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Etienne Gourc a, Sébastien Seguy a,n, Lionel Arnaud b
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a b s t r a c t

A new dynamical modeling of Active Magnetic Bearing Spindle (AMBS) to identify machining stability

of High Speed Milling (HSM) is presented. This original modeling includes all the minimum required

parameters for stability analysis of AMBS machining. The stability diagram generated with this new

model is compared to classical stability lobes theory. Thus, behavior’s specificities are highlighted,

especially the major importance of forced vibrations for AMBS. Then a sensitivity study shows impacts

of several parameters of the controller. For example, gain adjustment shows improvements on stability.

Side milling ramp test is used to quickly evaluate the stability. Finally, the simulation results are then

validated by HSM cutting tests on a 5 axis machining center with AMBS.

1. Introduction

Currently, parts produced by machining still represent an

important proportion of mechanical industrial production. Unfor-

tunately, the productivity of machining operations at high speed

is still severely limited by machining vibrations, so called chatter.

It degrades the surface roughness of the part, increases the tool

wear and reduces the spindle life span.

The early work of Tobias [1] in the 50s, have presented the

phenomenon of regenerative effect as the main cause of chatter.

The modeling of this phenomenon induces Delay Differential

Equation (DDE). A first approach is to study the asymptotic stability

of this equation. The stability diagram – well known as stability

lobes – obtained make it possible to choose the maximum axial

depth of cut for a given spindle speed associated with a chatter

free machining. This approach initially dedicated to turning

process [2] has been widely extended and democratized by the

work of Altintas and Budak for milling process [3–5]. This method

is interesting because, it leads to an analytic expression of the

stability lobes. Recently, improved methods have been developed

with a more detailed stability analysis, see for example [6–9].

Thus, for high-speed milling with low radial depth of cut and low

helix angle, a new kind of unstable zones has been detected,

called period-doubling or flip bifurcation [10].

In addition to these frequency approaches, Time Domain

Simulation (TDS) was also developed with increasing computing

capacity. In this case, the equation of motion is integrated step by

step, in order to obtain more detailed information about

the process such as the amplitude of the vibrations, the chip

thickness, or the cutting forces during the tool’s rotation [11–13].

The improvements of these approaches allows even simulation of

the milled surface roughness [14,15]. These approaches are very

powerful and can take into account all aspects of machining, even

the non-linear effect of ploughing [14] or the non-linearity when

the tool leave the cut during strong vibrations [11].

However, in many realistic cases, such for thin walled part

machining, it is very difficult or impossible to select stable cutting

conditions (spindle speed and depth of cut) for all the machining

operation [16]. Classical solutions are based on machining stra-

tegies that maximize the dynamical stiffness of the mechanical

components during the machining [17]. Others solutions are

based on the damping effect obtained by reducing the cutting

speed or, better by adding specific damper devices [18]. Tools

with variable pitches [19] or with variable helix angles [20]

can also be used to suppress chatter. A similar technique is to

disturb the regenerative effect by spindle speed variation [21–23].

The idea of these last techniques is that the tooth pass frequency

is varying; in this way, the regenerative effect is disturbed

and this may significantly reduce the self-excited vibrations for

specific spindle speeds. However, despite numerous academic
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studies on this topic, only the variable helix angle is widely used

in industry.

During the 2000s, the development of Active Magnetic Bearing

Spindles (AMBS) became very fast with several manufacturers in

competition. A quite large bibliography is also available, see for

example [24–27]. A major advantage of AMBS was supposed to be

their life span, much larger than the conventional roller bearing

spindle [27] and also their robustness to accidental force impact.

This contactless technology, can also achieve very high speeds,

but not yet very high power. In recent work on a micro milling

machine with specific controllers, the spindle speed reached is

over 150000 rpm [28]. In addition to these advantages, it is also

very easy to use all the included sensors and feedback currents,

for position and force measurement. For example, Auchet et al.

[29] developed a method for indirect cutting force measurement

by analyzing the command voltage of AMBS. Chen and Knospe

developed approaches to maximize damping, using a supplemen-

tary active magnetic bearing on the spindle, and some approaches

to actively control chatter on dedicated simplified test bench

[27,30,31]. Kyung and Lee [32] have studied the stability of AMBS

machining, but only for conventional spindle speeds. To the best

knowledge of the authors, all the work made on stability analysis

of AMBS was made only for low spindle speeds, corresponding to

conventional cutting speed.

