n) dΓ + ā(σ∗,σ(v))

= −
∫

ΓN

v · (t + r) dΓ + ā(σ∗,σ(v))

Then (9) follows using the definition of l(v). Thus, the proof of (10) is straightforward

considering in (9) v = u (this requires that in the original problem, the Dirichlet boundary

conditions states that u = 0 on ΓD)

ā(σ∗,σ(u)) = l(u) +

∫
Ω

u · s dΩ +

∫
ΓN

u · r dΓ

= ā(σ(u),σ(u)) +

∫
Ω

u · s dΩ +

∫
ΓN

u · r dΓ (12)

and therefore

0 ≤ ā(σ(u)− σ∗,σ(u)− σ∗) =ā(σ(u),σ(u))− 2ā(σ∗,σ(u)) + ā(σ∗,σ∗)

=− ā(σ(u),σ(u))− 2

∫
Ω

u · s dΩ

− 2

∫
ΓN

u · r dΓ + ā(σ∗,σ∗).

The proof of (11) is similar, by considering in (9) v = e (this can be done, up to os-

cillation terms, even if in the original problem the Dirichlet boundary conditions are
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4 Displacements and stress recovery

non-homogeneous). Thus,

ā(σ∗,σ(e)) = l(e) +

∫
Ω

e · s dΩ +

∫
ΓN

e · r dΓ = ā(σ(e),σ(e))

+ā(σ(uH),σ(e)) +

∫
Ω

e · s dΩ +

∫
ΓN

e · r dΓ

that results in

ā(σ∗e,σ(e)) = ā(σ(e),σ(e)) +

∫
Ω

e · s dΩ +

∫
ΓN

e · r dΓ.

Note that the following error representation has been used

ā(σ(e),σ(e)) = l(e)− ā(σ(uH),σ(e)).

Thus, (11) is proved using the same idea as before by simply considering the positiveness

of ā(σ(e)− σ∗e,σ(e)− σ∗e).

4 Displacements and stress recovery

The evaluation of the correction terms in (11) involves the evaluation of the equilibrium

defaults s and t and the exact error in the displacements field e. The evaluation of s

and t depends on the recovery technique used to obtain σ∗ and we are able to derive

expressions for the exact evaluations of these terms. However, e = u − uh can only be

estimated. We estimate e as e ≈ u∗ − uh.

We have derived two alternatives for the evaluation of e. The first one consists in using

a sequence of N meshes for the problem. The solution of the last mesh of the sequence

would be considered as an enhanced solution u∗ such that in mesh i

e(i) = u− uh(i) ≈ uh(N) − uh(i), i = 1, ..., N (13)

UPV 7



4 Displacements and stress recovery

In [1] we evaluated the correction term for the lack of internal equilibrium considering

ES := −2

∫
Ω

e · sdΩ ≤ 2

∣∣∣∣∫
Ω

e · sdΩ

∣∣∣∣ ≤ 2 |e|L2
|s|L2

(14)

As previously mentioned, we are able to evaluate s(i) and therefore
∣∣s(i)

∣∣
L2

. Then we

use (13) to evaluate
∣∣e(i)

∣∣
L2

for i = 1, ..., N whereas the value of
∣∣e(N)

∣∣
L2

is evaluated by

extrapolation from the value of
∣∣e(N−1)

∣∣
L2

.

This procedure was enhanced in [3] by evaluating the correction terms ES(i) for i = 1, ..., N

as

ES(i) = −2

∫
Ω

e(i) · s(i)dΩ ≈ −2

∫
Ω

(
uh(N) − uh(i)

)
· s(i)dΩ, i = 1, ..., N − 1 (15)

and then ES(N) by extrapolation from ES(N−1).

The two versions of this first alternative have a high computational cost as i) it requires

the use of a sequence of meshes and ii)it requires projecting the information from mesh i

to mesh N . Note also that the results obtained for the first meshes are quite accurate but

this accuracy decreases in the last meshes, especially in the last mesh where the results

have been obtained using extrapolation techniques.

The second alternative consists in using a recovery technique that would directly provide

an enhanced displacements field u∗ that could then be used to estimate the error in the

displacements field as e ≈ u∗−uh without requiring a sequence of meshes. In this section

we will describe the key ideas of the recovery technique used to obtain the error estimates.