In this paper, the modeling of AMBS is developed and analyzed

in the high-speed domain, up to 40000 rpm, corresponding to the

first Hopf and flip lobes. A new original AMBS machining model-

ing is proposed, and the results are confirmed by experiments.

The structure of the paper is as follows. First, the model is

presented in Section 2, then, the stability properties are predicted

in Section 3. Experimental verifications are provided in Section 4.

Finally, the paper is concluded in Section 5.

2. Modeling of Active Magnetic Bearing Spindle machining

2.1. Mechanical modeling of the spindle

The analysis of the machining stability at high spindle speed

requires taking into account the spindle modal behavior. Analy-

tical models of the spindle and measurements have shown that

gyroscopic effect on modal frequencies is less that 1 Hz, for the

resonant frequency around 1 kHz up to 40000 rpm. Thus, gyro-

scopic effect will not be taken into account in this study. Also, the

unbalance is not taken into account because a part of the control

algorithm, not defined here, is designed to center the rotation axis

of the spindle at his inertia axis and thus avoid unbalance force

compensation.

The x displacement of a point M of the center of the rotor

located at height z is defined by u(z, t) (see Fig. 1).

The point M(0) corresponds to the end of the tool, the points

M(A) and M(B) are at the level of the A and B magnetic bearings.

The modal base is used to represent the vibrations of the spindle

uðz,tÞ ¼
X

n

i ¼ 1

jiðzÞqiðtÞ ð1Þ

ji(z) is the ith modal shape, associated to the natural pulsation oi

and the modal displacement coefficient qi(t), with

oi ¼

ffiffiffiffiffiffi

ki
mi

s

ð2Þ

Modal displacement qi(t) is obtained by solving the Newton

equation

fmi €qiðtÞþci _q iðtÞþkiqiðtÞ ¼ fiðtÞgi ð3Þ

where mi, ci and ki are the modal mass, damping and stiffness of

the ith mode. The damping factor xi is defined as

ci ¼ 2xi
ffiffiffiffiffiffiffiffiffiffi

kimi

p

ð4Þ

The projection of the external forces F(t) on the ith mode is

fi(t). This projection takes into account the fact that the displace-

ment at the end of the tool is different from that on the magnetic

bearing level

fiðtÞ ¼jið0ÞFðtÞ ð5Þ

The resulting system of equations is the following:

fmi €q iðtÞþci _q iðtÞþkiqiðtÞ ¼jið0ÞFðtÞgi ð6Þ

In addition to the flexible modes, it is necessary to take into

account the static rigid mode of the rotor, because the rotor is

free. Indeed there is a static component of the excitation force

that will be compensated by the feedback control loop. As a

simplification, we will consider that the spindle is mainly moving

at the A bearing level and that B bearing can be considered as a

hinge (see Fig. 2).

The mass of the rotor is mr and length L. As a rough

approximation we will consider that the rotor is a uniform bar.

The y angle is considered very small (Lbx) and the Newton

equation is

mr

3
€q0 � FðtÞ ð7Þ

The spindle dynamics will be modelized in the xz plane, mechani-

cally defined by its mass and the two first flexible modes. A residual

stiffness was tried to be added to compensate modal truncation, but

this termwas removed due to numerical problems during simulation.

The modal parameters were identified by hammer impact at the tip

Fig. 1. Mechanical modeling of the spindle.

Fig. 2. Rigid mode.



tool, and the mass rotor was measured. Fig. 3 shows the frequency

response function at the tip tool, measured and simulated. The

correlation is correct for the detection of resonance peaks. However,

at very low frequency, the measure does not restore completely the

behavior of the spindle, because it should bring up a flexibility, which

tends to infinity. This point is particularly well illustrated by the

simulation. Frequencies above 2000 Hz are not modeled due to modal

truncation.

2.2. Cutting forces

The relationship between the chip thickness and the tool’s

vibration may generate self-generated vibrations, which are

different from forced or transitional vibrations. This relative

self-generated movement between the tool and the workpiece

usually leave chatter marks, strongly linked with natural vibra-

tions frequencies of the machining system (see Fig. 4).