The technique is also based on the SPR scheme [4], but considering the displacements field

and the local satisfaction of the imposed displacement, boundary tractions and internal

equilibrium.

We define each of the components of the recovered displacements on the support (patch)

of a vertex node i as a polynomial surface expressed as u∗i = pai where p is a polynomial

basis and ai are the unknown coefficients. The degree of p is one order higher than the

degree of the shape functions used for the interpolation of displacements. We use the
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4 Displacements and stress recovery

Langrange Multipliers technique to force u∗i to satisfy the Dirichlet boundary conditions

if the patch contains the Dirichlet boundary. Furthermore, using Lagrange Multipliers

over the coefficients a it is possible to enforce restrictions on σ∗i (x, y) = DLu∗i (x, y) so

that u∗i satisfies the following equations:

• Internal equilibrium equation.

• Boundary equilibrium equation.

• Compatibility equation (by default).

The displacements in each element are evaluated from each of the vertex nodes of the

element. To enforce continuity of the recovered displacements we use a partition of unity

approach, defined by Belytschko as the Conjoint Polynomial enhancement [5]:

u∗u(x, y) =
nv∑
i=1

N v
i (x, y)u∗i (x, y) (16)

Where N v
i represent the shape function of node i corresponding to the linear version of

the element (note that patches are only formed around vertex nodes) and nv refers to the

number of vertex nodes. Equation (16) provides a kinematically admissible displacement

field u∗u evaluated as a function of local contributions u∗i from each of the different patches.

We will use subindex u to indicate a kinematically admissible solution whereas subindex

σ will be used to indicate a solution with a continuous stress field.
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4 Displacements and stress recovery

With (17), we can evaluate the stresses σ∗u at each point as

L =


∂
∂x

0

0 ∂
∂y

∂
∂y

∂
∂x


σ∗u(x, y) = DL

nv∑
i=1

Nv
i (x, y)u∗i (x, y)

σ∗u(x, y) =
nv∑
i=1

DLNv
i (x, y)u∗i (x, y)︸ ︷︷ ︸

discontinuous

+
nv∑
i=1

Nv
i (x, y)DLu∗i (x, y)︸ ︷︷ ︸

σ∗
σ(x,y) continuous

(17)

The expression to evaluate σ∗u has two parts, one discontinuous and another discontinu-

ous. Taking only the continuous part we will have a continuous stress field σ∗σ which is

nearly-statically admissible as it is built using local contributions where the satisfaction

of equilibrium has been considered.

We refer to σ∗σ as nearly-statically admissible field because due to the enforcement of

continuity, a lack of internal equilibrium s is introduced as shown in (18)

σ∗σ(x, y) =
nv∑
i=1

Nv
i (x, y)DLu∗i (x, y)

∇σ∗σ(x, y) = ∇
nv∑
i=1

Nv
i (x, y)DLu∗i (x, y)

∇σ∗σ(x, y) =
nv∑
i=1

∇Nv
i (x, y)DLu∗i (x, y)︸ ︷︷ ︸

−s

+
nv∑
i=1

Nv
i (x, y)∇DLu∗i (x, y)︸ ︷︷ ︸

∇σ∗
i =−b

∇σ∗σ(x, y) = −s− b

(18)
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5 Error norm representation for the recovered solution

Moreover, there could also be a lack of contour equilibrium r over ΓN , r = σ∗σ · n − t,

where n is the outward normal vector, if the polynomial used to describe the recovered

field is not able to represent the applied boundary tractions t and/or if the boundary is

not a straight line segment.

5 Error norm representation for the recovered solu-

tion

At the same time we worked on an expression which allow us to evaluate the error of

the nearly-statically recovered stress field σ∗σ. Recall that this is a continuous stress field

but not fully equilibrated, where s and r represent the lack of internal and boundary

equilibrium, respectively.

The recovery procedure yields a postprocessed stress field σ∗σ which is taken as an en-

hanced approximation to the exact stresses, σ(u), much more accurate than σ(uh). The

recovered stress σ∗σ has an equilibrium default

s = −∇ · σ∗σ − b (19)

Pedro Dı́ez proved that the following identity holds to evaluate the error in the recovered

field:

E∗ = −
∫

Ω

s · e∗σdΩ = ‖e∗σ‖2 = ‖u− u∗σ‖2 = ā ((σ− σ∗σ), (σ− σ∗σ)) (20)

being e∗σ the error in displacements corresponding to the recovered solution σ∗σ such that

σ∗σ = σ(u∗σ) = σ(u− e∗σ). Note that both u∗σ and e∗σ are not explicitly evaluated.

Proof.

UPV 11



5 Error norm representation for the recovered solution

−
∫

Ω

s · e∗σdΩ =

∫
Ω

(∇ · σ∗σ + b) · e∗σdΩ

=

∫
Ω

(∇ · σ(u∗σ)−∇ · σ(u)) · e∗σdΩ

=

∫
Ω

(−∇ · σ(e∗σ)) · e∗σdΩ

=

∫
Ω

σ(e∗σ) : ε(e∗σ)dΩ−
∫
∂Ω

e∗σ · σ(e∗σ) · ndΓ

=

∫
Ω

σ(e∗σ) : ε(e∗σ)dΩ

=‖e∗σ‖2 (21)

Note that it has been assumed that∫
∂Ω

e∗σ · σ(e∗σ) · ndΓ = 0 (22)

If we also consider this term we would have:

‖e∗σ‖2 = −
∫

Ω

s · e∗σdΩ +

∫
∂Ω

e∗σ · σ(e∗σ) · ndΓ (23)

Considering σ(e∗σ) · n = σ(u − u∗σ) · n = σ(u) · n − σ(u∗σ) · n = t − σ∗ · n and then

considering (8b) we have σ(e∗σ) = −r. Therefore ‖e∗σ‖2 can be evaluated as

E∗ = ‖e∗σ‖2 = −
∫

Ω

s · e∗σdΩ−
∫
∂Ω

r · e∗σdΓ (24)

Operating with (20) considering C-S inequality we will have

‖e∗σ‖
2 = −

∫
Ω

e∗σs dΩ ≤ |e∗σ|L2
|s|L2

(25)

UPV 12



5 Error norm representation for the recovered solution

As u∗σ would be a recovered displacements field, laying in a so-called ’broken space’ richer

than V h, we could assume that the L2 norm of the recovered solution is smaller than the

L2 norm of the FE solution:

|e∗σ|L2
. |e|L2

(26)

We would then obtain the following practical expression to evaluate an upper bound of

‖e∗σ‖
2 taking into account that the error of the FE solution can be estimated as e ≈ ees

with ees := u∗u − uh

‖e∗σ‖
2 ≤ |e∗σ|L2

|s|L2
. |e|L2

|s|L2
≈
∣∣u∗u − uh

∣∣
L2
|s|L2

= |ees|L2
|s|L2

= E∗UB (27)

Note that in (27) we have finally replaced |e∗σ|L2
by |ees|L2

, i.e. we have replaced the error

in the recovered solution u∗σ by the estimated error of the FE solution uh, to obtain a

bound of the error in the recovered solution. Following this idea we replace e∗σ = u− u∗σ

by ees = u∗u − uh in (24), and defined the error indicator E∗1 in (28a) to check if it could

provide an indication of the error level in energy norm of the recovered solution σ∗σ. We

also defined the error indicators E∗2 and E∗3 as described in (28b) and (28c) to force the

result to be positive:

E∗1 = −
∫

Ω

s · eesdΩ−
∫

Γ

r · eesdΓ (28a)

E∗2 =
Nel∑
i=1

(∣∣∣∣∫
Ωi

s · eesdΩ

∣∣∣∣+

∣∣∣∣∫
Γ∩Ωi

r · eesdΓ

∣∣∣∣) (28b)

E∗3 =

∫
Ω

|s · ees| dΩ +

∫
Γ

|r · ees| dΓ (28c)

where Nel is the number of elements of the FE discretization and Ωi represents the domain

of element i.
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6 Numerical Examples

In (28b) the value of the integrals at each element are forced to be positive. In (28c) the

integrands themselves are forced to be positive. Note that this is a reasonable assumption.

For example, if we assume r = 0 (see (21))

0 ≤ σ(e∗σ)ε(e∗σ) = −s · e∗σ ( = |s · e∗σ|) (29)

As s and e∗σ are consistent (s would be the defaults of equilibrium corresponding to u∗σ,

whose associated error is e∗σ) then 0 ≤ −s · e∗σ. However, in (28c) e∗σ has been substituted

by ees. The terms s and ees are non-consistent and as a result −s · ees could be negative.