With the use of a linear cutting law, the force is proportional to

the depth of cut h(t) [10], and defined as follow:

FcðtÞ ¼ ½K1hðtÞ�gðtÞrðhðtÞÞ ð8Þ

g(t) function is an Heaviside function that is equal to 1 when the

tooth is cutting, and equal to 0 otherwise. K1 is a cutting

coefficient defined as follow:

K1 ¼
1

2
ApKtax ð9Þ

with Kt the specific tangential cutting coefficient, Ap the axial

depth of cut, ax the x directional milling force coefficient. This last

coefficient represents the mean value of the variable cutting force

of a tooth. It is calculated as follow:

ax ¼
1

2
½ÿcosð2yÞÿ2ykrÿkrsinð2yÞ�

fex

fst
ð10Þ

with kr the reduced radial cutting coefficient, fst and fex are the

entry and exit cutting angle of the tool, defined as follow, for

down-milling:

fst ¼ arccosðAe

R ÿ1Þ

fex ¼ p

(

ð11Þ

Ae is the radial depth of cut and R is the tool’s radius. The

instantaneous chip thickness involved in Eq. (8), is defined as

follow:

hðtÞ ¼ fzþxðtÿtÞÿxðtÞ ð12Þ

with fz the feed per tooth, x(t) the current position of the tool and

x(t ÿ t) the position of the previous tooth. The delay between is

defined as follow:

t¼
60

Nz
ð13Þ

with N the spindle speed, in rpm, and z the number of teeth of the

tool. The r(h(t)) Heaviside function takes into account the fact

that, because of vibration, the tool tip may sometimes be outside

the matter. It is expressed as follow:

� if h(t)o0, i.e. chip thickness is zero, then r (h(t))¼0, so cutting

force is zero,

� if h(t)40, i.e. the tool is cutting, then r (h(t))¼1, so cutting

force is defined with Eq. (8).

It can be noticed that this non-linearity is not always sufficient

for limiting vibration amplitude. As mentioned in [12,13], the

ploughing effect must also be taken into account. Taking into

account the ploughing effect is numerically much more complex

than the r(h(t)) coefficient and our aim here is not to predict

accurately the vibration level but to detect instability, so we will

neglect the ploughing effect.

2.3. Active magnetic bearing

The Active Magnetic Bearing (AMB) generate a force, coming

from the feedback intensity current i, in order to maintain the

rotor axis position x. The magnetic bearings are used in differ-

ential mode, i.e. the current in the coils is the sum of an average

constant current i0, called bias current, and the control current i

(see Fig. 5). Using bias current i040 provide the double control

force compared to no bias current, because magnetic forces on the

steel spindle can only be attractive. It increase the reactivity of the

control, but create heating effect, even when i¼0.

The law between total force and current intensity i is defined

in the following equation:

Fambði,xÞ ¼ k
ði0þ iÞ2

ðx0ÿxÞ2
ÿ

ði0ÿiÞ2

ðx0þxÞ2

� �

ð14Þ

Fig. 3. Transfer function at the tool tip.

Fig. 4. Mechanical modeling of the milling process. Fig. 5. Rotor supported by magnetic bearings operated in differential mode.



with i0 the bias current, x0 the nominal air gap and k the global

magnetic permeability calculated as follow:

k¼
1

4
m0Agn

2 ð15Þ

where m0 is the vacuummagnetic permeability, also called magnetic

constant, Ag is the air gap area and n the number of turns.

2.4. Control loop

The knowledge of the control loop is a key point, because it leads

to the forces applied to the spindle in reaction to the cutting forces.

For this study, the manufacturer of the magnetic bearings (MECOS)

has given us all the information we needed to fully understand this

control loop and to modify its parameters. It is divided in several

parts. First, there is a semi-static control part, which compensates

the static forces. Second, there is a dynamic control part, very similar

to a proportional derivate regulator with band-cut filters. Third,

there is the bias current generation. In practice, there is also a

control loop for unbalance compensation, which is not represented

here because it is very complicated and because we have experi-

mentally tested that it does not play a significant role in machining

dynamics. The modelized structure is represented Fig. 6.

Gx and Gi are the position sensor gain factors and the current

amplifier gain factor, respectively. They are modelized as simple

static gains coefficients. DI is the gain associated to the integrator

and A, B, C, D are the matrices defining the Linear Time Invariant

(LTI) system used. ITmax represents the maximum command

signal sent from the integration loop. This limitation avoids

saturation of the static compensation loop and preserves the LTI

role. Then Imax is the maximum intensity current for the coils. In

practice, the limits for the integrator, for the LTI and for the bias

current are equally balanced each to a third of Imax.

2.5. Resolution of the model

The time domain simulation must be carefully used to avoid

numerical problems because there are many strong non-linearity:

delay term, h(t) screen function, maximum limitations ITmax and

Imax. The numerical integration scheme used is the improved

Runge–Kutta (2,3) type [34]. It is an explicit integration scheme.

This algorithm is used with a time step adaptation method in

order to control stability and approximation error. This algorithm

allows dealing with problems strongly nonlinear. The model was

implemented in Matlab–Simulink and no numerical problems

were detected. The modeling of the system uses:

� mechanical of the spindle (Eq. (6)),

� flexible mode of the rotor (Eq. (7)),

� nonlinearity when the tool leaves the cut under large vibra-

tions (Eq. (8)).

� regenerative effect (Eq. (12)),

� active magnetic bearing (Eq. (14)),

� the servo (Section 2.4).

All this aspects are summarized in the following system of

equation:

fmi €q iðtÞþc1 _q1ðtÞþk1q1ðtÞþM €qoðtÞ ¼ FambÿFcgi
Fc ¼

1
2ApKtax fzþuðtÿtÞÿuðtÞ

� �

gðtÞrðhðtÞÞ

uðtÞ ¼ q1ðtÞþq2ðtÞþq0ðtÞ

xðtÞ ¼j1q1ðtÞþj2q2ðtÞþq0ðtÞ

Fambðx,iÞ ¼ k ði0 þ iÞ2

ðx0ÿxÞ2
ÿ ði0ÿiÞ2

ðx0 þ xÞ2

h i

:

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

ð16Þ

3. Stability analysis of Active Magnetic Bearing Spindle

machining

3.1. Preliminary stability lobes without AMBS

Here, a classic spindle-tool is modeled without AMBS. To

compare different modeling, stability boundaries are predicted

by the classical approximation [3] and by the improved semidis-

cretization [7]. For the computation, we directly use the results

presented and justified in the following work [3–5,7,33].

The stability lobes obtained for down milling are shown in Fig. 7.

The parameters used for the plot are summarized in Table 1.

The stability boundaries correspond mainly to the Hopf bifur-

cation instability, which causes quasi-periodic chatter. But, for

spindle speeds close to 40000 rpm, corresponding to the second

bending mode, and because the cutting is highly interrupted,

Fig. 6. Structure of the servo.

Fig. 7. Classical stability lobes without AMBS.

Table 1

Parameters used for the simulation.

Dynamical paramaters Values

m1 2.510 kg

c1 305.56 Ns/m

k1 9.3�107 N/m

o1 970 Hz

j1 0.01

m2 0.782 kg

c2 170.52 Ns/m

k2 1.2�108 N/m

o2 1970 Hz

j2 0.08

mr 21 kg

Cutting parameters Values

Kt 900 MPa

kr 0.2

fz 0.1 mm/tooth

R 6 mm

Ae 4 mm

z 3

ax ÿ1.198

AMB parameters Values

i0 3 A

x0 0.4 mm



Ae/D¼1/3, there is the appearance of flip bifurcation instability,

which cause periodic chatter. This instability, like a small closed

curve due to helix angle [33], is only detected by the semidiscre-

tization approach.

These stability plots do not take into account the real behavior of

AMBS. Nevertheless, they provide a first approximation of probable

stable areas. The contribution of AMBS is clearly emphasized in the

next section, with the utilization of the new modeling proposed in

this paper.

3.2. Time domain simulation with AMBS

3.2.1. Results of simulation

The modeling parameters are collected in Table 1. The helix

angle has not been taken into account to limit the computation

time, however as shown in Fig. 7, this effect is unimportant and

only limited to the flip lobe.

Determining the stability or instability using time domain

simulation is always a difficult task. According to [11], the peak to

peak criterion was selected. Thus the machining is considered as

unstable if the peak to peak amplitude exceeds a given level. Such

criterion is very easy to compute. It does not give exactly the

stability limit but it gives a vibration amplitude limit, which is

very useful practically. The determination of the peak to peak

numerical criterion has been defined as follow.