This suggested the use of the approximation in (28c) (−s · e∗σ ≈ |s · ees|).

We wanted to check if the error indicators E∗i ’s could provide a rough idea about the

error level of the recovered solution. We also wanted to check if the local evaluations,

at element level, of the E∗i could roughly describe the distribution of the error of the

recovered solution. As far as we understand, there is no mathematical relation between

E∗ and the error indicators E∗i that could make them provide accurate evaluations of

E∗. However, the numerical results obtained show that the E∗i ’s capture the order of

magnitude of E∗. In particular, E∗3 provides an accurate evaluation of E∗ ( E∗3 ≈ E∗) and

very similar error distributions.

6 Numerical Examples

Quadrilateral elements have been considered in the examples presented in this section.

6.1 Westergaard problem. XFEM solution

Our first results were obtained as part of the development of an error estimator for XFEM.

Let us consider the Westergaard problem corresponding to an infinite plate loaded at

infinity with biaxial tractions σx∞ = σy∞ = σ∞ and shear traction τ∞, presenting a

UPV 14



6 Numerical Examples

crack of length 2a as shown in Figure 1. The problem is solved using an enriched finite

element approximation, combining the externally applied loads to obtain different loading

conditions: pure mode I, pure mode II or mixed mode.

Figure 1: Example 1. Westergaard problem. Infinite plate with a crack of length 2a under
uniform tractions σ∞ (biaxial) and τ∞. Finite portion of the domain Ω0, modelled with
FE.

The numerical model corresponds to a finite portion of the domain (a = 1 and b = 4 in

Figure 1). The applied projected stresses for mode I are evaluated from the analytical

Westergaard solution [6]:

σIx(x, y) =
σ∞√
|t|

[(
x cos

φ

2
− y sin

φ

2

)
+ y

a2

|t|2

(
m sin

φ

2
− n cos

φ

2

)]
σIy(x, y) =

σ∞√
|t|

[(
x cos

φ

2
− y sin

φ

2

)
− y a

2

|t|2

(
m sin

φ

2
− n cos

φ

2

)]
τ Ixy(x, y) = y

a2σ∞

|t|2
√
|t|

(
m cos

φ

2
+ n sin

φ

2

) (30)
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6 Numerical Examples

and for mode II:

σIIx (x, y) =
τ∞√
|t|

[
2

(
y cos

φ

2
+ x sin

φ

2

)
− y a

2

|t|2

(
m cos

φ

2
+ n sin

φ

2

)]
σIIy (x, y) = y

a2τ∞

|t|2
√
|t|

(
m cos

φ

2
+ n sin

φ

2

)
τ IIxy (x, y) =

τ∞√
|t|

[(
x cos

φ

2
− y sin

φ

2

)
+ y

a2

|t|2

(
m sin

φ

2
− n cos

φ

2

)] (31)

where the stress fields are expressed as a function of x and y, with origin at the centre of

the crack. The parameters t, m, n and φ are defined as

t = (x+ iy)2 − a2 = (x2 − y2 − a2) + i(2xy) = m+ in

m = Re(t) = Re(z2 − a2) = x2 − y2 − a2

n = Im(t) = (z2 − a2) = 2xy

φ = Arg(t̄) = Arg(m− in) with φ ∈ [−π, π] , i2 = −1

(32)

For the problem analysed, the exact value of the SIF is given by

KI,ex = σ∞
√
πa KII,ex = τ∞

√
πa (33)

Material parameters are Young’s modulus E = 107 and Poisson’s ratio ν = 0.333. We

consider loading conditions in pure mode I with σ∞ = 100 and τ∞ = 0, pure mode II with

σ∞ = 0 and τ∞ = 100, and mixed mode with σ∞ = 100 and τ∞ = 100. In the numerical

analyses, we use a geometrical enrichment defined by a circular fixed enrichment area

B(x0, re) with radius re = 0.5, with its centre at the crack tip x0 as proposed in [7]. For the

extraction of the SIF we define a plateau function with radius rq = 0.9. Bilinear elements

are considered in the models. For the numerical integration of standard elements we use

a 2 × 2 Gaussian quadrature rule. The elements intersected by the crack are split into

triangular integration subdomains that do not contain the crack. We use 7 Gauss points

in each triangular subdomain, and a 5×5 quasipolar integration in the subdomains of the

element containing the crack tip. We do not consider correction for blending elements.
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Note that for this problem solved using XFEM, the displacements recovery technique

was not implemented, therefore we used a stress recovery technique called SPR-C, see [1]