Fig. 8 illustrates for two given cutting conditions, the

computed axial depth of cut vs. peak to peak displacement.

The 23500 rpm spindle speed is supposed to correspond to the

first lobe of the first mode, and 27500 rpm to the second lobe of

the second mode. The peak to peak displacement scale is

logarithmic. It can be seen that the criterion become much more

sensitive after 0.2 mm. So we have chosen to fix the peak to peak

criterion to 0.1 mm, which is a reasonable value for machining

quality, which is also robust for Ap determination and still

coherent with classical stability criterion (the difference is less

than 0.5 mm for this two given examples).

The simulation chart obtained with this 0.1 mm criterion at

tool’s end is shown in Fig. 9 graph (A). It has been computed by

200 rpm increment, from 10000 to 42000 rpm and 0.5 mm incre-

ment, from 1 to 15 mm. The total computing time is about 6 h on

a standard desktop computer Intel Core Duo 1.73 GHz – 1 Go

RAM. It may be noted that the dichotomy method, as used in [15]

may significantly reduce the computing time but full simulation

guarantees the absence of stability islands. We consider that it is

possible to distinguish on graph (A), the contribution of the

stability of the AMBS, graph (B); the contribution of the forced

vibrations, graph (C). By simply removing the nonlinearity of the

tool leaving the cut under large vibrations, i.e. assuming

r(h(t))¼1, this result is presented on graph (B), Fig. 9. Then by

simple subtraction, graph (C) shows the forced vibrations con-

tributions. These areas of large forced vibrations are present at

10000, 14000, 20000 and 40000 rpm. These areas correspond to

classical forced vibrations but they affect the dynamical behavior

of the spindle more dramatically than the chatter instability.

The evolution of peak to peak amplitude at tool end vs. the

axial depth of cut is shown Fig. 10, for 4 spindle speeds.

Fig. 8. Evolution of the depth of cut according to the peak to peak displacement.

Fig. 9. Optimal areas for the use of a spindle with active magnetic bearing.

Fig. 10. Displacement analysis of the optimal areas for the use of AMBS.

E. Gourc et al. / International Journal of Machine Tools & Manufacture 51 (2011) 928–936932



The (c) and (d) graphs show that after a linear part, a sharp

increase in the amplitudes is visible. This corresponds to the onset

of chatter at the critical depth of cut, characteristic of asymptotic

instability. In graphs (b) and (e), the vibration amplitudes can

be seen to increase almost linearly with the axial depth of cut.

A frequency analysis is presented to determine the nature of these

vibrations during machining. Fig. 11 shows the frequency analysis

of the displacement for these particular spindle speeds and for an

axial depth of cut of 15 mm. In both cases only the tooth passing

frequency is present. Classically, these cutting cases are asso-

ciated with stable machining but with a high level of vibrations.

However, in the case of milling with AMBS, these forced vibra-

tions are dangerous and the spindle may automatically be

stopped by the safety mode.

In this work, the strict concept of stability, widely used for

classical spindle, is extended by including the strong forced

vibrations. This new concept of optimal areas for the use of a

spindle with AMB is necessary. This result, based on this new

modeling can be simply considered as the superposition of the

stability and the forced vibrations. However, the modeling devel-

oped considers a complete coupling between all the different

aspects, leading to a single graph (A), in Fig. 9.

3.2.2. Sensitivity study

The model includes many parameters and some of them are

difficult to determine precisely:

– First, the cutting forces, which are difficult to model in

presence of vibrations. We have already chosen to use, like

in many publications, the linear cutting law including a non-

linear effect caused by the possible exit of the tool during the

vibrations.

– Second, the modal behavior of the spindle, which is particu-

larly important for magnetic bearings. Indeed, all the spindles

are designed to minimize the vibrations forces at the bearings.

It means that the modal shapes have their nodes as near as

possible from the bearings. It is the same for AMBS. It means

that roller bearings are designed to improve the stiffness of the

spindle as much as possible. Unfortunately the magnetic

bearings are less stiff than classic bearings and behave like

self-aligning roller bearings.

In the following we have evaluated the sensitivity of some

parameters that seems particularly relevant. Fig. 12 shows the

influence of the parameters j1 and j2 representing the modal

shape coefficients of the modes 1 and 2, at the magnetic bearings

locations. The black thick curve is the stability plot from Fig. 10,

and will be considered as the reference. We have considered that

the j1 and j2 factors should reasonably stay approximately

between 0.01 and 0.1. On the first graph, j1 is constant and j2

is set at different values. It can be seen that when j2 is reduced

about 3 times, the stability limit would be modified less than 30%.

We will consider that this parameter is not highly sensitive. On

the second graph, j2 is constant and j1 is variable. It can be seen

that an increase in 3 times of j1 generates a 50% reduction of the

stability limit, but only for the lobes associated to the first mode.

It is to notice that we have also made a simulation with j1¼0.05

that lead to an always instable system. We will consider that this

parameter j1 is highly sensitive, and especially for the first mode.

We had an experimental confirmation of this global sensitivity

using a long tool, diameter 16, length 100 mm. Without machin-

ing, even without rotation speed, vibrations were clearly audible

and we heard similar story from another spindle brand. This

behavior is known from the manufacturers who absolutely

recommend adjusting the parameters of the command loop when

long massive tools have to be used.

As a partial conclusion we would say that the AMBS behavior

is very sensitive to the modal behavior.

Fig. 13 shows the influence of the global LTI gain factor (kA).

It can be seen that a 30% increase in this gain reduces the stability

in the same proportion and a 10% decrease in this gain propor-

tionally increase the stability. A decrease in kA below 0.75

generates system instability. In order to keep a safety margin of

30%, we will consider that kA¼1 is a good compromise.

4. Experimental part

Cutting tests were carried out on a Mikron UCP 600 Vario,

5 axis high-speed milling center with a spindle with Active

Magnetic Bearing Ibag HF400M. The tool is a monolithic carbide

end mill, three teeth, 12 mm diameter, helix angle 301, mounted

on a HSK50E. Cutting tests were conducted on a solid block

(80�80 mm2) of aluminum 2017 A. The experimental set-up is

Fig. 11. Frequency analysis of the simulation at 20000 rpm and 40000 rpm.

Fig. 12. Results of sensitivity study on the modal contribution at AMBS.

Fig. 13. Results of sensitivity study on servo.



presented in Fig. 14. After each milling test, the surface was

smoothed by a finish pass in order to have for each test the same

good initial surface roughness. The part was down-milled with a

feed per tooth of 0.1 mm, and a radial depth cut of 4 mm.

The axial depth of cut is increased during the machining test.

With this new procedure for AMB spindle the axial depth of cut

starts at 5 mm and exit at 12 mm. This original side milling ramp

cut is very effective to explore the stability of machining.

The vibrations of the spindle were measured directly using the

control signals of the magnetic bearings. In the case of spindle

vibration study, this technique has the advantage of not requiring

instrumentation. However, the bandwidth is limited to 2.5 kHz,

and the obtained signal depends on the sensor position, which is

quite near the nodes of the spindle vibration modes.

4.1. Vibrations analysis

Two useful information are easily available from the control

signals of magnetic bearings: the position of the rotor center and

the magnetic bearings drive currents. In practice, we preferen-

tially used the control currents signals, because they naturally

amplify the cutting force variations. In contrast, the extracted

information is indirectly related to the level of vibration. In the

remainder of this section, we present the signal processing

methods used, because the identification of stable or unstable

behavior of a machine through these signals is not necessarily

obvious. In some cases, the transition from stable to unstable

state is obvious. As an example, the raw signal, the spectrum and

the sampled signal once per tool revolution are shown in Fig. 15

for N¼22500 rpm and in Fig. 16 for N¼20000 rpm. Then the 1/rev

samples are used to construct experimental Poincaré sections,

typical here of unstable process.

In Fig. 15, the instability is clearly identifiable. Indeed, in the

first phase of machining (a), the amplitude of the measured

signals increases linearly, then from t¼1.1 s, a rapid increase

is observed, reflecting the shift to unstable machining (b).

The experimental spectrum of the data of the area (a) shows only

the tooth passing frequency (1.125 kHz, 3 teeth tool, N¼22250 rpm).

But after t¼1.1 s, area (b) the spectrum is dominated by the chatter

frequency (1.8 kHz), different of the tooth passing but close to the

second mode o2 (1.97 kHz). This phenomenon is highlighted by a

disk attractor in the Poincaré section.