(this technique enforces the recovered stress field to satisfy at each patch the internal and

boundary equilibrium equations and the compatibility equation. The recovery procedure

also splits the stress field into singular and smooth parts: σ = σsmo+σsing, and then uses

different recovery procedures for each part as described in [8] and [3]. Therefore, we used

the estimation of the error in the displacements field given in (13), and used the following

expression (equivalent to equation (27)) to evaluate an upper bound of the error of the

recovered solution for a sequence of N meshes

∥∥e∗(i)σ∥∥2 ≤
∣∣e∗(i)σ∣∣L2

∣∣s(i)

∣∣
L2

.
∣∣e(i)

∣∣
L2

∣∣s(i)

∣∣
L2
≈
∣∣uh(N) − uh(i)

∣∣
L2

∣∣s(i)

∣∣
L2

=
∣∣e(i)es

∣∣
L2

∣∣s(i)

∣∣
L2

= E∗(i)UB i = 1, ..., N − 1 (34)

then, we evaluated
∣∣e(N)es

∣∣
L2

by extrapolation from
∣∣e(i−1)es

∣∣
L2

.

The error in energy norm of the recovered solution was evaluated using the following

expression (similar to (28c)) where the term associated to the lack of boundary equilibrium

was neglected because r ≈ 0:

E∗(i)3 =

∫
Ω

∣∣s(i) ·
(
uh(N) − uh(i)

)∣∣ dΩ =

∫
Ω

∣∣s(i) · e(i)es

∣∣ dΩ; i = 1, ..., N − 1, (35)

we evaluated E∗(N)3 by extrapolation from E∗(N−1)3.

Figure 2 shows the evolution of the global effectivity index for the error estimate E∗3 and

the upper bound E∗UB. We can observe that although E∗UB bounds the exact error, it does

not asymptotically converge to 1. We believe that we obtain bounds of the exact error

because of the use of the CS inequality. Nevertheless, we can observe that the effectivity

index of the error estimator in energy norm for the recovered solution E∗3 captures the

order of magnitude of the exact error, providing effectivities very close to unity. In some
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cases, as in the top left graph, we can obtain worse accuracies in the last mesh because

of the extrapolation procedure used.

Figure 2: Example 1. Westergaard problem. Effectivity for the estimate of the error of
the recovered solution in mode I, mode II and mix mode.

6.2 Square plate with 4th order displacements

The FE software used with this and the following problems is based on the use of Cartesian

grids independent of the shape of the problem to be analyzed. Elements fully located in

the interior of the domain are considered as standard elements. Elements fully outside

of the domain are not assembled. Finally, in elements cut by the boundary, element

matrices are evaluated considering only the portion of the elements within the domain.

The Lagrange multipliers technique has been used to impose a weak satisfaction of the
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6 Numerical Examples

displacement constraints. The convergence rate of the error obtained is the theoretical rate

expected for the standard FEM. The FE code also uses a hierarchical data structure to

perform h-adaptive analyses based on element splitting. Multi-point constraints are used

to enforce C0 continuity of the solution between adjacent elements of different refinement

levels. This problem considers a 4th order displacements field over an infinite domain.

A 2×2 square portion has been modelled. The corresponding body loads and Neumann

conditions have been imposed. A model of the problem is represented in Figure 3.

ux(x, y) = x4 + 5(x3y)− 3(x2y2) + x3

uy(x, y) = y4 − 6(y2x2) + 3(yx3) + 2y

bx(x, y) =
−3E

2(1 + ν)(2ν − 1)
...

(9x2 − 12xy + 4y2 − 4x+ ...

ν(4x2 + 20xy − 4y2 + 4x))

by(x, y) =
3E

2(1 + ν)(2ν − 1)
...

(4y2 − 3x2 + 2xy + ν(8x2 − 12xy)

E = 1000 ν = 0.3

Figure 3: Example 2: 2× 2 square model and analytical solution

In Figure 4 we represent the evolution of the global effectivity index θ considering the

error estimates E∗i defined in (28). Note that in this case we have considered the lack of

equilibrium both in the internal and boundary equilibrium equations.