In contrast, in the following case (see Fig. 16), it is difficult to

identify the critical depth of cut only by the observation of the

measured signals. However, this machining with N¼20000 rpm

Fig. 14. Experimental set-up.

Fig. 15. Continuous time histories, experimental spectrum, 1/rev sampled signals,

and Poincaré section for a machining with N¼22500 rpm.

Fig. 16. Continuous time histories, experimental spectrum, 1/rev sampled signals

and Poincaré section for a test at 20000 rpm.



clearly pose problem, since the forced vibrations were so strong

that the spindle automatically went into safety mode (i.e.

stopped). Fig. 16 shows the measured control current during this

test, after filtering low frequencies (50 Hz), and the experimental

spectrum. During the first 0.5 s, area (c), the spectrum shows only

the tooth passing frequency (1 kHz, 3 teeth tool, N¼20000 rpm)

corresponding to stable machining. After t¼0.5 s, large forced

vibrations are shown on the spectrum (d). By sampling the signal

at the tooth passing frequency, we can clearly observe a loss of

regularity of the cut at t¼0.5 s, again, the Poincaré section

associated with this signal has a disk-type attractor, which

implies a strong irregular motion, corresponding in this case to

unstable machining.

Indirect measurement of machining vibrations with the con-

trol signals of magnetic bearings is a convenient and efficient

means to assess the stability of machining, because a lot of

sensors are already integrated on the spindle.

4.2. Discussion simulations-experiments

The experimental results are plotted on the optimal areas for

the use of a spindle with active magnetic bearing in Fig. 17. More

than 100 cutting tests have been performed in different zones

(stable area, unstable area due to Hopf bifurcation of the first and

second bending mode and forced vibration area) to emphasize the

behavior highlighted by the simulation. A quite good agreement is

observed between numerical simulations and machining tests.

Instabilities related to the classical stability lobes theory are

found here at 15000, 22000 and 23000 rpm. Moreover, high

vibration levels predicted by the simulation at 20000 rpm have

been encountered during testing. They have even led to automatic

emergency stop of the spindle. The test at 40000 rpm does not

show so much vibration than the 20000 rpm one.

The test at 37000 rpm shows vibrations much sooner than

expected. The discrepancies between the experiment and the

modeling are observed for some spindle speed. It is presently not

clear what causes these discrepancies. Possible causes could be:

the too simple linear cutting law, the simplified chip thickness

calculation or the simplified AMB modeling. According to various

simulations (see for example [13]), a nonlinear cutting law seems

to be always more accurate at low radial depth of cut, but need

more coefficient to be determined.

5. Conclusions

In this article, the dynamical modeling of Active Magnetic

Bearing Spindle (AMBS) is investigated in the case of High-Speed

Milling (HSM) process. Based on both simulation and experimen-

tal investigations, the following points are made clear:

(1) Classical stability lobes theory, widely used for the chatter

optimization of flexible tool with roller bearing spindle, is not

adapted for the dynamical modeling of such new milling

machine equipped with AMBS.

(2) A quite comprehensive and simple numerical model for

machining with AMBS is proposed. This model uses: the

AMB and the servo, the flexible mode of the rotor, the

regenerative effect and the nonlinearity when the tool leaves

the cut under large vibrations. All this elements are naturally

linked to the electro-mechanical system and must absolutely

be included in the model in order to obtain acceptable results.

(3) A sensitivity analysis showed that the stability of the machin-

ing process is very sensitive to the position of the nodes of

rotor’s flexible modes. Unfortunately these parameters are

practically very difficult to determine. A marginal gain on the

stability limit of machining is possible, by adjusting the

LTI gain.

(4) For a spindle with AMB, it is essential to take into account the

strong forced vibrations, because they can induce safety stop.

The classic stability chart is heavily modified, because new

wide areas in HSM zone are not usable for the machining

safety. The new diagram with the optimal areas for the use of

a spindle with active magnetic bearing is presented. It is a

fundamental advance, highlighted by this work.

(5) An original side milling ramp cut was used for AMBS milling.

There are a reasonable correlation between the simulation

and the experiment test, which confirms the assumptions for

the spindle modeling and the dangerousness of the forced

vibrations.

(6) The dynamic model presented here can be used, modified and

improved easily: the equations are clarified in the article, most

of the parameters can be given by the machining properties and

the resolution is carried out by a classical numerical scheme

using Matlab–Simulink.
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