The results show that the error estimators E∗1 , E∗2 and E∗3 capture the order of magnitude

of the exact error in energy norm of the recovered solution. In particular, the results

obtained with E∗3 provide error effectivity indexes very close to one, the desired value.

Taking into account the procedure described to obtain these error estimators, the results

obtained, especially with E∗3 , are surprisingly accurate.

Moreover, in Figure 5 we show the local error evaluated by E∗3 |k and the exact error of the

recovered field ‖e∗‖2
k for a sequence of h-adapted meshes. k indicates that the quantities

are evaluated at element level. For this problem both results are quite similar, thus E∗3 |k
is a good indicator at local level of the error of the recovered solution.
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Figure 4: Example 1. 2× 2 square. Effectivity index. Q4 (left) and Q8 (right).

6.3 Pipe under internal pressure

Let us now consider a pipe under internal pressure, as described in Figure 6. Figure 7

shows the evolution of the effectivity index for the different error estimates.

For this problem we have also evaluated the distribution of the exact energy norm of

the recovered solution ‖e∗‖2
k and the distribution of the error estimate E∗3 |k (subindex

k indicates that these errors are evaluated locally, at elements). In Figure 8 we have

represented these results for a sequence of h-adapted meshes. We can observe that both

error distributions are quite similar. These results show that the error estimator for the

recovered solutions E∗3 has a good behavior at global level, but also at local level.

6.4 L-Shape. Singular problem

Consider the problem of an infinite plate with a V-notch subjected to tractions. We have

considered the Mode I loading condition. The model of the problem, as defined in Figure

9 has a singular solution in stresses. In this case we get similar results for the evolution of

the global effectivity index for estimators E∗2 and E∗3 (see Figure 10), although E∗3 exhibits
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Figure 5: Example 2. Square. Q4. Local exact error of the recovered solution (left), local
error estimates using E∗3 estimator (right).
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a

b

P
L1

L2L3

L4

ur(r) =
P (1 + ν)

E(c2 − 1)

(
r(1− 2ν) +

b2

r

)
σr(r) =

P

c2 − 1

(
1− b2

r2

)
σθ(r) =

P

c2 − 1

(
1 +

b2

r2

)
a = 5 b = 20 P = 1

E = 1000 ν = 0.3

c =
b

a

Figure 6: Example 3: Pipe model and analytical solution

102 103 104 105
0

0.2

0.4

0.6

0.8

1

1.2

dof

θ

E∗1
E∗2
E∗3

103 104
0

0.2

0.4

0.6

0.8

1

1.2

dof

θ

E∗1
E∗2
E∗3

Figure 7: Example 3. Pipe. Effectivity index. Q4 (left) and Q8 (right).
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Mesh ‖e∗‖2
k E∗3 |k
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Figure 8: Example 3. Pipe. Q4. Local exact error of the recovered solution (left), local
error estimates using E∗3 estimator (right).
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ux(r,φ) =
1

2G
rL [(k −Q (L+ 1)) cos (Lφ)− Lcos(((L− 2)φ)]

uy(r,φ) =
1

2G
rL [(k +Q (L+ 1)) sin (Lφ) + Lcos(((L− 2)φ)]

E = 1000 ν = 0.3

L = 0.544483736782464 Q = 0.543075578836737

G =
E

2(1 + ν)
k = 3− 4ν

Figure 9: Example 4: L-Shape model and analytical solution
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Figure 10: Example 4: L-Shape. Effectivity index. Q4 (left) and Q8 (right).

the best results for linear elements. In the last meshes of the analysis we always obtain an

increase of the effectivity index. This is because in the first 3 meshes of each analysis the

mesh increases its density around the reentrant corner increasing the refinement level as

we get closer to the singular point. The FE code can reach up to 20 refinement levels. In

the last mesh the refinement level around the singularity would require higher refinement

levels. The result is that, as higher refinement levels cannot be reached, we obtain an

area around the singularity with elements of uniform size as opposite to graded meshes

towards the singularity. This produces pollution errors and a decrease in the accuracy of

the error estimation that leads to worse effectivity indexes.
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We show the local error index E∗3 |k and the exact error of the recovered solution, ‖e∗‖2
k,

in Figure 11. Observe that even for this singular problem the results are quite similar,

concluding that, in this case E∗3 |k is a good error indicator.

6.5 h-adaptive process

In previous sections we have shown that the method presented for the estimation of error

of the recovered solution, using the estimator E∗3 , provides very accurate results with a

very good global effectivity index. Now, we are going to show that this error estimation

can be used in h-adaptive processes..

During a h-adaptive refinement process, using a standard FE compilation, the process

reads as follows:

1. Generate a FE mesh.

2. Solve the FE problem.

3. Estimate the error of the FE solution (locally and globally).

4. If target error is smaller than the estimated error of the FE solution continue to

step 5 else stop the process.

5. Generate an h-adapted FE mesh using the local FE error estimation

6. Go to step 2.

In this classical situation we are estimating the error of the raw FE solution, then we

are using the raw FE solution (uh,σh) as output. However, when we use our recovery

procedure we have already available an improved solution (u∗,σ∗). So far, we were unable

to estimate the error of this last solution, this output was not reliable. However, with

the contribution presented in this report we have a way to obtain an accurate estimation

of the error of this recovered solution: E∗3 , thus we can use (u∗,σ∗) as the output of the
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Mesh ‖e∗‖2
k E∗3 |k
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Figure 11: Example 4. L-Shape. Q4. Local exact error of the recovered solution (left),
local error estimates using E∗3 estimator (right).
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analysis. The information about the error estimation in the recovered solution could be

used in the h-adaptive refinement process to obtain a solution (u∗,σ∗) with the required

accuracy:

1. Generate a FE mesh.

2. Solve the FE problem.

3. Evaluate the local error estimate of FE solution (uh,σh).

4. Evaluate the global value of the error estimate of the recovered solution (u∗,σ∗)

(costless procedure).

5. If target error is smaller than the error of the recovered solution continue to step 5

else stop the process.

6. Generate an h-adapted FE mesh using the local FE error estimation

7. Go to step 2.

The h-adaptive procedure is guided in both cases by the well established techniques based

on the error estimation of the FE solution, which will simultaneously decrease the error

of the FE solution and the error of the recovered solution. Note that the main difference

between both processes is, simply, the stopping criterion. In this new approach the process

stops when the estimated error of the recovered solution is smalled than the target error.

The error in energy norm of the recovered solution is, in general, lower than the error in the

FE solution and the convergence rate of the error in energy norm of the recovered solution

is higher than that of the FE solution, thus, the recovered solution reaches the prescribed

error level with less degrees of freedom than the FE solution. Therefore, this second

method produces important savings in total computational cost of the analysis. Figures

12 and 13 show the evolution of the errors during the h-adaptive refinement process and

the computational cost needed to obtain a certain accuracy level, for Example 3 (cylinder

problem) for Q4 and Q8 elements.

The horizontal black lines in figures 12 and 13 represent the error level of the solution

prescribed by the analyst. Red and brown lines represent the error (exact and estimated)
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Figure 12: Example 3. h-adaptive analysis with Q4 elements. The black line represents
the prescribed relative error in energy norm (1%).
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Figure 13: Example 3. h-adaptive analysis with Q8 elements. The black line represents
the prescribed relative error in energy norm (0.05%).
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of the standard FE output (uh,σh). Blue and green lines represent the error (exact and

estimated) of the recovered field (u∗,σ∗). We can observe that the error estimation of

recovered solution accurately represents the exact error for both linear (Q4) and quadratic

(Q8) elements.

The figures show a considerable improvement of the h-adaptive process to reach a pre-

scribed error level. Note that, for Q4 elements, to reach the prescribed relative error in

energy norm (1%), the standard h-adaptive strategy based on the accuracy of the FE

solution would stop the process after an analysis with 30492 dofs and 170.2 s whereas

with the proposed h-adaptive method based on the accuracy of the recovered solution the

process would stop with only 654 dofs and 11.7 s. With Q8 elements reaching a 0.05%

prescribed error, the standard h-adaptive procedure would stop the process after an anal-

ysis wiht 41724 dofs and 54.4 s, whereas the proposed method would only require 3728

dofs and 21.8 s.

7 Conclusions

Error estimation of the recovered solution could be very useful to decrease the compu-

tational cost of FE analysis. Error estimator E∗3 efficiently predicts the error in energy

norm of the recovered solution both at local and global levels. This accuracy is not math-

ematically justified. The results obtained definitively require the support of mathematical

proofs.
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